The ILC Higgs Factory

Philip Burrows

John Adams Institute, Oxford University

- Introduction
- The Large Hadron Collider + the Higgs boson
- The Higgs factory
- The International Linear Collider (ILC)
- Higgs physics at ILC
- Project implementation and timeline

Large Hadron Collider (LHC)

Largest, highest-energy particle collider

CERN,

Geneva

A Higgs boson?

A Higgs boson?

The 2012 discovery

The 2012 discovery

ATLAS status

ATLAS CONF 2014 009

Monica D'Onofrio, LHCC June 4 2014

It's officially a Higgs Boson!

Drop= Drop-ie Arg $= \partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu}$ $(=) = \langle \psi^{\dagger} \psi^{\dagger} \psi + \beta (\bar{\phi}^{*} \phi)^{2}$ $\ll < 0, \beta \ge 0$

Finger-printing the Higgs boson

- **Determine its 'profile':**
- Mass
- Width
- Spin
- CP nature
- Coupling to fermions
- Coupling to gauge bosons
- Yukawa coupling to top quark
- Self coupling → Higgs potential

Finger-printing the Higgs boson

Is it:

the Higgs Boson of the Standard Model?

another type of Higgs boson?

something that looks like a Higgs boson but is actually more complicated?

Finger-printing the Higgs boson

Is it:

the Higgs Boson of the Standard Model?

another type of Higgs boson?

something that looks like a Higgs boson but is actually more complicated?

 \rightarrow Measurements of the Higgs couplings to the different species of quarks, leptons and gauge bosons are the key to answering these questions

- **Snowmass Higgs working group:**
- **Decoupling limit:**
- If all new particles (except Higgs) are at a (high) high mass scale M
- deviations from SM predictions are of order m_H² / M²

For M = 1 TeV, deviations of couplings from SM:

Model	κ_V	κ_b	κ_γ	
Singlet Mixing	$\sim 6\%$	$\sim 6\%$	$\sim 6\%$	
2HDM	$\sim 1\%$	$\sim 10\%$	$\sim 1\%$	
Decoupling MSSM	$\sim -0.0013\%$	$\sim 1.6\%$	< 1.5%	
Composite	$\sim -3\%$	$\sim -(3-9)\%$	$\sim -9\%$	
Top Partner	$\sim -2\%$	$\sim -2\%$	$\sim +1\%$	

For M = 1 TeV, deviations of couplings from SM:

Model	κ_V	κ_b	κ_γ	
Singlet Mixing	$\sim 6\%$	$\sim 6\%$	$\sim 6\%$	
2HDM	$\sim 1\%$	$\sim 10\%$	$\sim 1\%$	
Decoupling MSSM	$\sim -0.0013\%$	$\sim 1.6\%$	< 1.5%	
Composite	$\sim -3\%$	$\sim -(3-9)\%$	$\sim -9\%$	
Top Partner	$\sim -2\%$	$\sim -2\%$	$\sim +1\%$	

Deviations in the range $1\% \rightarrow 10\%$

For M = 1 TeV, deviations of couplings from SM:

Model	κ_V	κ_b	κ_γ
Singlet Mixing	$\sim 6\%$	$\sim 6\%$	$\sim 6\%$
2HDM	$\sim 1\%$	$\sim 10\%$	$\sim 1\%$
Decoupling MSSM	$\sim -0.0013\%$	$\sim 1.6\%$	< 1.5%
Composite	$\sim -3\%$	$\sim -(3-9)\%$	$\sim -9\%$
Top Partner	$\sim -2\%$	$\sim -2\%$	$\sim +1\%$

Deviations in the range $1\% \rightarrow 10\%$

→ measurements must be significantly more precise to resolve such deviations

LHC projections

LHC projections

Currently, typically LHC projected precisions on Higgs coupling measurements assume that:

- Standard Model is correct
- No non-Standard decay modes (total width = SM)
- Charm and top couplings deviate from SM by same factor

ATLAS projections

ATLAS Simulation Preliminary √s = 14 TeV: ∫Ldt=300 fb⁻¹ ; ∫Ldt=3000 fb⁻¹

ATL PHYS PUB 2013 014

Luca Fiorini, LHCC Dec 2013

CMS projections

	<u> </u>									
$L (fb^{-1})$	κ_{γ}	κ_W	κ_Z	κ_g	κ_b	κ_t	$\kappa_{ au}$	$\kappa_{Z\gamma}$	$\kappa_{\mu\mu}$	BR _{SM}
300	[5,7]	[4, 6]	[4, 6]	[6, 8]	[10, 13]	[14, 15]	[6, 8]	[41, 41]	[23, 23]	[14, 18]
3000	[2, 5]	[2, 5]	[2, 4]	[3, 5]	[4, 7]	[7, 10]	[2, 5]	[10, 12]	[8, 8]	[7, 11]

CMS Projection

CMS-NOTE-2013-002

Yurii Maravin, LHCC Dec 2013

LHC projections

Currently, typically LHC projected precisions on Higgs coupling measurements assume that:

- Standard Model is correct
- No non-Standard decay modes (total width = SM)
- Charm and top couplings deviate from SM by same factor
- Such assumptions are not necessary for Higgs coupling measurements at e+e- Higgs Factory ...

'Higgs factory'

e+e- collider:
linear collider
storage ring

- photon-photon collider: usually considered as add-on to linear collider
- muon collider:

usually considered as a next step beyond a future neutrino factory

e+e- Higgs factory

- e+e- annihilations:
- E > 91 + 125 = 216 GeV
- E ~ 250 GeV

- E > 91 + 250 = 341 GeV
- E ~ 500 GeV

well defined centre of mass energy: 2E

well defined centre of mass energy: 2E complete control of event kinematics: p = 0, M = 2E

well defined centre of mass energy: 2E complete control of event kinematics: p = 0, M = 2E

polarised beam(s)

e+e- annihilations

well defined centre of mass energy: 2E complete control of event kinematics: p = 0, M = 2E

polarised beam(s)

clean experimental environment

e+e- colliders

	ILC	ILC	ILC	CLIC	CLIC	CLIC	LEP3
√s [GeV]	250	500	1000	500	1500	3000	240
Luminosity [10 ³⁴ cm ⁻¹ s ⁻¹]	0.75	1.8	4.9	1.3	3.7	5.9	1 per IP
>0.99 √s fraction	87%	58%	45%	54%	38%	34%	100%
polarization e ⁻	80%	80%	80%	80%	80%	80%	-
polarization e+	30%	30%	20%	>50%?	>50%?	>50%?	-
beam size σ_x [nm]	729	474	335	100	60	40	71000
beam size σ_y [nm]	7.7	5.9	2.7	2.6	1.5	1	320
Power [MW]	128	162	300	235	364	589	200

Wyatt
	ILC	ILC	ILC	CLIC	CLIC	CLIC	LEP3
√s [GeV]	250	500	1000	500	1500	3000	240
Luminosity [10 ³⁴ cm ⁻¹ s ⁻¹]	0.75	1.8	4.9	1.3	3.7	5.9	1 per IP
>0.99 √s fraction	87%	58%	45%	54%	38%	34%	100%
polarization e ⁻	80%	80%	80%	80%	80%	80%	-
polarization e+	30%	30%	20%	>50%?	>50%?	>50%?	-
beam size σ_x [nm]	729	474	335	100	60	40	71000
beam size σ _y [nm]	7.7	5.9	2.7	2.6	1.5	1	320
Power [MW]	128	162	300	235	364	589	200

	ILC	ILC	ILC	CLIC	CLIC	CLIC	LEP3
√s [GeV]	250	500	1000	500	1500	3000	240
Luminosity [10 ³⁴ cm ⁻¹ s ⁻¹]	0.75	1.8	4.9	1.3	3.7	5.9	1 per IP
>0.99 √s fraction	87%	58%	45%	54%	38%	34%	100%
polarization e ⁻	80%	80%	80%	80%	80%	80%	-
polarization e+	30%	30%	20%	>50%?	>50%?	>50%?	-
beam size σ _x [nm]	729	474	335	100	60	40	71000
beam size σ_y [nm]	7.7	5.9	2.7	2.6	1.5	1	320
Power [MW]	128	162	300	235	364	589	200

	ILC	ILC	ILC	CLIC	CLIC	CLIC	LEP3
√s [GeV]	250	500	1000	500	1500	3000	240
Luminosity [10 ³⁴ cm ⁻¹ s ⁻¹]	0.75	1.8	4.9	1.3	3.7	5.9	1 per IP
>0.99 √s fraction	87%	58%	45%	54%	38%	34%	100%
polarization e ⁻	80%	80%	80%	80%	80%	80%	-
polarization e+	30%	30%	20%	>50%?	>50%?	>50%?	-
beam size σ_x [nm]	729	474	335	100	60	40	71000
beam size σ_y [nm]	7.7	5.9	2.7	2.6	1.5	1	320
Power [MW]	128	162	300	235	364	589	200

	ILC	ILC	ILC	CLIC	CLIC	CLIC	LEP3
√s [GeV]	250	500	1000	500	1500	3000	240
Luminosity [10 ³⁴ cm ⁻¹ s ⁻¹]	0.75	1.8	4.9	1.3	3.7	5.9	1 per IP
>0.99 √s fraction	87%	58%	45%	54%	38%	34%	100%
polarization e ⁻	80%	80%	80%	80%	80%	80%	-
polarization e^+	30%	30%	20%	>50%?	>50%?	>50%?	-
beam size σ_x [nm]	729	474	335	100	60	40	71000
beam size σ_{y} [nm]	7.7	5.9	2.7	2.6	1.5	1	320
Power [MW]	128	162	300	235	364	589	200

L ~ 10³⁴ (250 GeV) \rightarrow 20,000 H / year

		ILC	ILC	ILC	CLIC	CLIC	CLIC	LEP3	
√s [GeV]		250	500	1000	500	1500	3000	240	
Luminosity [10 ³⁴ cm ⁻¹ s ⁻¹]		0.75	1.8	4.9	1.3	3.7	5.9	1 per IP	
>0.99 √s fraction	1	87%	58%	45%	54%	38%	34%	100%	
polarization e ⁻		80%	80%	80%	80%	80%	80%	-	
polarization e+		30%	30%	20%	>50%?	>50%?	>50%?	-	
beam size σ _x [nm	n]	729	474	335	100	60	40	71000	
beam size σ _y [nm	ן ו	7.7	5.9	2.7	2.6	1.5	1	320	

	ILC	ILC	ILC	CLIC	CLIC	CLIC	LEP3
√s [GeV]	250	500	1000	500	1500	3000	240
Luminosity [10 ³⁴ cm ⁻¹ s ⁻¹]	0.75	1.8	4.9	1.3	3.7	5.9	1 per IP
>0.99 √s fraction	87%	58%	45%	54%	38%	34%	100%
polarization e ⁻	80%	80%	80%	80%	80%	80%	-
polarization e+	30%	30%	20%	>50%?	>50%?	>50%?	-
beam size σ_x [nm]	729	474	335	100	60	40	71000
beam size σ _v [nm]	7.7	5.9	2.7	2.6	1.5	1	320
Power [MW]	128	162	300	235	364	589	200

European particle physics strategy 2013

There is a strong scientific case for an electron-positron collider, complementary to the LHC, that can study the properties of the Higgs boson and other particles with unprecedented precision and whose energy can be upgraded.

European particle physics strategy 2013

There is a strong scientific case for an electron-positron collider, complementary to the LHC, that can study the properties of the Higgs boson and other particles with unprecedented precision and whose energy can be upgraded.

The Technical Design Report of the International Linear Collider (ILC) has been completed, with large European participation. The initiative from the Japanese particle physics community to host the ILC in Japan is most welcome, and European groups are eager to participate.

European particle physics strategy 2013

There is a strong scientific case for an electron-positron collider, complementary to the LHC, that can study the properties of the Higgs boson and other particles with unprecedented precision and whose energy can be upgraded.

The Technical Design Report of the International Linear Collider (ILC) has been completed, with large European participation. The initiative from the Japanese particle physics community to host the ILC in Japan is most welcome, and European groups are eager to participate.

Europe looks forward to a proposal from Japan to discuss a possible participation.

Snowmass executive summary 2013

Compelling science motivates continuing this program with experiments at lepton colliders. Experiments at such colliders can reach sub-percent precision in Higgs boson properties in a unique, model-independent way, enabling discovery of percent-level deviations from the Standard Model predicted in many theories.

Snowmass executive summary 2013

Compelling science motivates continuing this program with experiments at lepton colliders. Experiments at such colliders can reach sub-percent precision in Higgs boson properties in a unique, model-independent way, enabling discovery of percent-level deviations from the Standard Model predicted in many theories. They can improve the precision of our knowledge of the W, Z, and top quark well enough to allow the discovery of predicted new-physics effects. They search for new particles in a manner complementing new particle searches at the LHC.

Snowmass executive summary 2013

Compelling science motivates continuing this program with experiments at lepton colliders. Experiments at such colliders can reach sub-percent precision in Higgs boson properties in a unique, model-independent way, enabling discovery of percent-level deviations from the Standard Model predicted in many theories. They can improve the precision of our knowledge of the W, Z, and top quark well enough to allow the discovery of predicted new-physics effects. They search for new particles in a manner complementing new particle searches at the LHC. A global effort has completed the technical design of the International Linear Collider (ILC) accelerator and detectors that will provide these capabilities in the latter part of the next decade. The Japanese particle physics community has declared this facility as its first priority for new initiatives.

e+e- Higgs Factory

ILC Higgs Factory Roadmap

250 GeV:

Mass, Spin, CP nature Absolute meas. of HZZ BRs Higgs → qq, II, VV 350 GeV:

> Top threshold: mass, width, anomalous couplings ... (more stats on Higgs BRs)

500 GeV:

HWW coupling → total width → absolute couplings Higgs self coupling Top Yukawa coupling

 \rightarrow 1000 GeV: as motivated by physics

Higgs mass measurement

Recoil mass: - independent of Higgs decay

Discovery mode for 'H' decay to weakly-interacting particles $250 \,\text{fb}^{-1}@250 \,\text{GeV}$ $\Delta \sigma_H / \sigma_H = 2.5\%$ $\Delta m_H = 30 \,\text{MeV}$

(Fujii)

Higgs spin determination

Rise of cross-section near threshold

(TESLA TDR)

52

Higgs branching ratios determination (1)

53

$$250 \, {\rm fb}^{-1}$$
 @250 GeV
 $m_H = 120 \, {\rm GeV}$

	@ 250 GeV
process	ZH
luminosity · fb	250
cross section	2.5%
	σ·Br
H>bb	1.0%
H->cc	6.9%
H>gg	8.5%
H->WW*	8.2%
Η>ττ	4-6%
H>ZZ*	28%
Η>γγ	23-30%

Higgs branching ratios determination (2)

		1
measurements (independent)	precision	
$X_1 = \sigma_{ZH} \cdot \operatorname{Br}(H \to b\bar{b}) @ 250 \text{ GeV}$	1.0%	
$X_2 = \sigma_{ZH} \cdot \operatorname{Br}(H \to c\bar{c}) @ 250 \text{ GeV}$	6.9%	
$X_3 = \sigma_{ZH} \cdot \operatorname{Br}(H \to gg) @ 250 \text{ GeV}$	8.5%	e^{-} Z^{0} N^{N}
$X_4 = \sigma_{ZH} \cdot \operatorname{Br}(H \to WW^*) @ 250 \text{ GeV}$	8.2%	- >www.v.v.
$X_5 = \sigma_{ZH} \cdot \operatorname{Br}(H \to b\bar{b}) @ 500 \text{ GeV}$	1.6%	e⁺ H``.
$X_6 = \sigma_{ZH} \cdot \operatorname{Br}(H \to c\bar{c}) \ @ \ 500 \ \mathrm{GeV}$	11%	
$X_7 = \sigma_{ZH} \cdot \operatorname{Br}(H \to gg) @ 500 \text{ GeV}$	13%	
$X_8 = \sigma_{\nu\bar{\nu}H} \cdot \text{Br}(H \to b\bar{b}) @ 500 \text{ GeV}$	0.60%	e ⁺ $\bar{\nu}$
$X_9 = \sigma_{\nu\bar{\nu}H} \cdot \operatorname{Br}(H \to c\bar{c}) \ @ \ 500 \ \mathrm{GeV}$	4.0%	wĘ
$X_{10} = \sigma_{\nu\bar{\nu}H} \cdot \operatorname{Br}(H \to gg) \ @ \ 500 \ \mathrm{GeV}$	4.9%	W Z H
$X_{11} = \sigma_{\nu\bar{\nu}H} \cdot \operatorname{Br}(H \to WW^*) @ 500 \text{ GeV}$	3.0%	ev
$X_{12} = \sigma_{ZH}$	2.5%	(Fujii / ILC TDR)

Total Width and Coupling Extraction One of the major advantages of the LC

To extract couplings from BRs, we need the total width:

$$g_{HAA}^2 \propto \Gamma(H \to AA) = \Gamma_H \cdot BR(H \to AA)$$

To determine the total width, we need at least one partial width and corresponding BR:

$$\Gamma_H = \Gamma(H \to AA) / BR(H \to AA)$$

In principle, we can use the A=Z, or W for which we can measure both the BRs and the couplings:

K.Fujii @ LCWS12, Oct.24, 2012

Higgs self-coupling determination

\sqrt{s} (GeV)	500	500	500+1000	500+1000
$L (fb^{-1})$	500	1600	500+1000	1600+2500
$\Delta\lambda/\lambda$	83%	46%	21%	13%

Higgs top-coupling determination

 $1 \, \mathrm{ab^{-1}} @500 \, \mathrm{GeV}$ $\Delta g_Y(t) / g_Y(t) = 10 \%$

(Price, Roloff)

ILC roadmap

- Baseline: 250 fb^{-1} @ 250 GeV3 years500 fbc1@ 500 OeV0 years
 - 500 fb⁻¹ @ 500 GeV 3 years
 - 1000 fb⁻¹ @ 1000 GeV 3 years

ILC roadmap

 Baseline:
 250 fb⁻¹
 @ 250 GeV
 3 years

 500 fb⁻¹
 @ 500 GeV
 3 years

 1000 fb⁻¹
 @ 1000 GeV
 3 years

Followed by luminosity upgrade:

'HL-ILC': +900 fb⁻¹ @ 250 GeV +3 years +1100 fb⁻¹ @ 500 GeV +3 years +1500 fb⁻¹ @ 1000 GeV +3 years

ILC baseline precisions

\sqrt{s} and \mathcal{L}	250 fb ⁻¹ at 250 GeV		500 fb ⁻¹ at 500 GeV				1 ab ⁻¹ at 1 TeV		
(P_{e^-}, P_{e^+})	(-0.8,	+0.3)	(-0.8,+0.3)				(-0.8,+0.2)		
	Zh	$\nu \bar{\nu} h$	Zh	$\nu \bar{\nu} h$	$t\bar{t}h$	Zhh	$\nu \bar{\nu} h$	$t\bar{t}h$	$\nu \bar{\nu} hh$
$\Delta \sigma / \sigma$	2.6%	-	3.0	-		42.7%			26.3%
BR(invis.)	< 0.9 %	-	-	-	-				
mode		$\Delta(\sigma \cdot BR)/(\sigma \cdot BR)$							
$h \rightarrow b\bar{b}$	1.2%	10.5%	1.8%	0.7%	28%		0.5%	6.0%	
$h \rightarrow c\bar{c}$	8.3%	-	13%	6.2%			3.1%		
$h \rightarrow gg$	7.0%	-	11%	4.1%			2.3%		
$h \rightarrow WW^*$	6.4%	-	9.2%	2.4%			1.6%		
$h \rightarrow \tau^+ \tau^-$	4.2%	-	5.4%	9.0%			3.1%		
$h \rightarrow ZZ^*$	19%	-	25%	8.2%			4.1%		
$h \rightarrow \gamma \gamma$	34%	-	34%	23%			8.5%		
$h ightarrow \mu^+ \mu^-$	100%	-	-	-			31%		

Higgs coupling map

ILC baseline + HL-ILC precisions

\sqrt{s} and \mathcal{L}	1150 fb ⁻¹ at 250 GeV		$1600 { m fb}^{-1}$ at 500 GeV				2.5 ab ⁻¹ at 1 TeV			
$(P_{e^{-}}, P_{e^{+}})$	(-0.8	+0.3)		(-0.8,+0.3)				(-0.8,+0.2)		
	Zh	vvh	Zh	$\nu \bar{\nu} h$	tth	Zhh	$\nu \bar{\nu} h$	tth	$\nu \bar{\nu} hh$	
$\Delta \sigma / \sigma$	1.2%	-	1.7	-		23.7%			16.7%	
BR(invis.)	< 0.4 %	-	-	-			-			
mode			4	$\Delta(\sigma \cdot BI$	$l)/(\sigma \cdot L)$	3R)				
$h \rightarrow b\overline{b}$	0.6%	4.9%	1.0%	0.4%	16%		0.3%	3.8%		
$h \rightarrow c\bar{c}$	3.9%	-	7.2%	3.5%			2.0%			
$h \rightarrow gg$	3.3%	-	6.0%	2.3%			1.4%			
$h \rightarrow WW^*$	3.0%	-	5.1%	1.3%			1.0%			
$h ightarrow au^+ au^-$	2.0%	-	3.0%	5.0%			2.0%			
$h \rightarrow ZZ^*$	8.8%	-	14%	4.6%			2.6%			
$h \rightarrow \gamma \gamma$	16%	-	19%	13%			5.4%			
$h \rightarrow \mu^+ \mu^-$	46.6%	-	-	-			20%			

Model-independent couplings extraction

- **33 input measurements**
- 11-parameter fit

$$\chi^{2} = \sum_{i=1}^{i=33} (\frac{Y_{i} - Y_{i}'}{\Delta Y_{i}})^{2},$$

$$Y_i^{'} = F_i \cdot \frac{g_{HZZ}^2 g_{Hb\bar{b}}^2}{\Gamma_0}$$
, or $Y_i^{'} = F_i \cdot \frac{g_{HWW}^2 g_{Hb\bar{b}}^2}{\Gamma_0}$, or $Y_i^{'} = F_i \cdot \frac{g_{Htt}^2 g_{Hb\bar{b}}^2}{\Gamma_0}$

$$F_i = S_i G_i \quad \text{where } S_i = \left(\frac{\sigma_{ZH}}{g_Z^2}\right), \ \left(\frac{\sigma_{\nu\bar{\nu}H}}{g_W^2}\right), \text{ or } \left(\frac{\sigma_{t\bar{t}H}}{g_t^2}\right), \text{ and } G_i = \left(\frac{\Gamma_i}{g_i^2}\right).$$

Model-independent couplings

	ILC(250)	ILC(500)	ILC(1000)	ILC(LumUp)
\sqrt{s} (GeV)	250	250 + 500	250+500+1000	250 + 500 + 1000
\dot{L} (fb ⁻¹)	250	250 + 500	250+500+1000	1150 + 1600 + 2500
$\gamma\gamma$	18 %	8.4 %	4.0 %	2.4 %
<u>gg</u>	6.4 %	2.3 %	1.6 %	0.9 %
WW	4.8 %	1.1 %	1.1 %	0.6 %
ZZ	1.3 %	1.0 %	1.0 %	0.5 %
$t\bar{t}$	_	14 %	3.1 %	1.9 %
$b\overline{b}$	5.3 %	1.6 %	1.3 %	0.7 %
$\tau + \tau -$	5.7 %	2.3 %	1.6 %	0.9 %
$c\bar{c}$	6.8 %	2.8 %	1.8 %	1.0 %
$\mu^+\mu^-$	91%	91%	16 %	10 %
$\Gamma_T(h)$	12 %	4.9 %	4.5 %	2.3 %
hhh	-	83 %	21 %	13 %
BR(invis.)	< 0.9 %	< 0.9 %	< 0.9 %	< 0.4 %

Model-independent couplings

Comparison with LHC

LHC does not project making model-independent Higgs coupling measurements

LHC projections assume the Standard Model and estimate precision relative to SM couplings, also assuming charm follows top

Model-dependent couplings extraction

7 Parameter HXSWG Benchmark *

	LHC		
Mode	$300 \ {\rm fb}^{-1}$	3000 fb^{-1}	
$\gamma\gamma$	(5-7)%	(2-5)%	
gg	(6-8)%	(3-5)%	
WW	(4-5)%	(2-3)%	
ZZ	(4-5)%	(2-3)%	
$tar{t}$	(14 - 15)%	(7 - 10)%	
$b\bar{b}$	(10 - 13)%	(4-7)%	
$\tau^+\tau^-$	(6-8)%	(2-5)%	

* Assume
$$\kappa_c = \kappa_t$$
 & $\Gamma_{tot} = \sum_{\text{SM decays i}} \Gamma_i^{SM} \kappa_i^2$

Comparison with LHC

LHC does not project making model-independent Higgs coupling measurements

LHC projections assume the Standard Model and estimate precision relative to SM couplings, also assuming charm follows top

For purpose of comparison, can follow same modeldependent procedure for ILC ...

Model-dependent couplings extraction

7 Parameter	HXSWG	Benchmark	*
-------------	-------	-----------	---

			ILC(1000)	ILC(LumUp)	
	LHO	0	250+500+1000	250+500+1000	\sqrt{s} (GeV)
Mode	$300 \ {\rm fb^{-1}}$	$3000 \ {\rm fb}^{-1}$	250+500+1000	1150 + 1600 + 2500	$L (fb^{-1})$
$\gamma\gamma$	(5-7)%	(2-5)%	3.8 %	2.3 %	
gg	(6-8)%	(3-5)%	1.1 %	0.7 %	
WW	(4-5)%	(2-3)%	0.3 %	0.2 %	
ZZ	(4-5)%	(2-3)%	0.5 %	0.3 %	
$t\bar{t}$	(14 - 15)%	(7 - 10)%	1.3 %	0.9 %	
$bar{b}$	(10 - 13)%	(4-7)%	0.6 %	0.4 %	
$\tau^+\tau^-$	(6-8)%	(2-5)%	1.3 %	0.7 %	

* Assume
$$\kappa_c = \kappa_t$$
 & $\Gamma_{tot} = \sum_{\text{SM decays i}} \Gamma_i^{\text{SM}} \kappa_i^2$

Model-dependent couplings extraction

7 Parameter HXSWG Benchmark *					
	LHC		ILC(1000) 250+500+1000	ILC(LumUp) 250+500+1000	\sqrt{s} (GeV)
Mode	300 fb ⁻¹	3000 fb^{-1}	250+500+1000	1150 + 1600 + 2500	$L (fb^{-1})$
$\gamma\gamma$	(5-7)%	(2-5)%	3.8 %	2.3 %	
gg	(6-8)%	(3-5)%	1.1 %	0.7 %	
WW	(4-5)%	(2-3)%	0.3 %	0.2 %	
ZZ	(4-5)%	(2-3)%	0.5 %	0.3 %	
$tar{t}$	(14 - 15)%	(7 - 10)%	1.3 %	0.9 %	
$bar{b}$	(10 - 13)%	(4-7)%	0.6 %	0.4 %	
$\tau^+ \tau^-$	(6-8)%	(2-5)%	1.3 %	0.7 %	

~10 x LHC sensitivity

* Assume
$$\kappa_c = \kappa_t$$
 & $\Gamma_{tot} = \sum_{\text{SM decays i}} \Gamma_i^{SM} \kappa_i^2$

Non-Standard Higgs couplings

For M = 1 TeV, deviations of couplings from SM:

Model	κ_V	κ_b	κ_γ
Singlet Mixing	$\sim 6\%$	$\sim 6\%$	$\sim 6\%$
2HDM	$\sim 1\%$	$\sim 10\%$	$\sim 1\%$
Decoupling MSSM	$\sim -0.0013\%$	$\sim 1.6\%$	< 1.5%
Composite	$\sim -3\%$	$\sim -(3-9)\%$	$\sim -9\%$
Top Partner	$\sim -2\%$	$\sim -2\%$	$\sim +1\%$

Deviations in the range $1\% \rightarrow 10\%$

→ measurements must be significantly more precise to resolve such deviations

Specific beyond-SM examples

Composite Higgs (MCHM5)

Zivkovic et al

Simulated ILC measurements
The accelerator

Large Electron Positron collider (RIP)

0.1 TeV beams

Large Electron Positron collider (RIP)

0.1 TeV beams

Synch rad → 18 MW

Super Large Electron Positron collider?

0.2 TeV beams?

Super Large Electron Positron collider?

0.2 TeV beams?

Synch rad → 300 MW

Super Large Electron Positron collider?

0.2 TeV beams?

Synch rad → 300 MW

Linear Colliders for electrons + positrons

Stanford

Linear

Accelerator

Center

(California)

Designing a Linear Collider

International Linear Collider (ILC)

Beam parameters

	ILC (500)	
Electrons/bunch	0.75	10**10
Bunches/train	2820	
Train repetition rate	5	Hz
Bunch separation	308	ns
Train length	868	us
Horizontal IP beam size	655	nm
Vertical IP beam size	6	nm
Longitudinal IP beam size	300	um
Luminosity	2	10**34

ILC Detectors

ILC project status

- 2005-12 ILC run by Global Design Effort (Barish)
- C. 500 accelerator scientists worldwide involved
- A Reference Design Report (RDR) was completed in 2007 including a first cost estimate
- 2008-12 engineering design phase major focus on risk minimisation + cost reduction
- Technical Design document released end 2012
 revised cost estimate + project implementation plan

Technical Volumes

ILC project status

- 2005-12 ILC run by Global Design Effort (Barish)
- C. 500 accelerator scientists worldwide involved
- A Reference Design Report (RDR) was completed in 2007 including a first cost estimate
- 2008-12 engineering design phase
 major focus on risk minimisation + cost reduction
- Technical Design document released end 2012
 revised cost estimate + project implementation plan
- Lyn Evans assumed project leadership 2013
 Japan preparing implementation of ILC at Kitakami

Yamauchi

ILC Plan in Japan

- Japanese HEP community proposes to host ILC based on the "staging scenario" to the Japanese Government.
 - ILC starts as a 250GeV Higgs factory, and will evolve to a 500GeV machine.
 - Technical extendability to 1TeV is to be preserved.

Yamauchi

ILC Plan in Japan

Japanese HEP community proposes to host ILC based on the "staging scenario" to the Japanese

LDP (Liberal Democratic Party) Victory in the lower-house election in Oct, 2012

Our new prime minister Shinzo Abe

LDP took power in Dec 2012

The ILC appears twice explicitly in the policy document:

- Science and technology policies
- Creation of top-class research centers

LDP policy document for the election

Yamamoto, HEPAP, 11/3/13

ILC in Japan?

meeting of Lyn Evans and Prime Minister Abe, March 27, 2013

Possible Timeline

July 2013

- Non-political evaluation of 2 Japanese candidate sites complete, followed by down-selecting to one
- End 2013
 - Japanese government announces its intent to bid
- 2013~2015
 - Inter-governmental negotiations
 - Completion of R&Ds, preparation for the ILC lab.
- ~2015
 - Inputs from LHC@14TeV, decision to proceed
- 2015~16
 - Construction begins (incl. bidding)
- 2026~27
 - Commissioning

Yamamoto, HEPAP, 11/3/13

PPAP recommendation

The UK Particle Physics Roadmap

Particle Physics Advisory Panel: P. N. Burrows, C. Da Via, E. W. N. Glover, P.R. Newman, J. Rademacker, C. Shepherd-Themistocleous, W.J. Spence, M. A. Thomson and M. Wing

7/11/12

'It is essential that the UK engages with the Higgs **Factory initiative** and positions itself to play a leading role should the facility go ahead.'

Extra material follows

Model-independent couplings

Facility	ILC			ILC(LumiUp)	TLE	P (4 IP)	CLIC		
\sqrt{s} (GeV)	250	500	1000	250/500/1000	240	350	350	1400	3000
$\int \mathcal{L} dt \ (\mathrm{fb}^{-1})$	250	+500	+1000	$1150{+}1600{+}2500^{\ddagger}$	10000	+2600	500	+1500	+2000
$P(e^-,e^+)$	(-0.8, +0.3)	(-0.8, +0.3)	(-0.8, +0.2)	(same)	(0, 0)	(0, 0)	(0, 0)	(-0.8, 0)	(-0.8, 0)
Γ_H	12%	5.0%	4.6%	2.5%	1.9%	1.0%	9.2%	8.5%	8.4%
κ_{γ}	18%	8.4%	4.0%	2.4%	1.7%	1.5%	_	5.9%	${<}5.9\%$
κ_g	6.4%	2.3%	1.6%	0.9%	1.1%	0.8%	4.1%	2.3%	2.2%
κ_W	4.9%	1.2%	1.2%	0.6%	0.85%	0.19%	2.6%	2.1%	2.1%
κ_Z	1.3%	1.0%	1.0%	0.5%	0.16%	0.15%	2.1%	2.1%	2.1%
κ_{μ}	91%	91%	16%	10%	6.4%	6.2%	_	11%	5.6%
κ_{τ}	5.8%	2.4%	1.8%	1.0%	0.94%	0.54%	4.0%	2.5%	$<\!\!2.5\%$
κ_c	6.8%	2.8%	1.8%	1.1%	1.0%	0.71%	3.8%	2.4%	2.2%
κ_b	5.3%	1.7%	1.3%	0.8%	0.88%	0.42%	2.8%	2.2%	2.1%
κ_t	_	14%	3.2%	2.0%	_	13%	_	4.5%	${<}4.5\%$
$BR_{\rm inv}$	0.9%	< 0.9%	< 0.9%	0.4%	0.19%	< 0.19%		Oct 28	2014 28
								and the second s	

Key challenges

- Energy: sustain high gradients
 > 30 MeV/m
- Luminosity:

TM010 mode

c. 20,000 needed

c. 20,000 needed

Courtesy: R. Geng

European X-FEL at DESY

Key challenges

- Energy: sustain high gradients
 > 30 MeV/m
- Luminosity: goal is > 10**34 / cm**2/ s

ILC Cost Estimate (February 2007)

- shared value = 4.87 Billion ILC Value Units
- site-dependent value = 1.78 Billion ILC Value Units
- total value = 6.65 Billion ILC Value Units (shared + site-dependent)
- labour = 22 million person-hours = 13,000 personyears
 (assuming 1700 person-hours per person-year)
- 1 ILC Value Unit = 1 US Dollar (2007) = 0.83 Euros = 117 Yen

ILC value breakdown

