Searching for new physics with the hh→4b final state at the LHC

Introduction

• In this talk:

- Why this final state interesting.
- How it is possible to study it at the LHC, and the results so far...
- Where this might take us at the HL-LHC.
- The studies shown here are almost entirely UCL driven:
 - Nikos, Rebecca F, Luke L, Nurfikiri N, Eric J, BC, DW.

Motivation

Why is di-Higgs production interesting? Wny look for it at the LHC?

What we know about the Higgs...

What we know about the Higgs...

Mass already known to 2 parts per mil precision! Also have experimental handles on the spin, parity and total width properties.

...and what we don't know

u=0

u=1

Have no solid observation of h→bb decay mode, despite this dominating the total width (BR 58%).

...and what we don't know

No measurement of Higgs "self-coupling" Needed to understand structure of the symmetry breaking potential:

...and what we don't know

- A measurement of di-Higgs production would give a handle on λ.
- Deviations of λ from Standard Model prediction would indicate new physics..but cross-sections are very small!

di-Higgs as a window to BSM Physics

Many models of new physics also predict resonant enhancements to di-Higgs production

New physics model	Motivation	New particle with X→hh
Single Warped Extra Dimension ^{1,2}	Hierarchy problem Flavour problem	Kaluza-Klein Graviton, G _{кк} (Spin-2)
Additional Higgs Doublet ³ (2HDM)	MSSM Baryon asymmetry	Heavy neutral scalar, H
Additional Scalar Higgs ⁴ Singlet	Why not?	Heavy neutral scalar, H

- 1. Phys. Rev. Lett. 83 (1999) 3370-3373.
- 2. Phys. Rev. D76 (2007) 036006.
- 3. Phys. Rept. 516, (2012) 1.
- 4. arXiv:1303.1150

KK Gravitons at the LHC

 \sqrt{s} = 8 TeV cross-sections and widths in ADPS Bulk Randall-Sundrum WED model with k/M_{Pl} = 1.0

Graviton Mass	$\sigma(pp \to G_{\rm KK} \to hh \to b\bar{b}b\bar{b}$	Г
[GeV]	[f b]	[GeV]
500	70.9	18.6
700	12.44	33.9
900	2.83	48.6
1100	0.78	62.7
1300	0.25	76.5
1500	0.08	90.0

- Benchmark LHC model for resonant diboson production.
- Reasonably large BR to di-Higgs (6-7%).
- Narrow width resonance with cross-sections ~10's fb at lower masses.
 - Accessible at LHC?

Two Higgs Doublet Models (2HDM)

- Enlarged scalar spectrum: h, H, H⁺, H⁻, A.
- Heavy Higgs can decay to pair of light Higgs: $H \rightarrow hh$
- "Rich" structure with many parameters:
 - 0
 - 5 masses: m_h , m_H , $m_{H^{+/-}}$, m_A Ratio of vevs of two Higgs fields: $tan(\beta)$ Ο
 - h-H mixing angle: $cos(\alpha)$ Ο

How should we look for di-Higgs?

- Wide range of possible final states from fully hadronic to fully leptonic.
- The large BR of bbbb gives you plenty of signal to play with relative to the other channels...
- ...can this be used to control the large QCD backgrounds in this channel?

Channel	Branching ratio
bb bb	33.3%
bb W ^{had} W ^{had}	11.3%
bb tautau	7.3%
bb W ^{lep} W ^{lep}	1.2%
W ^{had} W ^{had} W ^{had} W ^{had}	1.0%
tautau tautau	0.4%
bb үү	0.3%
W ^{lep} W ^{lep} W ^{had} W ^{had}	0.2%
M _{leb} M _{leb} M _{leb} M _{leb}	0.01%
W ^{lep} W ^{lep} YY	0.005%
ZlebZleb ZlebZleb	0.000002%

The Boosted 4b Topology

Decay of a high mass resonance $(\sim 1 \text{ TeV}) \text{ X} \rightarrow \text{hh will}$ naturally result in "boosted", high momentum Higgs on opposite sides of the event.

- b b h р n h h
- Will tend to produce four "b-jets" of reasonable momentum.

 The pair of b-jets from each boosted Higgs decay will be closely associated in angle.

 Can therefore reconstruct the two Higgs as two boosted "dijets" per event

 Can therefore reconstruct the two Higgs as two boosted "dijets" per event

X→hh→bbbb Particle-Level Studies

How large are the backgrounds? Do we have sensitivity to new physics?

Phys. Rev. D 88:114005, 2013

Basic Event Selection

- 4 b-tagged anti- $k_T R=0.4$ jets with $p_T > 40 \text{ GeV}$ and $|\eta| < 2.5$.
- B-tagging emulated using [b, c, light] [0.7, 0.2, 0.01] efficiencies.
- Two dijets with p_T > 200 GeV formed from the 4 btagged jets.

$\sqrt{s} = 8$ TeV Samples Used

- <u>Signal:</u>
 - RS G_{KK}→hh→bbbb
 Madgraph + Pythia8
- QCD backgrounds:
 - pp→bbbb, pp→bbcc
 - Sherpa 1.4 (LO)
- <u>Top pair background:</u>
 - Pythia 8
 - LO scaled to LHC 8 TeV measurement.

QCD Doesn't Like This Topology

Expected yields for 20fb⁻¹:

Requirement	$G_{KK}(M = 800 \text{GeV})$	QCD	$t\overline{t}$
4 <i>b</i> -tagged jets	126	19700	3590
2 dijets	109	414	151

 Dramatic reduction in backgrounds after boosted dijet requirements!
 98% reduction for QCD!!!

Already looks very promising, can we do better?

Dijet Mass Windows

A requirement on the dijet mass can reduce the backgrounds further...

Dijet Mass Windows

• Expected yields for 20fb⁻¹:

Requirement	$G_{KK}(M = 800 GeV)$	QCD	$t\overline{t}$
4 <i>b</i> -tagged jets	126	19700	3590
2 dijets	109	414	151
≥ 1 dijet with m_h	102	183	89
2 dijets with m_h	58	28^{+20}_{-11}	21 ± 3

 Making dijet requirement on both sides gives big improvement in s/b.

Use 4b Mass Information

Can improve s/b further by searching for a resonance of a mass m_{χ} only in a particular m_{4b} window.

Sensitivity for 3σ observation

- Use [m_x-100, m_x+50] GeV m_{4b} windows, count background and plot signal cross-section such that signal yield = 3 x √bkg.
- Estimate sensitivity down to 4fb!
 - ~1 TeV graviton should be within reach!

Caveat: G_{KK} prediction here is a factor 4 too large (generator bug that is now fixed).

Jets and b-tagging at ATLAS

Jets and b-tagging at ATLAS

Success of 4b analysis depends crucially on performance of jet reconstruction and b-tagging.

Jets reconstructed from calorimeter energy clusters using Anti-k_T algorithm with R=0.4.

This analysis benefits from excellent understanding of the jet energy scale (< 3%) and resolution $(\sim 10\%)$.

Jets and b-tagging at ATLAS

Success of 4b analysis depends crucially on performance of jet reconstruction and b-tagging.

Jets "b-tagged" using information from the tracks associated to the jet to infer the presence of a long-lived B hadron.

Analysis benefits from excellent separation of b-jets from "light" jets (70% vs 1%), and understanding of b-tag rate (5-10%).

ATLAS Boosted Z→bb Measurement

Physics Letters B 738 (2014) 25-43

Measurement of boosted Z→bb

Anything but almost always jets

 $\sigma_{Z \to b\bar{b}}^{\text{fid}} = 2.02 \pm 0.20 \text{ (stat.) } \pm 0.25 \text{ (syst.) } \pm 0.06 \text{ (lumi.) } \text{pb}$ $\text{POWHEG:} \quad \sigma_{Z \to b\bar{b}}^{\text{fid}} = 2.02 \stackrel{+0.25}{_{-0.19}} \text{(scales)} \stackrel{+0.03}{_{-0.04}} \text{(PDF) } \text{pb}$ $\text{aMC@NLO:} \quad \sigma_{Z \to b\bar{b}}^{\text{fid}} = 1.98 \stackrel{+0.16}{_{-0.08}} \text{(scales)} \pm 0.03 \text{(PDF) } \text{pb}$

- Used b-tagged dijet approach to measure boosted Z→bb cross-section to ~15%!
- A world first at a hadron collider!

Measurement of boosted $Z \rightarrow bb$

- This demonstrated that:
 - We could trigger on a hadronic boosted bb final state.
 - B-tagging of boosted bb systems was working well.
 - Large QCD backgrounds could be controlled.

ATLAS Run-1 hh \rightarrow 4b

Strategy

Based on the phenomenology paper

- Select two boosted, b-tagged dijets
- Scan m_{4j} to search for resonances
 Extensions to the search
- Non-resonant hh search using event counting
- large-R jets to reconstruct heaviest resonances

Improvements to increase sensitivity

• Mass dependent cuts

Signal Acceptance

Acceptance for high mass resonances limited by jet R parameter (anti- $k_T R = 0.4$ jets used) Jets overlap because of Higgs boson boost

Boosted Analysis

Reconstruct high p_T Higgs candidate as single large-radius jet Use two smaller radius track-jets to identify bhadrons

> → Extends acceptance to higher masses

Selection Efficiency

Complementary resolved and boosted analyses offer sensitivity $500 \le m_x \le 2000$ GeV

Mass-Dependent Cuts

Search for a wide range of resonance masses Optimal selection for low mass not optimal for high mass

⇒Mass-dependent cuts on p_T^{lead} , p_T^{subl} and $|\eta_{dijets}|$

Best cuts found by 3D scan of possible values Use best expected limit as the objective function

A Selected Event

 $m_{2j}^{lead} = 114 \text{ GeV}$ $m_{2j}^{subl} = 123 \text{ GeV}$ $m_{4j}^{subl} = 809 \text{ GeV}$

Is this event signal or background?

Background Model

Boosted 4 b-tagged jet background difficult to simulate accurately and precisely

 \rightarrow Use data to model the background

Background events selected using standard requirements **except** only one b-tagged dijet is required Normalisation and kinematic corrections derived in

sideband region

Description validated in control region

Control Region Validation

Extremely good description of background Uncertainties set based on comparisons like this

Systematic Uncertainties

Large b-tagging uncertainties for high p_T jets Calibration performed using ttbar events, with limited statistical precision at high jet p_T

Non-Resonant Results

Sample	Signal Region Yield
Multijet	81.4 ± 4.9
tī	5.2 ± 2.6
Z+jets	0.4 ± 0.2
Total	87.0 ± 5.6
Data	87
SM hh	0.34 ± 0.01
$G_{\rm KK}^*$ (500 GeV), $k/\bar{M}_{\rm Pl} = 1$	27 ± 0.8

No excess seen: SM wins again!

Place 95% C.L. limit on non-resonant Higgs pair production: $\sigma(pp \rightarrow hh \rightarrow bbbb) = 202 \text{ fb}$ $\mu = \sigma/\sigma_{SM} = 202/(3.6 \pm 0.5) = 57 \pm 8$ World's best limit on non-resonant Higgs pair production! Only other limit is ATLAS pp $\rightarrow hh \rightarrow bb\gamma\gamma$: $\mu = 205$

Resonant Results: Resolved

No significant excesses observed

Resonant Results: Boosted

No significant excesses observed here either!

Limits on Bulk RS G_{KK} Models

Exclude $\sigma(pp \rightarrow X \rightarrow hh \rightarrow bbbb) \sim 3 \text{ fb at } m = 1$ TeV

Limits on 2HDM

$\sigma(pp \rightarrow X \rightarrow hh \rightarrow bbbb)$ and $\Gamma_{\!_{H}}$ depend on 2HDM parameters

Complementary to other direct searches and Higgs coupling-based exclusions

Limits on 2HDM

Exclusions span 500 GeV ≤ m_H ≤ 1000 GeV

Other Di-Higgs Channels Comparison

- Only other di-Higgs channels with public results is γγbb and multileptons (+ photons).
 - Worse than bbbb everywhere except lowest masses.
- Other channels (bbττ and WWγγ) currently being explored. ⁴⁸

Expectations for LHC Run-2

LHC Run-2

LHC will run 2015-2018 at $\sqrt{s} = 13 \text{ TeV}$ Should accumulate $\int \text{Ldt} = 100 \text{ fb}^{-1}$ Cross-sections enhanced due to \sqrt{s} increase Unfortunately for both background and signal

Extrapolation for Run-2

Assume signal and backgrounds scale by same f (m_x)

Close to truth, since both dominated by g-g initial state

- Dominant systematic uncertainties are statistically limited
 - ⇒scale with luminosity

Assume same analysis performance as in Run-1 Conservative, since:

b-tagging will be improved by new inner tracking layer several analysis improvements are foreseen

Run-2 vs Run-1

Extrapolated Run-2 non-resonant limit is $\mu = \sigma/\sigma_{SM} = 17 \pm 6$ (Run-1 limit was $\mu = 57 \pm 8$)

HL-LHC Studies

Eur. Phys. J. C 75 219, 2015

Non-resonant HH at HL-LHC

High-luminosity upgrade of LHC
Will run 2025-2035 with 10x higher luminosity
Will accumulate dataset of ∫Ldt = 3000 fb⁻¹
Large dataset needed to observe rare processes
Like non-resonant Higgs pair production!

Will HL-LHC dataset be enough? Evaluate using particle-level study

Higgs Boson p_T

Higgs bosons have sizeable p_T in non-resonant production

36.6% of SM events have both Higgs with $p_{T} > 150 \text{ GeV}$

Dijet Selection

Demand four anti- $k_{\tau} R = 0.4$ jets, $p_{\tau} > 40$ GeV Weight events to replicate b-tagging

 $\epsilon_{\rm b} = 0.7, \ \epsilon_{\rm c} = \epsilon_{\rm r} = 0.2, \ \epsilon_{\rm l} = 0.01$

Demand two dijets with $p_{T} > 150$ GeV and $\Delta R(jet, jet) < 1.5$

- leading dijet: 100 < m_{lead} < 140 GeV
 subleading dijet: 85 < m_{subl} < 130 GeV

Requirement	<i>HH</i> [fb]	$b\overline{b}b\overline{b}$ [fb]	$b\overline{b}c\overline{c}$ [fb]	<i>tī</i> [fb]	single- <i>H</i> [fb]	s/b	s/\sqrt{b} (for 3 ab ⁻¹)
Two dijets	0.30	513	122	290	2.53	3.2×10^{-4}	0.5
m_H windows	0.21	74	17	73	0.65	1.3×10^{-3}	0.9

No chance of observation at this stage of analysis

Decay Kinematic Variables

5 angles + 3 masses describe kinematics in rest-frame Add p_{τ} and y of "resonance" to fully specify system

Best Discriminating Variables

Combined BDT Discriminant

Results

Requirement	<i>HH</i> [fb]	$b\overline{b}b\overline{b}$ [fb]	$b\overline{b}c\overline{c}$ [fb]	<i>tī</i> [fb]	single- <i>H</i> [fb]	s/b	s/\sqrt{b} (for 3 ab ⁻¹)
Two dijets	0.30	513	122	290	2.53	3.2×10^{-4}	0.5
m_H windows	0.21	74	17	73	0.65	1.3×10^{-3}	0.9
Top veto	0.19	67	15	29	0.33	1.7×10^{-3}	1.0
\mathcal{D}_{HH}	0.08	2.8	0.6	2.6	0.05	1.3×10^{-2}	1.8
$\epsilon^b_{c/\tau-\mathrm{jet}} = 10\%$	0.06	1.5	0.1	1.0	0.04	2.4×10^{-2}	2.1
BDRS analysis	0.06	11.8	1.4	6.8	0.06	3.0×10^{-3}	0.7

Reach a significance of 1.8σ with full dataset

Could have 3σ evidence if combined with other hh channels!

Could combine with CMS searches too

Potential to improve 4b sensitivity further

We should observe SM non-resonant Higgs pair production at HL-LHC

Investigate VBF production for information on coupling

Conclusions

Keep looking and keep pushing!

- Higgs boson pair production is interesting!
 - Many new physics models predict enhanced rates.
 - Even if there's no new physics, it exists in the SM.
 - Can answer whether SM has a vanilla Higgs sector or something more complicated.
- Our hh→4b analysis was the first ever search for resonant di-Higgs production in the ~1 TeV range.
 - We have shown that this is <u>the</u> channel to search for new di-Higgs resonances above ~500 GeV (and even lower?)
 - Nothing there yet, but will push this further in Run-2...
- Can significantly improve the chances of observing nonresonant SM production
 - Could be a real game changer for the physics reach of the HL-LHC!

Additional Slides

Signal Efficiency in Resonant Pheno

Top Veto

Top candidate

Top events ~ 10% of total background Reject events if top candidate can be formed: 1. Combine dijets with "extra jets" 2. Reject if m_{3j} ~ m_t and m ("c-jet", extra) ~ m_w

Other Run-1 Searches for G_{KK}

66