From the Higgs to Huntington’s: methods for
learning from data

UCL HEP seminar
24-05-19

Peter Wijeratne
MRC Skills Development Fellow

MRC of Medical Sciences

& HUNTINGTON'S o ( I’ ' I'I(
London Institute - DISEASE CENTRE
P

Centre for Medical Image Computing



Acknowledgements h

UCL CMIC UCL HDC CHDI

Neil Oxtoby Sarah Tabrizi Cristina Sampaio
Alexandra Young Rachael Scabhill Amrita Mohan
Arman Eshaghi Sarah Gregory John Warner

Leon Aksman Eileanoir Johnson Dorian Pustina
Maura Bellio Ed Wild Alexandra Shechtel
Nonie Alexander Lauren Byrne

And all the participants of the PREDICT, TRACK and IMAGE-HD studies.

oSl
London Institute -.¥"_ c H D I E PS RC
q n ol Wiy e
MRC of Medical Sciences “A* FOUNDATION Engineering and Physical Sciences
R hC il

eeeeeeeeeee

45



This talk: high level h

Interested in extracting hidden information from observed data

- Bayesian methods

Two main schools of thought

Hypothesis-driven (informative priors)

Unfolding / inverse problems — e.g. image reconstruction

Data-driven (non-informative priors)

Latent variable inference — e.g. disease progression modelling

Physics favours the former, biology the latter



My PhD: LHC Run 1 with ATLAS
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My PhD: unfolding / inverse problems

R T <Unfolding 1

Nature Measurement
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* Real data are dependent on the detector used to measure them

* Bring data back to their natural state by applying hypothesis-driven corrections
derived from simulation

- "Unfolding the cause”



My PhD: unfolding / inverse problems h
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* Energy density (min bias + UE) was not modelled correctly in forward direction
* Problem would only increase with luminosity
* We iteratively unfolded the data to compare directly with various models

* Tuned MC generators to data



PhD to postdoc h

| saw this one day in 2013

| wanted to use physics to fight cancer
| asked about for potential opportunities (thanks Simon)

| got lucky and a postdoc came up at the Centre for Medical Image
Computing on jobs.ac.uk



Centre for Medical Image Computing (CMIC)

Maths, physics and engineering scientists at the interface of basic and biomedical sciences
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Royal National Orthopaedic Hospital 6

Moorfield's Eye Hospital Royal Free Hospital
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CMIC capability-application

Imaging
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Integrated Systems



Slight (3 year) diversion: biophysical modelling of drug delivery &

The Chemical Basis of Morphogenesis

A. M. Turing

Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, Vol.

237, No. 641. (Aug. 14, 1952), pp. 37-72.

Computational Modeling
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Ficure 2. An example of a ‘dappled’ pattern as resulting from a type (a) morphogen system.
A marker of unit length is shown. See text, §9, 1.




Slight (3 year) diversion: biophysical modelling of drug delivery &
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Current work: computational neurology
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Stage1 Sge5 Sige9 Stage 13 Stage 17 Stage21 Siage 25 3sigma

OV DDV

1-sigma
= TR TR TR R R R
Cortical (CVS=0.95, f=0.38)
Stage 1 Stage5 Stage9 Stage13 Stage 17 Stage21 Stage 25

Image Analysis p
ge Analy arY ¥ Y YT

— normal

; : : - —1-sigma

Machine Learning P WP WP WP N By W .

Non-imaging data science I“"I.ITFD _________
| i’

"o S ¥ o £ v ey

11



Huntington’s disease dh

Ross et al. Nature Reviews 2014

a ‘Premanifest’” Motor diagnosis ‘Manifest’
100
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: Shoulson-Fahn
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Clinical stages

Slowly progressive, hereditary brain disease that causes changes in
movement, thinking and behaviour

Autosomal dominant inheritance — 50% chance, everyone with gene will get HD
12



Huntington’s disease dh

Bates et al. Nature Reviews
Disease Primer. 2015

[] Life milestone Finishes school; Marriage ‘ Starts a family ‘ Unable to work Death
[] Disease milestone getsajob
Predictive Affected Awareness Diagnosis Requires
Parent diagnosed ‘ testing parent dies || of symptoms 24-hour care
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Diagnosis made at onset of movement disorder, typically with chorea and
impaired voluntary movement
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Huntington’s disease dh

b Motor diagnosis Ross et al. Nature Reviews 2014

100_—\
|

Cortical
grey matter

Globus pallidus
etc.

Cortical
white matter

Brain region volume (% baseline)

Striatal
volume

o
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Brain changes in HD — specific regions of the brain are atrophied
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Huntington’s disease o

Bates et al. Nature Reviews Disease Primer. 2015

Control Prodromal Huntington disease

Subcortical Cortical
white matter ) grey matter Lateral Caudate
ventricle

Putamen

MRI provides spatial intensity measurements that depend
on tissue properties

Observed changes reflected by microscopy (histology)




The problem

Can we estimate where a patient is along their disease path?

—
=1

a ‘Premanifest” Motor diagnosis ‘Manifest’
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Clinical stages

Patient stage is a latent variable — it generates the observed measurements,
but is not measured directly (unlike in physics events, where we know time)

— Infer using machine learning methods
16



Learning and modeling o

http://mww.learnwebskill.com/technology

ARTIFICIAL INTELLIGENCE

A program that can sense, reason,
act, and adapt

MACHINE LEARNING

Algorithms whose performance improve
as they are exposed to more data over time

DEEP
LEARNING

Subset of machine learning in
which multilayered neural
networks learn from
vast amounts of data

Can think of machine learning as “data-driven Al”

Deep learning learns its own feature space
+ improved performance over standard ML methods
- difficulty in interpretability
17



Learning and modelling

http://www.learnwebskill.com/technology
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Learning and modelling

What machine learning does well

1. Model-free identification of trends and patterns
2. Improves with data availability
3. Requires minimal (or no) human intervention

What machine learning doesn’t do well

1. Causal mechanisms
2. Data intensive

3. Interpretability

We want to diagnhose and prognose patients — don't really need to understand
mechanisms

19



Bridging the gap h

Basic sciences

Clinical sciences

@ CMmic

Centre for Medical Image Computing

Imaging +
machine
learning

UCL EPSRC CDT in

sMedical
tImaging

Statistical
methods
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Progression Of Neurodegenerative Disease

| DISEASE CENTRE

& HUNTINGTON'S
Ve

Leonard Wolfson
Experimental Neurology Centre
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Some definitions i

Biomarker: any biological measurement that tracks disease progression
Event: transition of a biomarker from a normal to abnormal state (Markovian)
Sequence: order of events over sample of interest

Cross-sectional: data from a single time-point

21



Progression of Neurological Disease (POND) o

* Construct a picture of how disease plays out over time
* Express in terms of symptoms, pathologies and biomarkers

* Reconstruction must exploit cross-sectional data, where possible

Continueus

ongitudinal SSTraject GrieSSSN\iechanistic
~ Clustering (Netwonk):

j::f["-*‘“CIinicaI Discrete E-Health

i . - . " ———,
Translation Trajectories Records
(Event-Based Model)
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High level: Disease progression modelling o

http://adni.loni.usc.edu/study-design/#background-container
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A picture of how components of a disease progresses over time
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High level: Disease progression modelling

Disease progression models learn patterns of disease-related changes from data

Machine learning -

FACE
VELVET
CHURCH
DAISY @---- -
RED o |

-

Disease progression model

Patient data

e Can use models to infer temporal ordering of changes

« Can also stage and stratify patients — clinical trial design
24



Background: Event-based model (EBM)

EBM estimates ordering of binary events from data — normal or abnormal

Data can be cross-sectional and any combination of types (imaging, clinical, genetic...)

0.9
0.8 B8
0.7
Lot sl
H0.5
loa al
H10.3
12 ol —Event 1
101 —Event 2

Disease Progression

—
e

(=] (=]
(=] oo

Event Measure
o
=N

(=]
a+]

Simple example: 2 event measures

Event

| Iijig More patients have greater abnormality in Event 2
1“§  than Event 1

) —0.33
— Event 2 measurably abnormal before Event 1

Patient number
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Background: Event-based model (EBM) h

More formally: EBM is a generative model of observed data from unknown sequence

data  uniform prior

seguence prob. prob.
Abnormal Normal

* The EBM needs likelihood distributions for normal and abnormal subjects

— Learn directly from data

26



Example: Event-based model (EBM)

1. Fit mixture models to 2. Calculate likelihoods of normality (event not
biomarkers occurred) and abnormality (event occurred)

pLX|-E]

Mumber of subjects
'u
=

-

3 ] 1 2 3 4
Subject Sulject

]

3. Estimate most likely sequence by Markov
Chain Monte Carlo sampling

0666
0 0ee 666

i 3 *

Positional variance diagram @ @ @ @

Event-based model

27



Toolkit: parameter estimation

Prince, SJD. Cambridge University
Press. 2012

1. Mixture model fitting
— Expectation Maximisation

O
S—

log likelihood, L[6
=
log likelihood, L[f]

» wikipedia.org/wiki/gradient_descent

2. Latent variable (sequence) fitting **'
— Gradient Ascent

0.7

067

054

-06 -0.4 -0.2 0.0 02 0.4 0.6 08 10
P4, Simionescu X1

3. Uncertainty estimation =
. E _.aE - _.E\
— Markov Chain Monte Carlo ™% ”

OO0 x| s)pxs

Y E;/F@_@
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Methods: Data exploitation th

= B Control
1400 1 Pre-manifest
Bl Manifest

1200 -

1000 -
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Number of subjects
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I l
G

TRACK-HD TRACK-ON PREDICT-HD IMAGE-HD

1. Build model on TRACK-HD
2. Cross-validate using PREDICT-HD and IMAGE-HD

3. Test predictive utility using TRACK-ON and PREDICT-HD
29



Methods: Imaging data

Extract regional brain volumes using Geodesic Information Flows*

— Reduces inter-subject variability by using spatially variant graphs to connect
morphologically similar subjects

* MJ Cardoso et al. Geodesic Information Flows: Spatially-Variant Graphs and Their Application to Segmentation and Fusion. IEEE Transactions on Medical
Imaging, 34 (2015), pp. 1976-1988, doi: 10.1109/TMI.2015.2418298 30



EBM in HD
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Event sequence

Direct model fit Bootstrapped model fit
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* Dark diagonal components indicate strong event ordering

* Lighter indicate possible event permutations
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Atrophy progression
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Backup: HD-CSF EBM

SCIENCE TRANSLATIONAL MEDICINE | RESEARCH ARTICLE

HUNTINGTON'S DISEASE

Evaluation of mutant huntingtin and neurofilament
proteins as potential markers in Huntington’s disease
Lauren M. Byrne'#!, Filipe B. Rodrigues'?, Eileanor B. Johnson', Peter A. Wijeratne?,

Enrico De Vita®*, Daniel C. Alexander?®, Giuseppe Palermo®, Christian Czech®, Scott Schobel®,
Rachael I. Scahill’, Amanda Heslegrave’, Henrik Zetterberg”®%1%, Edward J. Wild'*

A B

CSF mHTT

Plasma NfL

CSF NfL .

Caudate volume -
Total motor score .
Whole brain volume . !
White matter volume

Gray matter volume .
Stroop color naming . .
Symbol digit modalities test . |
Stroop word reading .
Verbal fluency categorical .
1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8§ 9 10 11 12

Event position

Biomarker name

* Biofluid markers change before imaging and clinical markers



Results: staging h

Simplest way is to take the stage that maximises the likelihood for each patient

k !
argmaxP(X;| S, k) = argmaxP(k) HP(X,-,-|E,-) 1_[ P(x;i|—=E;)
=1

i= i=k+1

35



Staging patients h

Simplest way is to take the stage that maximises the likelihood for each patient

k !
argmaxP(X;| S, k) = argmaxP(k) nP(x,-,-|E,-) 1_[ P(x;i|—=E;)
=1

i= i=k+1
1.0 — . ‘ .
B HC (n=119)
preHD A (n=62)
3 preHD B (n=58)
E HD (n=118)
0.8
0.6
[
e
G
o
o
g
0.4
0.0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Subject stage
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Extending EBM-HD + cross-validation

49 48 47 46 43 42 41 40

(SWRT) 8
(SDMT) 7 A
Motor abnormality

(TMS) 6

(CSF) 51

(Insula WM) 4 -

EBM stage

(Pallidum) 3

(Caudate) 2 1

(Putamen) 1 -

Normal) 0 : : . : : : :
(Normal) 0.3 10 20 30 40 50 60 70 80
Age (years)

—— EBM
--F- Langbehn 2004

* Estimate age at event e.g.
for CAG 40, WM atrophy at ~60 years old
for CAG 49, WM atrophy at ~25 years old

age of onset (years)

* Age of onset agrees well with gold standard

a s I3 a7 s 4
CAG repeat size 37



SuStaln: Subtype and Stage Inference dh

1. Continuous generalisation of EBM: instead of instantaneous abnormality,
markers are a linear combination of z-scores

0-0-0- -O0-®
o

“Z-score model”

2. Total model is mixture of linear z-score models: grouped into clusters with
distinct progression patterns

g FACE
e ”
— — 6 “a — cn:‘;:«
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y eo
S 3 s Face
i —D—0—E
[ 4
ep
(g FACE g
'l”l' @ vewer
.

“Algorithm” 38




SuStaln: Subtype and Stage Inference

Asymmetric frontal (CVS=0.97, f=0.31)
Stage 1 Stage 5 Stage9 Stage 13 Stage 17 Stage 21 Stage 25

DD DDD

&G ™, & T, 7% W G,

ne s Beas Be s Bea, Beo Bea B
@ @® [ ] @
Temporal (CVS=0.98, f=0.24)

Stage1 Stage 5 Stage9 Stage 13 Stage 17 Stage 21 Stage 25

(HRRVDRDDDD
e B B B B B, B

Frontotemporal (CVS=0.92, f_O 26)
Stage 1 Stage 5 Stage9 Stage 13 Stage 17 Stage 21 Stage 25

T DDDDD
(F:«)\?:;:t ®u5:; ®u"‘:: ®Q ®% O% .%

Subcortical (CVS=0.92, f=0.19)
Stage 1 Stage 5 Stage9 Stage 13 Stage 17 Stage 21 Stage 25

AARRAIDS

@i{:‘:: @bfQ @Gf* ®“ ®~ ®~ .~

SuStaln subtype

3-sigma
2-sigma
1-sigma
Normal
3-sigma
2-sigma
1-sigma
— Normal

3-sigma
2-sigma

1-sigma

— Normal

3-sigma
2-sigma

1-sigma

— Normal

SuStaln stage

v

SuStaln subtype

Asym. frontal

Frontotemporal Temporal

Subcortical

Genotype contribution

Gain this extra information just by generalising event-based model

— pretty neat

I GRN
] . wAPT
|:| C9orf72
1 1 1 1
0 0.2 04 0.6 0.8
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Progression
manifold
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Proposed image
biomarkers —

0 Encoder (E)

7]

3 2

f= A

(] e

8 -’.

4 ! apb_cr

> sEg we
& &8 e
| == ‘3 A
X ;f:3 & > gela

©

5 ¥

(W]

Generator (G)
|
Y i N -

S SN u 4
Region
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Deep learning disease trajectories using generative adversarial

networks

- also used in HEP e.g. CaloGAN, Paganini, Oliveira, Nachman. 2017.

Simulating brain atrophy th
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Simulating brain atrophy dh

x: Age=67 y: Age=70

x: Age=76

y: Age=79

Case 1l

Case2

Case 3

x: Age=79 y: Age=81

8] T p-C-T s
Error Map Error Map
‘a é i l-. .
A ~ - 1
- o' . ’ . L]
. | . \ * J

networks

Deep learning disease trajectories using generative adversarial

- also used in HEP e.g. CaloGAN, Paganini, Oliveira, Nachman. 2017.
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Big vision: computational models for clinical trials

Patient data + machine learning = personalised profiles for clinical trial design

Train Test Profile
: P4
1.Cognitive
impairment

2.Early stage

1.Subtype
2.Stage
3.Pattern

3.Basal ganglia -
white matter

Hypothems 4.Fast progressor
5.DMT targetting
corticostriatal
connections

Model can be used for both prospective and retrospective analysis

- Save money and time

- Optimise trial design
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/" Clinical
\I.Iea Ithca re <}:\ \ ;//. :{> :._ .

\_x trlals_/f /

— J U Translation
[ Genetics Demographics Lifestyle Environmental Personalised medicine]
Integration
/ Model development Model application \
- PCA (EPSRC C-PLACID project)
Discret
Iscrete HD (CHDI foundation)
Continuous PD (MJFF, Alz. Assoc., ARUK, Weston Brain Inst.)
Mechanistic MS (ECTRIMS)
combinat FTD
ombinations Lung diseases: COPD and IPF
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Discussion dh

* Presented computational methods to extract information from large and varied
datasets

* Machine learning methods are suitable for medical problems — i.e. inferring patterns
from complex systems

 Still much to do — can we understand the mechanisms themselves?

* What can HEP and CS learn from each other?

Why Generative Models
Generative models have a
role in many problems.

Products

f‘i'q!_ﬁ ,ﬂ*"! N f’- .
MM
i g | Science
Super-resolution,
’ - ” Exploration
o Compression, I 3
bilaiB Intrinsic motivation

? A8 Text-to-speech Mo ol e d B -y
Koy v odel-based RL —

Proteomics,

: £ f‘_—"‘:ﬁ.-
R Drug Discovery, e
Astronomy, 5
High-energy physics e

https://www.slideshare.net/mlreview/tutorial-on-deep-generative-models

Planning,
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