



# Predicting future changes in climate and sea level

#### Tamsin L. Edwards University of Bristol





# How can we predict the future



of our planet?



#### No full-sized control experiment

# Dynamic Earth



#### More usually...



HadCM3



## The Earth System

# "A simplistic conceptual model"



Figure 1.2 A wiring diagram of the Earth system. Key boundary conditions and major external forcings are at the top and left-hand side of the diagram. Human activities are indicated down the right-hand side. Some of the main environmental archives recording past changes are shown along the bottom. (Based on Schellnhuber, 1999.)

### General Circulation Models (GCMs)



# History





Complexity







Slooow....

# **Modelling Antarctica**





Steph Cornford

# How do we know if the models are RIGHT?





#### George Box

#### allmodelsarewrong.com

#### Parameter uncertainty

models need tuning



#### clouds

convection

radiation

land surface boundary layer sea-ice



#### Structural uncertainty

tuned models are still imperfect

winter temperature change



Stippled: 80% or more of models agree on **sign** of change



winter precipitation change



winter cloud cover change



#### Initial condition uncertainty

imperfect knowledge of today's weather



Year

#### How do we predict OUR future?



"Prediction is very difficult, especially if it's about the future" (thanks Niels)

"Trying to predict the future is a mug's game" (thanks Douglas)



#### Boundary condition uncertainty

imperfect knowledge of the future drivers of change





# How do we know how WRONG the models are?



#### Climate hindcasts



observations simulations mean of simulations

IPCC Working Group 1 (2007), Fig 9.5

#### **Climate hindcasts**



-2

-1

-3

-5

0

1

HadGEM1 4 HadCM3 2

3

5

#### Climate forecasts



#### **Climate forecasts**



http://www.realclimate.org/index.php/archives/2011/01/2010-updates-to-model-data-comparisons/

# How do we incorporate model success into predictions?



#### Incorporating success in predictions







"first guess" probability + observations
= better prediction of probability

probability as *belief* 

#### Detuning the model





#### Stone et al. (2010) The Cryosphere

climateprediction.net Stainforth et al. (2005), Nature

# Bayes' Theorem

prior probability: ensemble of detuned model versions...

likelihood: score with observations

=> posterior probability

posterior = prior x likelihood normalisation



degrees centigrade

# Simplest application

- N detuned model versions
- $\theta$  parameter values
- $f(\theta)$  model simulation of observed quantity/-ies
- $\sigma_m$  model uncertainty

#### 1. Likelihood function: Gaussian

model errors normally distributed if multiple observations: independent

2. Calculate scores

 $w(\theta) \propto \exp\left[-\frac{1}{2}\sum_{i}\frac{(z_{i} - f_{i}(\theta))^{2}}{(\sigma_{o}^{i})^{2} + (\sigma_{m}^{i})^{2}}\right]$ 

don't need normalising constant

3. Normalise scores

$$\sum_{N} w(\theta) = 1$$

 $\sigma_m$  expected success at best parameter values; can tune to distribute weights

- z observation(s)
- $\sigma_o$  observation uncertainty

# Simple application

#### 4. Use scores to reweight histograms

(a) observed quantity(b) future prediction



Antarctic contribution to sea level

Ritz, C., Durand, G., Edwards, T.L., et al. *Bimodal probability of the dynamic contribution of Antarctica to future sea level.* Submitted to Nature

#### Antarctic contribution to sea level



Ritz et al.

### **UK Climate Projections**

![](_page_30_Picture_1.jpeg)

![](_page_30_Figure_2.jpeg)

#### Your future

#### Say hello: @flimsin allmodelsarewrong.com

#### Buy a calendar: http://www.sciencegrrl.co.uk