

A detector-corrected ATLAS measurement of four leptons designed for re-interpretation

https://arxiv.org/abs/1902.05892

Accepted by JHEP 04 (2019) 048 (as of yesterday!)

Dr Zara Grout (University College London)

Seminar at University College London 12/04/19

ATLAS Searches and Measurements

Analysis Differences

Precision Measurements

 Detector-corrected (takes time and can be complex)

Searches

 Detector-dependent, fast, simple-as-possible analyses

Analysis Differences

Precision Measurements

- Detector-corrected (takes time and can be complex)
- Selection usually based on Standard Model (SM) process (but *shouldn't* assume it)

Searches

- Detector-dependent, fast, simple-as-possible analyses
- Selection usually based on one or more benchmark
 Beyond Standard Model (BSM) models

Analysis Differences

Precision Measurements

- Detector-corrected (takes time and can be complex)
- Selection usually based on Standard Model (SM) process (but *shouldn't* assume it)
- Usually measure total and/or differential cross-sections as a function of key observables

Searches

- Detector-dependent, fast, simple-as-possible analyses
- Selection usually based on one or more benchmark
 Beyond Standard Model (BSM) models
- Usually measure number of events in signal region(s) and use this to place exclusion limits on models of choice (or hopefully discover one day!)

Standard Model Production Cross Section Measurements

Status: July 2018

ATLAS Exotics Searches* - 95% CL Upper Exclusion Limits

Status: March 2019

	Model ℓ, γ	Jets† E	^{miss} ∫£dt[fb T	p ⁻¹] Limit	Reference
Extra dimensions	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$1 - 4j Y$ $-$ $2j$ $\geq 2j$ $\geq 3j$ $-$ el $2J$ $\geq 1 b, \geq 1J/2j Y$ $\geq 2 b, \geq 3j Y$	Yes 36.1 - 36.7 - 37.0 - 3.2 - 3.6 - 36.7 36.1 - 139 Yes 36.1 Yes 36.1	$\begin{tabular}{ c c c c c c c } \hline M_D & & & & & & & & & & & & & & & & & & &$	1711.03301 1707.04147 1703.09127 1606.02265 1512.02586 1707.04147 1808.02380 ATLAS-CONF-2019-003 1804.10823 1804.09678
Gauge bosons	$\begin{array}{cccc} \mathrm{SSM} \ Z' \to \ell\ell & 2 \ e,\mu \\ \mathrm{SSM} \ Z' \to \tau\tau & 2 \ \tau \\ \mathrm{Leptophobic} \ Z' \to bb & - \\ \mathrm{Leptophobic} \ Z' \to tt & 1 \ e,\mu \\ \mathrm{SSM} \ W' \to \ell\nu & 1 \ e,\mu \\ \mathrm{SSM} \ W' \to \tau\nu & 1 \ \tau \\ \mathrm{HVT} \ V' \to WV \to qqqq \ \mathrm{model} \ \mathrm{B} & 0 \ e,\mu \\ \mathrm{HVT} \ V' \to WH/ZH \ \mathrm{model} \ \mathrm{B} & \mathrm{multi-chann} \\ \mathrm{LRSM} \ W'_R \to tb & \mathrm{multi-chann} \end{array}$	- 2 b ≥ 1 b, ≥ 1J/2j Y - Y 2 J el	- 139 - 36.1 - 36.1 Yes 36.1 Yes 36.1 Yes 36.1 - 139 36.1 36.1	Z' mass 5.1 TeV Z' mass 2.42 TeV Z' mass 2.1 TeV Z' mass 3.0 TeV Y' mass 5.6 TeV W' mass 5.6 TeV V' mass 3.7 TeV V' mass 2.93 TeV W' mass 3.25 TeV	1903.06248 1709.07242 1805.09299 1804.10823 ATLAS-CONF-2018-017 1801.06992 ATLAS-CONF-2019-003 1712.06518 1807.10473
CI	$ \begin{array}{c} Cl q q q q & -\\ Cl \ell \ell q q & 2 \ e, \mu \\ Cl t t t t & \geq 1 \ e, \mu \end{array} $	2 j _ ≥1 b, ≥1 j γ	- 37.0 - 36.1 Yes 36.1	Λ 21.8 TeV η _{LL} Λ 40.0 TeV η _{LL} Λ 2.57 TeV C4t = 4π	1703.09127 1707.02424 1811.02305
MD	$ \begin{array}{lll} \mbox{Axial-vector mediator (Dirac DM)} & 0 \ e,\mu \\ \mbox{Colored scalar mediator (Dirac DM)} & 0 \ e,\mu \\ \ VV_{\chi\chi} \ \mbox{EFT (Dirac DM)} & 0 \ e,\mu \\ \ \mbox{Scalar reson. } \phi \rightarrow t_{\chi} \ \mbox{(Dirac DM)} & 0 \ -1 \ e,\mu \\ \end{array} $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Yes 36.1 Yes 36.1 Yes 3.2 Yes 36.1	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	1711.03301 1711.03301 1608.02372 / 1812.09743
ΓØ	$\begin{array}{llllllllllllllllllllllllllllllllllll$	≥ 2 j Y ≥ 2 j Y 2 b 2 b Y	Yes 36.1 Yes 36.1 - 36.1 Yes 36.1	LQ mass 1.4 TeV $β = 1$ LQ mass 1.56 TeV $β = 1$ LQ mass 1.56 TeV $β = 1$ LQ ⁴ mass 1.03 TeV $B(LQ_3^{e} \rightarrow b\tau) = 1$ LQ ⁴ mass 970 GeV $B(LQ_3^{e} \rightarrow t\tau) = 0$	1902.00377 1902.00377 1902.08103 1902.08103
Heavy quarks	$ \begin{array}{ll} VLQ\;TT \to Ht/Zt/Wb + X & \text{multi-chann} \\ VLQ\;BB \to Wt/Zb + X & \text{multi-chann} \\ VLQ\;T_{5/3}T_{5/3}T_{5/3} \to Wt + X & 2(SS)/\geq 3\ e, \\ VLQ\;Y \to Wb + X & 1\ e, \mu \\ VLQ\;B \to Hb + X & 0\ e, \mu, 2\ y \\ VLQ\;QQ \to WqWq & 1\ e, \mu \end{array} $	el el $\mu \ge 1$ b, ≥ 1 j Y ≥ 1 b, ≥ 1 j Y ≥ 1 b, ≥ 1 j Y ≥ 4 j Y	36.1 36.1 Yes 36.1 Yes 36.1 Yes 79.8 Yes 20.3	T mass 1.37 TeV SU(2) doublet B mass 1.34 TeV SU(2) doublet $T_{5/3}$ mass 1.64 TeV $\mathcal{B}(T_{5/3} \rightarrow Wt) = 1, c(T_{5/3} Wt) = 1$ Y mass 1.85 TeV $\mathcal{B}(Y \rightarrow Wb) = 1, c_R(Wb) = 1$ B mass 1.21 TeV $x_B = 0.5$	1808.02343 1808.02343 1807.11883 1812.07343 ATLAS-CONF-2018-024 1509.04261
Excited fermions	$\begin{array}{llllllllllllllllllllllllllllllllllll$	2 j 1 j 1 b, 1 j - -	- 139 - 36.7 - 36.1 - 20.3 - 20.3	q* mass 6.7 TeV only u* and d*, Λ = m(q*) q* mass 5.3 TeV only u* and d*, Λ = m(q*) b* mass 2.6 TeV only u* and d*, Λ = m(q*) t* mass 3.0 TeV Λ = 3.0 TeV y* mass 1.6 TeV Λ = 1.6 TeV	ATLAS-CONF-2019-007 1709.10440 1805.09299 1411.2921 1411.2921
Other	Type III Seesaw1 e, μ LRSM Majorana ν 2 μ Higgs triplet $H^{\pm\pm} \rightarrow \ell \ell$ 2,3,4 e, μ (StHiggs triplet $H^{\pm\pm} \rightarrow \ell \tau$ 3 e, μ, τ Multi-charged particles-Magnetic monopoles- $\sqrt{s} = 8$ TeV $\sqrt{s} = 13$ TeV	≥ 2 j Y 2 j S) - - - - -	Yes 79.8 - 36.1 - 36.1 - 20.3 - 36.1 - 7.0 ≥V	N° mass 560 GeV N _R mass 3.2 TeV H ^{±±} mass 870 GeV H ^{±±} mass 870 GeV H ^{±±} mass 1.22 TeV multi-charged particle mass 1.22 TeV monopole mass 1.34 TeV 10 ⁻¹ 1	ATLAS-CONF-2018-020 1809.11105 1710.09748 1411.2921 1812.03673 2 1509.08059
	partial data	full data		Mass scale [Te]

*Only a selection of the available mass limits on new states or phenomena is shown.

†Small-radius (large-radius) jets are denoted by the letter j (J).

ATLAS Preliminary

 $\int \mathcal{L} dt = (3.2 - 139) \text{ fb}^{-1}$ $\sqrt{s} = 8, 13 \text{ TeV}$

Blurring the Edges

Feedback Loop

Cross-section level search

Measure cross-sections in region sensitive to BSM physics e.g. jet(s)+missing transverse energy: <u>Eur Phys J C 77 (2017)</u> <u>765</u>

Cross-section level search

Measure cross-sections in region sensitive to BSM physics e.g. jet(s)+missing transverse energy: <u>Eur Phys J C 77 (2017)</u> <u>765</u>

Unfolding Control Regions

Produces precise information useful for modelling in future + potential sensitivity to BSM: <u>arxiv:1902.00377</u>

Cross-section level search

Measure cross-sections in region sensitive to BSM physics e.g. jet(s)+missing transverse energy: <u>Eur Phys J C 77 (2017)</u> <u>765</u>

Reinterpreting Measurements

Testing sensitivity of existing cross-section results to new physics theories e.g. CONTUR: https://contur.hepforge.org

Unfolding Control Regions

Produces precise informtion useful for modelling in future + potential sensitivity to BSM: <u>arxiv:1902.00377</u>

Cross-section level search

Measure cross-sections in region sensitive to BSM physics e.g. jet(s)+missing transverse energy: <u>Eur Phys J C 77 (2017)</u> <u>765</u>

Reinterpreting Measurements

Testing sensitivity of existing cross-section results to new physics theories e.g. CONTUR: https://contur.hepforge.org

Unfolding Control Regions

Produces precise information useful for modelling in future + potential sensitivity to BSM: <u>arxiv:1902.00377</u> **BSM sensitive measurements**

Make SM measurement as re-interpretable and model-independent as possible, e.g: four leptons: https://arxiv.org/abs/1902.05892

Four Lepton Mass Spectrum

20

2015+2016 Data Analysis

Advancing my quest for involvement in all ATLAS physics groups...

- Proof-of concept first analysis of this kind
- Small team so sharing resources was very helpful!
- ▷ Moving away from this for next round → more inclusive and straightforward selection

Fiducial Region Definition

Cross-section measured in region driven by kinematic acceptance of detector

- ▷ At least **4** *leptons* muon (electron) pT > 5 (7) GeV, $|\eta| < 2.7 (2.47) - (>20/15/10 \text{ GeV in pair})$
- Form two pairs of *same flavour*, *opposite sign* (SFOS)leptons, e.g. $e^+e^-e^+e^-$, $e^+e^-\mu^+\mu^-$, $\mu^+\mu^-\mu^+\mu^-$
- Pair with dilepton mass closest to Z boson mass primary pair - must be 50 - 106 GeV, second-closest are secondary pair - uses sliding scale f(m4l) - 115 GeV
- ▷ Separated by △R > 0.1 (0.2) for same(opposite) flavours
- MII > 5 Gev for all SFOS pairs (J/Psi veto)

$$f(m_{4\ell}) = \begin{cases} 5 \text{ GeV}, & \text{for} \\ 5 \text{ GeV} + 0.7 \times (m_{4\ell} - 100 \text{ GeV}), & \text{for} \\ 12 \text{ GeV}, & \text{for} \\ 12 \text{ GeV} + 0.76 \times (m_{4\ell} - 140 \text{ GeV}), & \text{for} \\ 50 \text{ GeV}, & \text{for} \end{cases}$$

for $m_{4\ell} < 100 \text{ GeV}$ for 100 GeV $< m_{4\ell} < 110 \text{ GeV}$ for 110 GeV $< m_{4\ell} < 140 \text{ GeV}$ for 140 GeV $< m_{4\ell} < 190 \text{ GeV}$ for $m_{4\ell} > 190 \text{ GeV}$

Maintains sensitivity to $Z \rightarrow 4I$ but suppresses leptons from tau lepton decays

Reconstruction-level selection

	Physics Object preseled	ction					
	Electrons	Muons					
Identification	Loose working point [23]	Loose working point [22]					
Kinematics	$E_{\rm T}>7~{\rm GeV}$ and $ \eta <2.47$	$p_{\rm T} > 5 \text{ GeV and } \eta < 2.7$ $p_{\rm T} > 15 \text{ GeV if calorimeter-tagged } [22]$					
Interaction point constraint	$ z_0 \cdot \sin \theta < 0.5 \text{ mm}$	$ z_0 \cdot \sin \theta < 0.5 \text{ mm}$					
Cosmic-ray muon veto		$ d_0 < 1 \text{ mm}$					
Quadruplet Selection							
QUADRUPLET FORMATION	Procedure and kinema	tic selection criteria as in Table ??					
LEPTON ISOLATION							
	Electrons	Muons					
Track isolation	$\sum p_{\mathrm{T}} < 0.15 E_{\mathrm{T}}^{e}$	$\sum p_{\mathrm{T}} < 0.15 p_{\mathrm{T}}^{\mu}$					
Calorimeter isolation	$\sum_{\Delta B=0.2}^{\Delta R \le 0.2} E_{\rm T} < 0.2 E_{\rm T}^e$	$\sum_{\Delta B=0.2}^{\Delta R \le 0.3} E_{\rm T} < 0.3 p_{\rm T}^{\mu}$					
	Contributions from the other	r leptons of the quadruplet not considered					
LEPTON TRANSVERSE IMPACT PARAMETER							
	Electrons	Muons					
	$d_0/\sigma_{d_0} < 5$	$d_0/\sigma_{d_0} < 3$					
4ℓ vertex fit							
χ^2/ndof	$< 6 (4\mu)$	$(i) \text{ or } < 9 (4e, 2e2\mu)$					

Composition

Fiducial Region dominated by "signal" processes (96.5%)

 Slightly increased WRT Higgs analysis by decreasing lower mass limit on secondary lepton pair

Irreducible

- ▷ ZWW, ZZW, ZZZ, ttZ
- Description Take from MC
- Contributes around 1.6% total events

- ▷ Z+jets, tt, WZ
- At least one "fake" lepton
 - Heavy flavour hadron decays
 - Muons from "light flavour" pion/kaon decays
 - Jets mis-identified as electrons
 - Electrons from photon conversions
- Contributes around 1.9% total events
- Estimated with data-driven methods

Signal Simulation

Higgs Signal:

- Gluon fusion Powheg NNLOPS
- Vector Boson fusion -Powheg VBFH
- Associated Boson Powheg
- optimized of the provide the provided and the provided

$qq \rightarrow ZZ$:

- Sherpa 2.2.2 NLO for 0,1 jets, LO for 2,3 jets, + NLO EWK corrections
- Electroweak 4l+jj Sherpa 2.2
 NLO at 2 jets
- Generator cross-check samples -PowhegBox+Pythia8 + NNLO QCD + NLO EWK

Irreducible Background:

- ttV(V) Sherpa 2.2.1 LO scaled to NLO QCD + EWK
- VVV Sherpa 2.1 NLO for 0 jets, LO for 1, 2 jets

Reducible Background:

- ▷ Z+jets, Sherpa NLO 0,1,2j, LO 3,4 j
- ▷ tt, WZ Powheg

$\textbf{gg} {\rightarrow} \textbf{ZZ:}$

- Sherpa 2.2 LO for 0, 1 jets, + NLO
 QCD + flat NNLO/NLO k-factor of
 1.2
- Separate samples for process via/not via Higgs, and interference

Reducible Background Estimation

Control Region

Methodology:

- ▷ Split into **II+ee** and **II+µµ**
- Target processes with different efficiencies, e.g. heavy flavour and light flavour in control regions
- Reversed/relaxed/altered selections
 WRT signal selection
- Shape taken from MC except for light flavour II+ee case

Validation:

- Loosened region to check estimation
- Compare multiple alternative methods

Distributions

Double Differential Distributions:

- Measure m4l in fairly coarse \triangleright bins of other interesting variables;
 - Transverse momentum p_{τ}^{4l} Ο
 - Rapidity y₄₁ Ο
 - **Lepton Flavours -**Ο eeee/eeµµ/µµµµ
 - Matrix element \bigcirc discriminant
- Potential increased sensitivity \triangleright
- Improved modelling in future \triangleright can be fed in

Star of the show - four lepton mass

Double differential example - P_{τ}^{4l}

Matrix element discriminant - D_{ME}

$$D_{\rm ME} = \log_{10} \frac{\tilde{M}_{gg \to H^{(*)} \to ZZ^{(*)} \to 4\ell}^2 \left(p_{1,2,3,4}^{\mu} \right)}{\tilde{M}_{gg(\to H^{(*)}) \to ZZ^{(*)} \to 4\ell}^2 \left(p_{1,2,3,4}^{\mu} \right) + 0.1 \cdot \tilde{M}_{q\bar{q} \to ZZ^{(*)} \to 4\ell}^2 \left(p_{1,2,3,4}^{\mu} \right)},$$

What is it?:

- Calculated using Z boson production angles and decay angles
- Can help separate off-shell Higgs production from other processes by splitting into two bins

Uncertainty Sources

Dominated by statistical uncertainty

Lepton dominated by reconstruction, identification and isolation efficiencies

Data has a flat ~2% uncertainty associated with luminosity measurement

Smaller contributions from:

- Unfolding procedure estimated by unfolding reweighted truth MC, also includes generator uncertainty for $qq \rightarrow MC$ simulation
- Data-driven background estimation, combined for ee and $\mu\mu$
- Theoretical uncertainty includes scale, PDF set and parton showering choices

Uncertainty Sources

Relative sizes do vary across distributions, with exception of luminosity and pileup, but always dominated by statistical uncertainty

Unfolding

Correct for effects the detector has on measured data:

- Imperfect e.g. efficiency to reconstruct leptons, or energy resolution
- Measure effects by comparing "truth" and "reconstructed" objects in MC simulation

Efficiency:

Events (pass fiducial and reco-level)/pass fiducial

Fiducial Fraction:

Events pass reco-level but fail fiducial (detector resolution/tau leptons)

Fiducial Purity:

Probability that fiducial bin is the same as reco-level bin (in e.g. m4l)

Unfolding

Migration Matrix:

Probability that a given fiducial bin results in a given reco-level bin (in e.g. m4l) (diagonal == fiducial purity)

- Uses migration matrix
- Prior is predicted distribution
- Two iterations used here

Subtract background from data Multiply observation in each bin by fiducial fraction

Iterative Bayesian method to correct for bin migration Divide each bin by reconstruction efficiency

Differential Cross-sections

MATRIX is a fixed-order NNLO QCD prediction, no additional higher order corrections or QED final state radiation are included

Differential Cross-sections - Flavour

(Re-)Interpretations

Statistical Procedure

$$\chi^2 = (y_{\text{data}} - y_{\text{pred}})^{\text{T}} C^{-1} (y_{\text{data}} - y_{\text{pred}})$$

- Use chi-squared function as exponential component of Gaussian likelihood quantifying agreement between data and prediction.
- Predicted values are a function of the parameter of interest (POI) and nuisance parameter (NP) used for uncertainty sources.
- > The covariance matrix is scaled dependent on the POI and NP to account for this.

$$C(i,j) = R_i \times R_j \times C_{\text{syst}}^{\text{SM}}(i,j) + \sqrt{(R_i \times R_j)} \times C_{\text{stat}}^{\text{SM}}(i,j) + C_{\text{bkg}}^{\text{SM}}(i,j)$$

- \triangleright R_K = N_K^{pred}(POI,NP)/N_K^{pred}(POI=SM, NP=0) quantifies the scaling.
- Contributions from the systematic, statistical and background uncertainties.
- Theory uncertainties don't enter the covariance matrix but have an NP each for shape, and for normalisation.
- \triangleright Limits are set with CL_s method with a confidence level of 95%.

Gluon-induced production signal strength

Interpretation:

- ▷ Larger contribution once both Z's can be on-shell \rightarrow use bins above 180 GeV
- M₄₁ distribution has NLO QCD available (other distributions give consistent results)
- \triangleright qqZZ \rightarrow 4l fixed to prediction
- ▷ gg→ 4l prediction scaled by signal strength (*measured xsec/SM* predicted xsec) in a scan
- Predictions can vary within theoretical uncertainties using NPs

$Z \rightarrow$ llll branching fraction

$$\mathcal{B}_{Z \to 4\ell} = \frac{N_{\text{fid}} \times (1 - f_{\text{non-res}})}{\sigma_Z \times A_{\text{fid}} \times \mathcal{L}}$$

Interpretation:

- N_{fid} is number of detector corrected events in first bin
- *f*_{non-res} is the fraction of non-resonant events in this bin
- \circ σ_7 is total Z production cross-section
- \triangleright **L** is the luminosity
- A_{fid} is the acceptance

Measurement

$$\mathcal{B}_{Z \to 4\ell}/10^{-6}$$

 ATLAS, $\sqrt{s} = 7$ TeV and 8 TeV [8]
 $4.31 \pm 0.34(\text{stat}) \pm 0.17(\text{syst})$

 CMS, $\sqrt{s} = 13$ TeV [6]
 $4.83^{+0.23}_{-0.22}(\text{stat})^{+0.32}_{-0.29}(\text{syst}) \pm 0.08(\text{theo}) \pm 0.12(\text{lumi})$

 ATLAS, $\sqrt{s} = 13$ TeV
 $4.70 \pm 0.32(\text{stat}) \pm 0.21(\text{syst}) \pm 0.14(\text{lumi})$

Measured σ_z taken from https://arxiv.org/abs/1603.09222

Off-shell Higgs signal strength

Measured 95% upper limit on signal strength: 6.5

Expected 95% upper limit on signal strength: 5.4 [4.2, 7.2]

Reconstruction-level dedicated Higgs result: 4.5

Modified Higgs boson couplings

Model:

- BSM modification of couplings of Higgs boson to top quark (c_t) and gluon (c_s)
- High mass region allows probing of these couplings separately, whereas on-shell can only limit |c_t +c_g|²

Interpretation:

- \triangleright Use m₄₁ above 180 GeV
- ▷ Fix qq \rightarrow 4l to prediction
- ▷ $gg \rightarrow 4I$ yield is parameterised as function of couplings
- Vary everything within theoretical uncertainties

Re-interpreting

Rivet routine:

- Truth-level implementation of the analysis cross-checked against the code used for the paper available online: <u>ATLAS_2019_I1720442.tar.gz</u>
- Can take particle-level input and read measurements and predictions used directly from

Hepdata:

Online storage of detector-corrected measurement, predictions used and sources of uncertainty, as well as covariance matrices split into statistical, systematic and background sources <u>https://www.hepdata.net/record/ins1720442</u>

SQRT(S)	13000 GEV								
$m_{4l} \; [{ m GEV}]$	Measured ${ m d}\sigma/{ m d}m_{4l}$ [FB GEV-1]	Predicted ${ m d}\sigma/{ m d}m_{4l}$ (with Sherpa + NLO EW) [FB GEV-1]	Predicted $d\sigma/dm_{4l}$ (with Powheg + NLO EW + NNLO QCD) [FB GEV-1]	Pred $d\sigma/c$ Matr orde [FB (
7.500000e+01 - 1.000000e+02	5.100341e-01 ±2.346437e-02	5.182588e-01 ±3.545342e-02	4.865038e-01 ±2.906800e-02	4.892 ±6.45					
	syst	total	total	total					
	±3.442822e-02 stat								
1.000000e+02	9.334923e-02	7.834322e-02	7.545697e-02	5.855					
- 1 200000e+02	±4.205973e-03	±4.277496e-03 total	±3.490459e-03 total	±1.10 tota					
1.200000000002	+1.800903e-02								

Visualize

2HDM example

Two Higgs-Doublet Dark Matter Model with Pseudoscalar Mediator:

- A and a are 2 of 5 Higgs bosons. All other additional Higgs' have the same mass as A.
- a plays the role of mediator to dark matter
- DM candidate has mass of 10 GeV
- Description Taken from Pseudoscalar 2HDMGitRepo

- Lots of models can produce four leptons
- In this case, cover region of phase space not excluded by ATLAS yet
- Quick and easy to check many final states, new models and mess with parameter settings

2HDM example

 Can combine sensitivity from all available analyses

2HDM example

Varying other parameters

- Sensitivity for all combined analyses.
- Easy to make changes to model and re-run
- Can also split to see main contributions to sensitivity

Summary

- Four Lepton events measured by ATLAS sensitive to wide range of physics processes
- Select same flavour opposite charge lepton pairs with mass close to Z boson mass
 - Low contribution from backgrounds
 - Look at mass of four leptons in both selected pairs
- Correct for effects of detector on observed physics objects and kinematic properties
- Resulting cross-sections easy to compare to theoretical predictions made by *anyone*
 - Including new physics predictions!
 - No need to simulate detector
 - Fast, easy, broad parameter space scans
- Complements traditional searches

Double differential example - y_{4l}

Double differential example - flavour

Differential Cross-sections

Comparison to various predictions:

- ▷ Sherpa and Powheg agree very well → validates reweighting of Powheg with MATRIX NNLO QCD k-factors
- Sherpa doesn't need this, intrinsic higher accuracy sufficient
- Missing real wide-angle QED emission in events for on-shell ZZ causes underestimation from MATRIX wrt full generators
- > gg→ 4l and higgs processes are == LO for fixed-order MATRIX, whereas generators have higher order contributions → more underestimations for MATRIX

Differential Cross-sections - P₁^{4l}

Differential Cross-sections - Y_{4l}

Differential Cross-sections - D_{ME}

Met + jets cross-section

- $\begin{tabular}{ll} \begin{tabular}{ll} Measure ratio of cross-section for Z \eqded vv to Z \eqded H$ processes $ \eqded H$ ll processes $ \eqded text{and the section for Z \eqded text{and tex$
- Cancel a lot of sources of uncertainty
- Sensitive to BSM scenarios producing missing transverse energy and jet(s)
- Limits comparable to detector-level search
- Results re-interpretable for any model with these criteria

