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Abstract

The future of Grid technology relies on the successful and efficient move-

ment of control information and raw data around the world to interconnect

computers that form the backbone of the Internet. It has been estimated

that Petabytes of data will be replicated and consumed across many sites

worldwide in projects such as the LHC and AstroGrid. This thesis focuses

on the performance issues related to replicating such large volumes of data

across the Internet for the successful deployment of Grid in the near future.

More specifically, the main content of the thesis focuses on the reliable

transport protocols that are necessary for checkpoint and replication data. It

is shown that the existing Transmission Control Protocol (TCP) algorithms

are insufficient to make use of the increased network capacities of high speed

long distance networks. Many new proposals have been put forth to solve this

problem. They are described and extensively explored in a set of simulated,

lab-based and real-life tests in order to validate the theoretical models and

experimental results from real-world application.

As the issues of new transport protocols are not solely a matter of the total

achievable throughput for a single user, but a problem of network stability

and fairness, a set of performance parameters based on these metrics are also

investigated.
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Chapter 1

Introduction

The growth of the Internet has enabled the sharing of data and has im-

proved the collaboration of major science projects between academics and

researchers around the world.

The deployment of data Grids and compute Grids will further increase the

productivity of large scale compute and data intensive applications by dis-

tributing processing and storage subsystems around the world. Through the

implementation of middleware, Grids will rely on existing hardware solutions

such as RAID storage systems and Internet communications.

1.1 Research Motivation

This dissertation begins by looking into data grids where the storage and

retrieval of large data sets are important - where jobs are limited primarily

by the retrieval of data over the Internet rather than the processing of it.

Several key aims are pursued:

24
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• Identification that the key performance bottleneck is the replication

of large scale data across the Internet and the understanding of the

mechanisms that limit data transfer rates.

• Several new congestion control algorithms that govern the rate of data

transfer are investigated and systematically tested across laboratory

and dedicated wide-area networks, and across the Internet to determine

the benefits and disadvantages of each.

It is the aim of this dissertation to use systematic testing to highlight the

performance bottlenecks and the benefits and disadvantages of new trans-

port algorithms for the replication of bulk data. Furthermore the research

conducted here will help refine suitable design and implementation of high

speed Internet transport protocols.

1.2 Research Scope

This dissertation assumes that the predominant transport protocol in use on

the Internet will continue to be the Transmission Control Protocol. Also,

it is assumed that the data to be replicated is sufficiently large that the

TCP flows are ‘long lived’ and that they spends most of their time in the

‘congestion avoidance’ phase of TCP’s transmission behaviour. As such, the

improvement of congestion control algorithms will aid the performance and

fairness of all flows competing along a bottleneck link.

The effects of network topology, (multiple) bottleneck location and polic-

ing mechanisms are not investigated.

The dissertation also takes the view that the deployment of new transport

protocol algorithms should be evolutionary rather than revolutionary. This is
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especially important as the distributed nature of the Internet makes switched

deployment difficult.

1.3 Contributions

The contributions made by this research are as follows, all work was con-

ducted by myself, unless otherwised noted:

• The identification of TCP as a bottleneck in Internet communications

and the investigation of performance enhancing techniques for TCP.

• The implementation of several New-TCP algorithms in Linux kernels

(with SACK and Linux networking optimisation code from Baruch

Evans and Doug Leith of Hamilton Institute).

• The evaluation of several New-TCP algorithms in laboratory conditions

(i.e. dummynet [Riz98]) across varying network conditions.

• The evaluation of several New-TCP algorithms across MB-NG (See

Appendix C.2) and DataTAG (See Appendix C.3) research-use wide

area networks.

• The Identification of severe unfairness experienced by New-TCP flows

under asymmetric network conditions.

• The identification of negative consequences for existing legacy traffic

with New-TCP algorithms.

• The implementation of DiffServ with New-TCP algorithms (conducted

with Andrea Di Donato of University College London).
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• Identification of Linux specific limitations upon TCP transport perfor-

mance.

• Identification of ack and SACK processing bottlenecks on TCP trans-

port performance.

• The evaluation of single flow bulk transport over the Internet using

New-TCP algorithms.

• The identification of important network metrics for the successful utili-

sation of TCP transport for Large Hadron Collider (LHC) applications,

with suggestions for New-TCP usage.

1.4 Dissertation Outline

Scope of the work in terms of the Large Hadron Collider (LHC) project

is presented in Chapter 2 and data replication requirements are discussed.

Preliminary tests are performed in Chapter 3 which investigates the perfor-

mance of the UDP and TCP protocols across the Internet. It is identified

that a performance gap exists between the two - suggesting that TCP has

performance problems not associated with raw hardware performance.

An in-depth review of TCP and the needs for congestion avoidance is

provided in Chapter 4 and the performance limitations are explored in Chap-

ter 5. In particular, it is identified that the fundamental Additive Increase

Multiplicative Decrease (AIMD) congestion avoidance algorithm of TCP im-

poses an absolute performance limit under realistic network conditions for

the High Energy Physics (HEP) research community.

A survey of amendments to the TCP congestion control algorithm is pre-

sented and discussed in Chapter 6, a testing framework where new congestion
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control algorithms can be comparatively analysed is presented in Chapter 7

and a series of systematic tests involving this framework is presented in Chap-

ter 8.

Chapter 9 presents results of running these algorithms under dedicated

cross-UK and trans-Atlantic networks and highlights the hardware and soft-

ware limitations of protocol implementation. A network Quality of Service

solution using DiffServ is also presented, and the benefits of Active Queue

Management are demonstrated. A series of network tests involving New-TCP

algorithms is conducted across the Internet and results analysed.

Finally the applicability of these TCP algorithms are then presented in

Chapter 10 and recommendations are made for the deployment of these al-

gorithms on the Large Hadron Collider (LHC) project. A summary of the

contributions made and areas for further research is also presented.



Chapter 2

High Energy Particle Physics

The high energy physics experiments in the forthcoming decades will provide

insight into the nature of fundamental interactions, structures and symme-

tries that define space-time.

The application of computer processing and information retrieval for such

large-scale science projecys has lead scientists to an increasing need to trans-

fer petabytes of data across the Internet in order to realise the goal of world

wide collaborative science.

This Chapter looks into one such application where there is an increasing

demand to meet the requirements of transferring many petabytes of data

per second across geographically distributed locations. The network require-

ments of new High Energy Physics experiments are described here, taking

the Large Hadron Collider (LHC) experiment as an example.

29
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2.1 Overview

High energy physics experiments are designed to accelerate and collide charged

particles at such high energies that new particles of matter may be found in

the remnants of the collision. By the analysis of these remnants in terms of

velocity, charge, energy and decay rate, physicists are able to deduce whether

the experimental results have lead to the verification of theoretical predic-

tions of new particles.

Different types of detectors are used to characterise each and every par-

ticle that is involved both before and after such a collision (referred to by

physicists as an event) and are arranged radially from the beam line of the

initially accelerated particles. Silicon vertex detectors are used to reconstruct

tracks and identify a particle decay; drift chambres are used to determine a

particle’s momentum and particle energies are measured inside calorimeters.

Each detector has independent readout channels that will produce output

when a particle has been detected.

Due to the large velocities and the small sizes of the particles, groups of

particles are typically used (such as in the LHC) in order to maximise the

possibility of a collision which may result in the desired event. Typically,

most interactions are of no or little interest and therefore decisions must

be made at runtime to either keep or reject the data (which must be done

carefully in order to reduce the risk of rejecting interesting collisions). As

such, the detectors are designed to continuously output huge amounts of

data, only some of which will be retained for storage.

The process filtering this data is called a trigger. A combination of hard-

ware and software triggers are used to reduce the amount of data, which will

be appropriately buffered in order to minimise the amount of time processing
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the data in order to increase collider efficiency.

2.2 Analysis Methods

The search for new exotic particles such as the Higgs boson becomes a sta-

tistical study of the probabilities that a particular event occurs. As such,

large volumes of data must be generated in order to determine with high

confidence that these rare events do actually occur.

Also, Monte Carlo simulations must be produced in order to reduce sta-

tistical errors to an acceptable level. Generally, the size of such datasets are

equivalent to that of the filtered data from the detector.

At present, a typical experiment will store all raw detector data centrally

in tape archives, from which the data will be staged to disk when required.

When an institute wishes to run analysis on a particular dataset, the data

is typically copied (replicated) from the central facility to that of the local

farm at the institute. Collaborating institutes on the experiment operate

more or less independently, in as much as should another institute also want

to analyse the same dataset, they will typically also replicate it to their local

facilities - unaware that an exact replica may be physically closer than that

at the detector.

Access patterns for datasets vary. Experimental data files typically have a

single creator from which the initial production period will last several weeks

and will be modified as new information is added. However, metadata is also

created, which describes the information about the experiment. This may

be created by multiple individuals and may be modified and or augmented

over time, even after the creation of the experimental data. The size of meta

data is typically smaller than that of the experimental data.
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2.3 Data Volumes and Regional Centres

The total output of data from the LHC experiment is expected to be of the

order of ten petabytes per year. Not only must this data be stored, but it

must be made available to sites distributed around the world, and processing

power must be available in order to analyse it. The estimated data set

sizes of the LHC experiment are an order of magnitude greater than that

of any previous experiment. The increased size of LHC experimental data

poses an increased burden on individual institutions to house and manage

large compute and storage farms in order to analyse the data. With tens of

terabytes of data produced each day, both storage and compute resources at

any one site would soon be exhausted.

Assuming that each event will occupy approximately 1.5MB of storage

space [Bau03], then an experiment such as the LHC will produce approxi-

mately 13TB [Bau03] of raw data in a day. This is an order of magnitude

greater than the data rates produced by detectors such as the Tevatron at

Fermilab [ea02].

Therefore, the rate at which data can be analysed is typically limited by

both the compute and network resources available to each institution. With

the increased volume of data that will become available with the introduction

of the LHC, a new computing model that spans the world in order to store

and process such large amounts of data will be required.

An example of the increasing bandwidth demands of science and academia

are: US Energy Science Network (ESNet) traffic has grown 70% per year

between 1992 and 1999, and 100% growth upto 2004. Stanford Linear Accel-

erator Center’s (SLAC) network traffic has been growing at a average annual

rate of 80% with a prediction of reaching 2 Terabits/sec by 2014. LHCNet
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Year Production Experimental

2001 0.155 Gbps 0.622-2.5 Gbps

2002 0.622 Gbps 2.5 Gbps

2003 2.5 Gbps 10 Gbps

2005 10 Gbps 2-4×10 Gbps

2007 2-4×10 Gbps 40-100 Gbps

2009 40-100 Gbps 5×40 Gbps or 20-50×10 Gbps

2011 5×40 Gbps or 20×10 Gbps 25×40 Gbps or 100×10 Gbps

2013 Terabit Multi-Terabit

Table 2.1: The expected traffic volumes of the ATLAS LHC Experiment compared
to that of commodity Production volumes [New05].

which connects the US and Centré Européenne pour la Recherche Nucléaire

(CERN) has grown from a 9.6Kb/sec link in 1985 to a 10Gbit/sec link today.

The predicted network resource requirement of the ATLAS experiment is

shown in Table 2.1. It shows that within ten years of expected data collection

at the LHC, the amount of data expected to be transfered per year will grow

from petabytes to extabytes of traffic per year.

The flow of the data from the detector to physicists must be well coordi-

nated. The MONARC [LN00] group defines a hierarchy of Tiers from which

the data stored at the facilities at a detector should be distributed around

the world for storage and processing of these huge datasets.

The member sites of LHC experiment are categorised into Tiers, depend-

ing on their ability to supply data to the user. The intention is that the total

resources at each Tier will be approximately the same. The figures quoted

here are for ATLAS, and similar resources will be needed by the other LHC

experiments. The Tiered hierarchy is shown in Figure 2.1, which also shows

the expected traffic volumes between Tiers.

• Tier-0
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ATLAS
Experiment

Online 
System

CERN

UK
(RAL)

US
(Fermi)

France
(IN2P3)

Italy
(INFN)

London
Grid

North
Grid

Scot
Grid

South
Grid

...

UCL Imperial RHUL ...

Tier 0 (+1)

Tier 1

Tier 2

Tier 3/4

~PB/sec

~1.2-12 Gbps

~10-40 Gbps

~10 Gbps

~1-10 Gbps

Figure 2.1: The MONARC hierarchy of Tiers for Atlas, with estimated initial data
transfer rates between the different tiers.

There is only one Tier-0 site. For LHC this is CERN, where the data

is acquired from the experiment, and initially stored. The first data

reconstruction occurs here, and CERN shares the work of the Tier-1

sites.

• Tier-1

Tier-1 Regional Centres will service a nation, or a group of nations.

They are expected to replicate as much of the data stored at CERN as

possible in order to facilitate access to the data with approximately 10

sites worldwide. Typically, the network provision between the Tier-0

site and Tier-1 sites should be high, deploying either multi-gigabit links

and or DiffServ and or MPLS solutions to guarantee flow protection.
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• Tier-2

Tier 2 centres will service single nations or regions, caching popular

data in their local storage. There will be approximately 60 sites world-

wide.

• Tier-3 / 4

The local computing resources at member institutions make up Tier-3

of the model, with Tier-4 consisting of individual machines.

The initial storage and processing of event data will be located at the Tier-

0 site. In the case of the LHC, this will be CERN. The data is then replicated

to various Tier-1 centers around the world where they are further processed.

Approximately sixty Tier-2 regional centers, each serving a medium-sized

country, or one region of a larger country (e.g. USA, UK, Italy, etc), will

then replicate data from the Tier-1 centers. Physicists will then typically

access and further analyse data using one of hundreds of Tier-3 and Tier-4

workgroup servers and/or desktops.

The design of such a system ensures that a physicist should not need to

wait more than 10 minutes [LN00] to transfer relevant data for analysis.

The estimated data rates between Tiers are based on having a very well-

ordered, group orientated and scheduled approach to the transfer of data. As

such, the data transfer rates are expected to actually be higher in practice.

An important development in being able to realise the transport require-

ments of such data intensive science applications is that of a shift from the

typical shared ‘best-effort’ services of the Internet to dedicated connection

oriented end-to-end paths to facilitate the separation (and hence impact) of

such large scale traffic to that of standard Internet traffic. This is appar-

ent in projects such as Terapaths [Gib04], OSCARS [Guo04] and LHCnet
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[BMMF05] where new technologies such as MPLS [RVC01, AMA+99] and

DiffServ [BBC+98] are being implemented across production local and wide

area networks.

This will allow the provision of network resource to form Hybrid Networks,

whereby end-users (typically large collaborations such as the LHC) will form

their own private (virtual) networks for the movement of large scale datasets.

However, this paradigm comes at at price as the overheads of installa-

tion, configuration, support and maintenance must now be conducted by the

institutions rather than leased from providers. Therefore the utilisation of

such network resources are very important in order to provide a sufficient

return on investment.

2.4 Data Transfer Requirements

2.4.1 Tier-0 to Tier-1

The typical network connections between the Tier-0 and Tier-1 sites are

meant to be well provisioned to support efficient replication of data across to

different geographical Tier-1 sites. As Tier-1 sites will be located worldwide,

latencies will range from pan-European (around 20msec) to world wide dis-

tances (around 200msec). As most of the infrastructure and investment will

be located between the Tier-0 and Tier-1 sites, there will be (at least ini-

tially) a lot of spare capacity, and technologies such as MPLS/Diffserv may

be utilised to offer a greater Quality of Service (QoS) than ordinary traffic

[Gib04, Guo04] and also provide class protection to reduce the affect of such

traffic upon ordinary Internet traffic. Similarly dedicated light paths may be

leased for the sole purpose of continuous data transfer.



2.4. Data Transfer Requirements 37

2.4.2 Tier-1 to Tier-2

Traffic between Tier-1 and Tier-2 sites are likely to be relatively local, with

latencies in the range of 10msec to 50msec. Typical data transfers are likely

to pass through existing infrastructures such as that of Janet, Abilene etc

between the Tier-1 and Tier-2 sites. Currently most of these networks are

built upon 10Gb/sec backbones with relatively light loading (typically around

10% [ST]). If the network is shared (Internet), then it will be important to

maintain fairness between the LHC and commodity traffic.

2.4.3 Tier-2 to Tier-3/4

The ‘last hop’ of the LHC data transport will be from the Tier-2 centres to

that of local workgroup machines and desktop computers where physicists

will perform the analysis of data. As such, this will typically be what users

will perceive as the raw performance of the data transfer. Due to the locality

of the Tier-2 to Tier-3/4 sites, latencies are likely to be relatively small (less

than 20msec). However, the networks at this edge are generally likely to

be bottlenecked by the local MAN and campus networks, and will likely

need to be shared between all users on the campus and or local area and

thus fairness becomes an important issue. Therefore, is will be important to

sustain a balance between affecting other network users (and the network in

general) and achieving high throughput to enable the users to do their work.

2.4.4 Summary

Table 2.2 shows a matrix of TCP performance metrics according to the type

of end-to-end connection with a relation to that of the Tiers in the MONARC

architecture.
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Internet Dedicated
(sole)

Dedicated
(shared)

Tier-0 to 
Tier-1

Tier-1 to 
Tier-2

Tier-2 to 
Tier-3/4

1) Fairness
2) Low Overhead
3) Throughput 

1) Throughput
2) Low Overhead

1) Throughput
2) Fairness
3) Convergence
     Time

1) Fairness
2) Throughput
3) Low Overhead

Table 2.2: Overview of Transport requirements for different Tiers based upon the
type of end-to-end connection.

For an in-depth discussion of the definitions of the various metrics pre-

sented, please refer to Chapter 7.

When the large scale data transfers are competing over the commodity

Internet, it will be very important that the transfer will not adversely affect

the existing traffic on the network, therefore the most important metric to

consider is that of Fairness. In order to aid efficient replication to the Tier-1

and Tier-2 locations, throughput becomes the next important factor to con-

sider such that very large scale caching will not be required at the Tier-0 and

Tier-1 sites respectively. It will also be important to minimise the amount

of data that needs to be retransmitted as such traffic on the commodity In-

ternet may lead to congestion collapse [FF99]. As such it is important for

the transport algorithms to have low overhead. This is especially important

at the bottom of the hierarchy due to the high possibility of bottlenecked

systems which are more likely to be located in Tier-3 and Tier-4 locations

(due to less hardware and or staff investment in tuning and optimisation).

When considering the move to dedicated circuits for the transport of LHC
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data, the most important metric will be to obtain high throughput in order

to maximise return on investment. Associated with this will be the need to

maximise throughput by sustaining a low overhead as retransmissions will

reduce goodput. As there will be no competing traffic on dedicated circuits

the order of importance of the metrics is the same throughout all Tiers.

If the dedicated link were to be shared between a few network users (e.g.

parallel streams, or simultaneous replication of data to a few sites across the

same dedicated network1), then the sharing of the throughput between the

flows is important. As such, fairness and to a lesser degree, the convergence

times become a factor.

2.5 Summary

An outline of the methods and data rates of particle physics experiments,

such as the LHC were given. The ATLAS experiment was presented and

the MONARC hierarchy was discussed. In particular, the conservatively es-

timated data rates required for the replication and analysis of such data is

expected to be at least an order of a magnitude greater than current ex-

periments. As such, the idea of Hybrid networks was presented in order

to facilitate high transfer rates between Tiered sites, yet maintain segrega-

tion between flows in order to prevent/reduce the impact upon commodity

Internet Traffic.

The relative importance of various evaluation metrics were also presented

within the LHC application and four unique areas were identified.

1Due to the continued development of reliable multicast, the HEP community does not
currently consider it as a viable option.



Chapter 3

Background

Grid technologies [FKNT02, Fos01, FKT02] is considered as a major compo-

nent of enabling world-wide collaborative science, and of course, the Large

Hadron Collider (LHC) project.

Grid technologies are built upon existing technologies. They use Core

Middleware [FK97] that acts solely as a way of communicating to the under-

lying Fabric [Fos01] to conduct Grid operations.

This Chapter looks into the medium on which Grid communication relies:

the Internet, and identifies that the TCP protocol imposes a bottleneck in

terms of high throughput data transfer.

3.1 Data Intercommunication

The need to transport data stored on computer systems around the world

is of fundamental importance in the application of the Grid. Without the

40
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movement of data to be processed, there would be very little point in having

a distributed Grid.

Fortunately, with the standardisation of the Internet [IET], much work

has already been done to enable seamless transfer of data from one system

to another. In this section, the paradigm of data transfer across the Internet

are discussed and the performance of the various layers that enable data

inter-communication are investigated.

TCP/IP

The TCP/IP protocol suite is commonly used by all modern operating sys-

tems. TCP/IP [Ste94] is designed around a simple four-layer scheme. The

four network layers defined by the TCP/IP model are as follows.

Layer 1 - Link This layer defines the network hardware and device drivers

that refer to the physical and data link layers of OSI [Tan96].

Layer 2 - Network This layer is used for basic communication, addressing

and routing. TCP/IP uses IP and ICMP protocols at the network layer

and encompasses the network layer of OSI.

Layer 3 - Transport Handles communication among programs on a net-

work. TCP and UDP falls within this layer and hence is also equivalent

to the transport layer in OSI.

Layer 4 - Application End-user applications reside at this layer and rep-

resents the remaining layers of OSI: the session, presentation and ap-

plication layers.

There are two main transport protocols that are commonly used today:

User Datagram Protocol (UDP) [Pos80] and Transmission Control Protocol
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(TCP) [Pos81b]. The former offers a unreliable way of transferring informa-

tion, i.e. it does not know explicitly that a sent packet has been received,

whilst the latter offers a reliable service - for every packet of information

that is sent and consequently received by the receiving host, some kind of

acknowledgment is sent by the receiver and received by the sending host.

UDP can offer a greater raw performance as it does not require the extra

overhead of acknowledging information and maintaining state. However, as

UDP offers no kind of signaling from the network to discover the current net-

work conditions, it can be potentially dangerous if used maliciously (Denial

of Service attacks [MVS01, HHP03]).

As the Internet is based mainly on the connectionless communication

model of the IP protocol, in which UDP and TCP segments are encapsu-

lated before transfer across the internet, IP has no inherent mechanisms to

provide delivery guarantees according to traffic contracts and hence mecha-

nisms to reserve network resources have to be implemented via other means

(See Section 9.2). Because of this, IP routers on a given data path from

source to destination may suffer from congestion when the aggregated input

rate exceeds the output capacity.

3.2 Network Monitoring

3.2.1 Networking Metrics

Networking performances are broadly classified into both latency and through-

put. Moreover, other metrics such as the internet path (e.g. with traceroute)

[Jac89], the connectivity (whether the Internet host is reachable) [MP99] and

the jitter (AKA interpacket-delay variance) [DC02] may be important.
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Whilst latency is an important metric, especially when applied to appli-

cations such as voice or video conferencing, it is essentially constrained by

the physical (relative) location of the two hosts1. As the majority of the

Internet is a shared resource with Best Effort [CF98] scheduling of resources,

consecutive pings may experience different latencies and hence cause jitter.

Similarly, the traversal of packets through different paths2 may also increase

the jitter, so much so that packets may arrive ‘out-of-order’.

The transfer of bulk amounts of data involve the movement of many

packets of data. As such the microscopic effects of jitter and delay will also

affect the macroscopic effects of bulk data transport. Also, as the raw rate at

which data can be transfered is often a useful and readily measurable metric,

the issue of bandwidth monitoring has become an important indication of the

performance of many Internet applications. Unlike latency, which is limited

by physical constraints, such as the speed of light, the capacity (optimal

throughput) of hardware is limited by the clock frequency and protocols

used to control the medium - as defined by OSI Layer 2.

Two bandwidth metrics that are commonly associated with a path are

the capacity and the available throughput [LTC+04]. The capacity is the max-

imum throughput that the Internet path can provide to an application when

there is no competing traffic load (cross traffic). The available throughput,

on the other hand, is the maximum throughput that the path can provide to

an application, given the path’s current cross traffic load. Measuring the ca-

pacity is crucial in calibrating and managing links. Measuring the available

bandwidth, on the other hand, is of great importance for predicting the end-

1Delays caused by queuing at router and switches may also affect latency.
2Both between routers and within routers themselves depending on router de-

sign/configuration.
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to-end performance of applications, for dynamic path selection and traffic

engineering. A more user centric metric is the achievable throughput which

defines the actual throughput through the Internet of a real application.

For example, FTP [PR85] is a popular application level protocol designed

to transfer files across the Internet. Assume that the end-to-end path ca-

pacity is 10Mbit/sec; because of competing users (because it’s a busy link)

the achievable throughput may only be 3Mbit/sec (as 7Mbit/sec is being

used by other users). However, upon initiating the FTP, the user may only

manage a transfer rate of 1Mbit/sec in steady state - which is the achievable

throughput due to the complex interaction of network buffers and user traffic

patterns.

3.2.2 Test Methodology

Assuming adequate hardware and driver configurations, back-to-back tests of

the transfer of data should be capable of high speeds. However, the TCP/IP

stack is composed of two different transport protocols that regulate the way

in which data is injected into the network. In order to determine the perfor-

mance limitations on inter-communication, the upper layers of the OSI and

TCP/IP stacks are investigated and these transport protocols are tested.

As mentioned previously, UDP is a stateless protocol that allows fine

control of packet data control. However, the transfer of data using UDP is

not recommended due to various reasons as outlined in Chapter 4. Therefore,

as most Internet applications work with the TCP transport protocol, it is

important to compare and contrast the performance of these two protocols.

Two hosts were identified to be the sender and the receiver of active net-

work traffic in order to determine the achievable throughput through a real
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Internet environment. The hosts were equipped with Gigabit NIC cards and

the network path consisted of 15 hops as shown in Figure D.1 with a path

bottleneck capacity of 622Mbit/sec. The machines were chosen to give a rep-

resentative transfer rates achievable by real physics users wishing to transfer

data from CERN, in Switzerland, to Rutherford Appleton Laboratory, in

England, UK.

In order to generate UDP throughput traffic, UDPMon [HJ] was used and

configured to a inter-packet wait time of zero seconds (i.e. back-to-back

packets). For the TCP traffic, iperf [TQD+03] was used to simulate the

transfer of data and appropriate provisions for a large socket buffer size was

used with a sufficiently large socket buffer size of 8MB at both ends (See

Section 5.1.1).

Tests were run over an entire week, with randomised start times. UDP

flows were conducted with 1,000 full sized packets and TCP was ran for 30

seconds. These values were found to be sufficiently long to reach steady state.

3.2.3 Results

Figure 3.1 shows the results of the tests and shows that whilst UDP was

able to achieve almost line rate with a mean throughput of 493Mbit/sec,

TCP was only able to achieve about half of that with a mean throughput of

195Mbit/sec. Therefore, there is a clear discrepancy in the performance at

the transport protocol layer.

Hardware performance bottlenecks between the two end-hosts can be as-

sumed to be negligible due to the successful transmission of UDP packets at

high speeds.

Similar tests to CERN from Manchester showed only marginal improve-
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Figure 3.1: Throughput across production networks using UDP and TCP Trans-
port Protocols between CERN and RAL in September 2002.

ments in the TCP throughput (approximately 30Mbit/sec more) with ap-

proximately the same UDP throughput. This suggests that there is a perfor-

mance problem with TCP in being able to achieve the complete utilisation

of the path from CERN to the UK.

As such tests are intrusive and disruptive to network stability (See Sec-

tion 4.1), UDPMon [HJ] was only configured to transfer 1000 packets in order

to calculate the UDP throughput. Whilst this is sufficient to determine the

transient state of the network, it may not provide a deterministic indica-

tion of the state of the network for the 30 seconds that the TCP flows were

transferred for. As such, the longer duration of the TCP tests (compared to

the UDP tests), may be more prone to the effects of network cross traffic.

However, shorter TCP would not reach steady state due to the dynamics of

slow-start (See Section 4.3).

However, the transfer of UDP packets may provide an indication of the

router queue occupancy along the network path. As packets are typically
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Figure 3.2: Bottleneck limits of TCP WAN transfers between CERN and RAL as
reported by Web100.

only lost when the network queues overflow, the consistent high throughput

of the UDP packets suggest that the average queue occupancy is low. Given

this information, it is expected that TCP should also be able to sustain high

throughput (on average).

To investigate the details of TCP transfers, all TCP results were passively

monitored using the Web100 [MHR03] framework in order to determine the

possible bottlenecks on the system. Web100 implements a facility whereby

the performance of TCP can be determined to be bottlenecked by either the

receiver, the sender or by the path in between. These variables are presented

in a ‘triage’ whereby the fraction between the three bottlenecks are logged.

Web100 is a Linux kernel patch that enables the in-depth logging of TCP

parameters. Figure 3.2 shows the result of the Web100 triage [MHR03] for

numerous network transfers (including those not presented in Figure 3.1) for

the network path shown in Figure D.1. The triage determines the bottleneck

associated with each transfer in terms of a ratio between the network, the

sender, and the receiver.
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It clearly shows that that the network component is the overriding per-

formance bottleneck for TCP.

The structure of the graph show that there are certain operating regions

from the results at which the points ‘cluster’. This was found to be a result

of effect of socket buffers (See Section 5.1.1) which limit the physical memory

allocation to TCP, and hence the achievable throughputs.

3.3 Summary

Grid fabric components of storage and network hardware are investigated

and presented in Appendix A. In summary, the tests demonstrate that the

hardware potential for transferring data at greater than Gbit/sec rates is

perfectly feasible.

Test transfers across real production networks were conducted were con-

ducted using both the stateless UDP protocol and the standard TCP protocol

using memory-to-memory data copying between RAL in the UK and CERN

in Switzerland.

It was discovered that the UDP protocol consistently performed a lot

better than TCP, achieving on average about a factor of 2 difference in

throughput. As much of the Internet traffic relies on the reliable replica-

tion of data across sites, TCP is a fundamental protocol in the performance

of all Internet-based applications. As such, further investigation as to why

TCP is incapable of achieving high throughput transport is warranted.



Chapter 4

Transmission Control Protocol

The movement of bits across a network requires both hardware and software

to co-ordinate the copying of data from one machine to another. The dynam-

ics and performance of this interaction is presented in the previous chapter

and in Appendix A. Real world transfers of data were conducted. It was

found that the performance of TCP from Switzerland to England was only

half that of the UDP protocol.

The Transmission Control Protocol (TCP) [Pos81b, Bra89, APS99] is the

most widely used transport protocol in the Internet and provides applications

with reliable, byte-oriented delivery of data on top of the stateless Internet

Protocol. In this chapter we look more closely at TCP to find out why it has

become the de-facto transport protocol on the Internet.

49
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4.1 Overview

The Transmission Control Protocol was originally devised by Postel in 1981

[Pos81b]. Designed to enable inter-communication between disparate sys-

tems, it is encapsulated above the stateless Internet Protocol [Pos81a].

IP routers connected on multiple network paths are shared resources

which may suffer from congestion when the aggregated input rate at any

networking node exceeds the output capacity. As there is no global sig-

nalling mechanism to control the rate at which end-nodes send data into the

network, congestion can occur. Consequently, flows tend to experience vary-

ing network conditions that affect the original traffic profile from the source.

This is known as Best-Effort servicing as each individual node tries its best

to forward packets without any service guarantees upon its performance.

Should all Internet users be using UDP as their primary transport pro-

tocol, the aggregated input rate at any router would be greater than the

maximum output rate and overloading of Internet resources would take place

and potential Congestion Collapse [Nag84] would occur.

When congestion occurs, the amount of useful work done is diminished

to such a degree that the throughput declines and the network is termed

as undergoing congestion collapse. [FF99] and [MR91] outline the need for

mechanisms to prevent congestion collapse.

Congestion collapse is shown in Figure 4.1. It shows that as the sending

rate increases the useful work done increases linearly up to a point where

it reaches the network bandwidth. Past this point the throughput saturates

and the link pipes are filled and packets get queued at the routers. Similarly,

the delays experienced by the traffic increase due to the buildup of routers’

queues, and soon after the flows starts to lose packets. The loss can be re-
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Figure 4.1: Congestion Collapse

covered by the sending hosts retransmitting them, but part of the bandwidth

will be wasted due to retransmissions.

At the turning point where the flow starts losing packets the amount of

useful work done by the network decreases dramatically and connectivity

diminishes completely; congestion collapse has occurred.

There are many types of congestion collapse [FF99]. Two of the most

common forms is congestion from the retransmission of packets already in

transit or that have been received (classical collapse), and that arising from

the transmission of packets that are subsequently dropped by the network

(congestion collapse from undelivered packets).

Originally devised to simply transport data reliably across networks [Pos81b],

TCP was adapted in 1988 by Van Jacobson [Jac88] to avoid network conges-

tion collapse and to provide network fairness between network users. Much

research, development and standardisation since its incarnation has led TCP

to be widely used in the Internet and it is considered as the de-facto standard

transport-layer protocol.

The achievements of TCP are most evident by the fact that the protocol

has changed little over the last two decades. With the advent of fibre optics



4.2. Protocol Description 52

TCP Segment

Sequence Number

TOS

Source Port Destination Port

Acknowledgement Number
Data
Offset Control Flags Receiver Window

Checksum Urgent Pointer

TCP Options (variable) Padding (variable)

Data (variable)

0 4 1610 32 bits

Figure 4.2: TCP header format.

and satellite communications, technological development has increased the

size of the Internet by orders of magnitude in terms of size, speed, load and

connectivity - and all this in the last couple of decades [CO01, CO99]. Even

with the wide range of network conditions present on the Internet, TCP has

been able to utilise and effectively share network resources between Internet

Users. More importantly, it is generally believed to have prevented severe

congestion collapse during this time [FF99, Nag84].

4.2 Protocol Description

The TCP header is shown in Figure 4.2. The source and destination ports

allow the hosts to identify multiple concurrent TCP flows at once. The

sequence and acknowledgment numbers facilitate reliable transport (See Sec-

tion 4.2.2). The Receiver Window field is used for flow control (See Sec-

tion 4.2.3). The Data Offset field provides a pointer to the start of the Data

field as TCP Options [Pos81b] are variable in size. The size of the Data field
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is dependent upon the Maximum Segment Size (MSS) of the TCP segment

and constrained by the MTU of the network path. The variable Padding field

at the end of the TCP Options is used to ensure that the TCP header ends at

a 32-bit boundary. Control Flags determine the type of TCP segment (e.g.

SYN, ACK, SYN-ACK, FIN, reset, or urgent) and denoted by either a true

or false bit for each type of segment (e.g. a SYN packet will have the SYN

bit marked, whilst a SYN-ACK will have both SYN and ACK fields marked).

The TOS field determines quality of service and enables packet level service

differentiation. The entire TCP segment is check-summed to facilitate the

detection of header and/or payload corruption.

4.2.1 Connection Initialisation

TCP connections are established between two hosts via a three-way hand-

shake. According to [Jac88], the sending and receiving of data after the

initialisation of the TCP connection is bounded by a packet conservation

principle; when this principle is obeyed, congestion collapse from excessive

data being put into the Internet will become the exception rather than the

rule.

The principle of packet conservation utilises the idea that data packets

cannot be placed into the network any faster than that at which acknowl-

edgments (ack’s) by the sender of the data are received. This is called ack-

clocking and is an important property in maintaining a stable and even data

flow [VH97, Jac88, BPS99].

In the following we will give an overview of the features and implemen-

tations that have made TCP such a success.
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Figure 4.3: Sliding Window of TCP.

4.2.2 Reliable Data Replication

To ensure reliable in-order data replication between machines, a TCP sender

must maintain sufficient history of what data has been received by the TCP

receiver. The implementation of an acknowledgment system in TCP offers

such a mechanism by explicitly notifying the sender of what the receiver has

received.

This history is provided by implementing a window of bytes on the sender

which are currently ‘in-situ’ or packets in flight. Each byte of data is assigned

a unique sequence number and the sequence number corresponding to the

start of the data payload of each TCP packet is embedded in the TCP header.

The left-hand side of the window, snd_una, is advanced when the sender

receives an acknowledgment from the receiver. acks are cumulative in the

sense that the acknowledgment number in the header of each ack confirms

all bytes up to the given sequence number.

As data is not always delivered to the TCP receiver in a continuous way

(the network1 can lose, duplicate or re-order packets) any data packets that

are not sequentially received at the receiver are called out-of-order data.

1And potentially any layer directly underneath the transport layer.
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As a response to out-of-order segments, the TCP receiver sends duplicate

acknowledgments, dupacks, that carry the same acknowledgment number as

the previous ack it had sent - hence this does not change snd_una.

A sequential receipt of a number of dupacks signifies that a data segment

has potentially been lost in the network, and therefore the sender should

send the data segment (the left most side of the sliding window) again.

In combination with retransmission timeouts (RTO) (See Section 4.5.1)

that will resend segments should no acks that advance snd_una be received

within this RTO, acks provide reliable data delivery [Bra89] by informing

the sender of when data has (and implicitly, has not) been received by the

receiver. Similarly, when new data is sent into the network, the right most

pointer, snd_nxt, advances to the right. Therefore, the window ‘slides’ across

the range of sequence numbers as the transfer takes place. Through the evo-

lution of the data transfer, this window will slide across the entire byte range

of the relevant data to transfer and hence is known as a ‘sliding window’.

The macroscopic result of this is that for each and every TCP connection,

this window has to be maintained as part of the connection state in memory

in order to be able to keep track of the number of packets in-flight. The

Bandwidth Delay Product (BDP) defines the relation between the through-

put b, the round-trip latency T , and the size of the sliding window w required.

b =
w

T
(4.1)

The relation between w and the number of packets is defined by:

w = n× s (4.2)
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Where n is number of packets in flight, and s is the size of each packet as

limited by the MTU and MSS. As such, should the physical memory assigned

to the sliding window be restricted, then the number of packets in flight is

restricted and consequently the throughput is also restricted.

Another way of thinking about the BDP is that for a network capacity of

C (i.e. b = C), and an end-to-end latency of T , the required window in order

for a TCP flow to saturate the path is C × T . This is only valid when there

are no competing flows as the presence of network cross traffic is that the

available bandwidth of the network is less than C. However, the presence of

cross traffic may also increase the latency of the flow, and therefore there is

a balancing effect (of the decrease in bandwidth, but an increase in latency).

A full account of this is given in [JPD03].

4.2.3 Flow Control

To prevent a fast sender from overflowing a slow receiver, and hence causing

losses at the receiver (and wasting network resources), TCP implements flow

control [Tan96]. In order to prevent such an occurrence, in every ack the

receiver advertises to the sender its ‘receiver window’ (rwnd) which represents

the number of bytes available for buffering at the TCP receiver before it is

processed and sent up to the receiver Application.

Therefore, if the TCP receiver cannot process the incoming data at the

speed which is being sent, the value of rwnd sent will get smaller as the

socket buffer at the receiver fills.

Through the advertisement of rwnd, the TCP sender can prevent over-

flowing the receiver by limiting its maximum allowed window size for trans-

mission. This mechanism provides a simple, yet elegant way of preventing
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excessive transmission of data which will be lost at the receiver.

4.3 Congestion Control

The implications of congestion collapse led to the first proposal for a trans-

port protocol which will help prevent congestion collapse [Jac88].

TCP utilises another window to determine the dynamic flow control re-

quired of the heterogeneous networks and hence an estimation of the available

capacity in the network.

This congestion window (cwnd) is defined as the number of allowed seg-

ments (or bytes) sent but not yet acknowledged (packets or bytes in transit).

As such, it is analogous to controlling the rate at which packets are allowed

into the network along the bottleneck of a given network path.

Whilst congestion control was not originally part of the original TCP

specification [Pos81b], it has become part of the standard TCP specification

since the introduction of TCP Tahoe (See Section 4.5.1).

The two specific algorithms that control the evolution of cwnd are defined

as follows:

4.3.1 Slow Start

The purpose of the slow start algorithm [Jac88] is to get the ack clock running

and to determine the available capacity in the network. It is a mechanism

to quickly find an operating point at which TCP can work. Therefore it is

invoked at the start of every TCP connection after the initial TCP handshake.

Starting with a conservative cwnd of one segments2, the TCP connection

2Recent suggestions state that TCP may set its initial cwnd to two segments in light
of the increase in link speeds [AFP98].
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sends out as many segments as it can ensuring that the number of packets

in flight does not exceed cwnd. After approximately one RTT , the TCP

sender should receive an acknowledgment informing receipt of the data from

the receiver. For every non-duplicate ack received,

cwnd← cwnd + 1 (4.3)

During slow start, this algorithm is equivalent to an exponential increase

in the cwnd size as it effectively doubles every RTT as one more packet is sent

out for every non-dupack received. This increase of cwnd is quite aggressive.

However, it enables the TCP connection to quickly reach a stable point for

congestion avoidance (See Section 4.3.2) to take place.

Slow start ends when a segment loss is detected or when the congestion

window reaches the slow start threshold, ssthresh (See Section 4.3.3).

4.3.2 Congestion Avoidance

Under the packet conversation principle, a TCP connection at equilibrium

will send new packets with the rate at which it receives acks. Under ideal

circumstances, this rate should reflect the rate packets are served by the

slowest link of the entire path, also known as the ‘bottleneck link’.

When a sender is operating at equilibrium, i.e. in steady state, it should

be able to adapt to changes in the condition of the path. More importantly, if

more connections (say from other users) start to use part of the path, any one

TCP flow should ‘back-off’ its transmission rate and be fair to other flows.

Similarly, should a connection terminate then the sender should attempt

to utilise the extra bandwidth. This is exactly what congestion avoidance

[Jac88] does, and is implemented through a simple algorithm such that it will



4.3. Congestion Control 59

probe for extra bandwidth by increasing its sending rate slowly, falling back

to a ‘safe’ sending rate should loss or excessive delay of an ack (an implicit

indication congestion) occur.

The implementation of such an algorithm is given below:

ACK : cwnd ← cwnd +
1

cwnd
(4.4)

LOSS : cwnd ← cwnd− 1

2
× cwnd (4.5)

Upon receipt of an acknowledgment, when in congestion avoidance, the

sender increases the cwnd by 1
cwnd

. Therefore, after about cwnd of acks,

the sender will be able to send one more packet due to this increase. This

mechanism allows TCP to ‘probe’ the network to determine if it has more

resources; if it does, then it will make use of the extra bandwidth by con-

tinuing to increase cwnd; if not, after approximately RTT the sender should

either be able to determine packet loss from dupacks sent by the receiver or

through a RTO soft timer expiration (See Section 4.5.1).

Should a loss be detected, then the congestion avoidance algorithm of

TCP reduces cwnd by half3 and hence reducing the number of packets in-

flight from the connection. This will reduce the resources used by this TCP

connection and helps to prevent congestion collapse from occurring.

The value of cwnd is never allowed to be less than 1 packet.

It must be noted that the requirement to prevent congestion collapse is

that all end-to-end connections should have the same form of reactive conges-

tion control behaviour. Therefore, the requirement of preventing congestion

3[APS99, Pos81b] actually specify that cwnd ← FlightSize/2, where FlightSize is
the amount of data sent, but yet unacknowledged. For simplicity, it is assumed that the
FlightSize is the same as the cwnd. This assumption is valid only when TCPs ack clock
is not broken.
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collapse is a distributed one whereby all transport protocol control algorithms

should react upon indication of congestion by decreasing their sending rates.

The algorithm that governs Congestion Avoidance is referred to as Ad-

ditive Increase Multiplicative Decrease, (AIMD) [CJ89], due to the form of

Equations 4.4 and 4.5.

4.3.3 Slow Start Threshold

The general characteristics of the TCP algorithm are an initial, relatively fast

scan of the network capacity using Slow Start, followed by a cyclic adaptive

behaviour of Congestion Avoidance that reacts to congestion by reducing its

sending rate, and then slowly increasing the sending rate in an attempt to

stay within the area of maximal transfer efficiency.

In order to determine the balance between the aggressive algorithm of

Slow Start and the steady-state congestion probing algorithm of Congestion

Avoidance, another variable, ssthresh is introduced and is used as follows:

if cwnd < ssthresh

do slow start

else

do congestion avoidance

This slow start threshold, ssthresh, is typically set to a large initial value

and updated upon loss detection. In other words, after loss, the value of

ssthresh is set to half of the number of packets in-flight.

Through continuing updates of the value of ssthresh, the TCP connec-

tion is able to recover to a stable operating region of congestion avoidance

quickly using slow-start when a RTO occurs and then continue its conges-
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tion avoidance regime from a ‘safe’ operating at half the rate at which loss

occurred.

4.4 Retransmission Timeout

As TCP requires the receipt of acknowledgments in order to slide the TCP

window and thus maintain the flow of data between the sender and receiver,

should ack’s not be received then the TCP sender will indefinitely stall.

In order to rectify this, TCP implements a Retransmission Timeout (RTO)

which is a soft timer which is re-initialised after the receipt of an ack. It is

assumed that an RTO expiry (i.e. a period where no acks are received) is

equivalent to packet lost and therefore the missing segment should be re-

transmitted to facilitate reliable delivery and progress movement of the TCP

window.

The delivery of each segment of data may experience differing latencies;

it is therefore important to have a good RTT estimator in order to determine

an appropriate RTO.

[Jac88] presented a calculation of RTO by applying a filter such that it

takes into account the variation of the average RTT, in fact this exponentially

weighted estimator devised for Tahoe is still in use today. The RTO is

calculated using a smoothed estimate of the RTT, SRTT, and a variance

estimate, RTTVAR [PA00].

SRTT ← SRTT +
1

8
(RTT − SRTT ) (4.6)

RTTV AR← V RTT +
1

4
(|RTT − SRTT | −RTTV AR) (4.7)

RTO ← SRTT + 4×RTTV AR (4.8)
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This enables spurious packet delays to be absorbed into the time-out to

facilitate a good estimation of the RTO.

RTT measurements resulting from retransmitted segments are not in-

cluded [KP87] to avoid false positive RTO calculations.

Standard TCP implementations (such as TCP Tahoe - See Section 4.5.1)

only time-stamp a single packet per RTT to reduce the CPU load, and thus

only a single RTT measurement can be gathered per RTT which will limit

the robustness of the above algorithm. More accurate RTT samples can be

gathered by using using the TCP Timestamp option (See Section 5.2.1) to

facilitate a more robust RTO calculation.

4.5 TCP Variants

Whilst the basic design of TCP has changed little since its incarnation, var-

ious adaptations to the basic flow recovery mechanism have enabled TCP to

adapt as the Internet has evolved.

The original specification in [Pos81b] implements only the sliding win-

dow and flow control of TCP. Also a very basic RTO estimator was used.

This section describes the major implementations and alterations of the TCP

algorithm to the current state.

4.5.1 TCP Tahoe

Designed in 1988, TCP Tahoe by Van Jacobson [Jac88] extends the original

TCP by Postel [Pos81b] with five new mechanisms that have become de-facto

TCP mechanism: slow start, ack clocking, window dynamic adjustment,

fast retransmit and round-trip time variance estimation. All of these new
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mechanisms are still widely in use today in the all TCP implementations.

TCP Tahoe assumes that congestion signals are represented by lost seg-

ments and that losses due to packet corruption are much less probable than

losses due to buffer overflows on the network.

As there is no explicit notification of packet loss through the ack mecha-

nism, TCP Tahoe introduces the notion whereby packet loss can occur if:

A TCP soft time-out occurs such that no acks have been received in a

period RTO since the last ‘normal’ ack was received. Therefore, the ack

clock has stopped. TCP Tahoe implements a more accurate calculation

of RTO.

Receipt of 3 dupacks The TCP connection is still active and there is still

ack clocking. A packet may have been lost but all successive packets

were delivered successfully.

The refinement of an accurate round-trip time estimator was also intro-

duced with TCP Tahoe (See Section 4.4).

The occurrence of an RTO timeout is taken as a signal of severe network

congestion and therefore the rate at which the TCP should send more seg-

ments should be decreased to prevent network collapse. As such, the TCP

flow reinitiates the TCP connection in slow start so that the network con-

ditions can once again be probed to re-initialise the ack clock. By setting

cwnd to 1 packet, TCP Tahoe starts sending from a very low rate and only

if the network is capable of the extra traffic will the ack clocking reinitiate.

Fast Retransmits [Jac88] were proposed to reduce the long idle periods of

time during which the TCP on the sending host waits for a timeout to occur.

Fast Retransmit is a mechanism that sometimes triggers the retransmission
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Figure 4.4: Time Evolution of Example TCP Tahoe Trace.

of a dropped packet sooner than the regular timeout mechanism and hence

improves packet loss detection. It does not replace regular timeouts; it just

enhances that facility and keeps the ack clock from failing.

Fast Retransmits are implemented via the detection of dupacks at the

sender. It suggests that either a packet has been lost, or received out of

order4. Upon the occurrence of three consecutive dupacks, TCP Tahoe de-

creases the sending rate and the inferred lost packet is resent. The main

difference between TCP Tahoe and variants such as TCP Reno (see Sec-

tion 4.5.2) is that upon loss detection through dupacks, cwnd is set to one

packet rather than half of the previous value. As the mechanism to set

ssthresh still holds, the TCP connection always restarts in slow start (after

loss detection) until cwnd reaches ssthresh and then the linear additive in-

crease of the congestion avoidance mechanism occurs until the whole process

is repeated or the connection is closed.

Figure 4.4 shows a typical time based evolution of TCP Tahoe. The TCP

4Later implementations such as TCP SACK can calculate the exact missing segment
based on extra information provided by the receiver to prevent the need to retransmit
already received data.



4.5. TCP Variants 65

connection initially starts off in slow start, until in the 4th RTT packet loss is

detected and ssthresh is calculated as half of the number of packets in flight.

As TCP Tahoe always restarts the connection in slow start, cwnd is set to

1 packet and cwnd slow starts up to ssthresh. When cwnd ≥ ssthresh

the TCP connection enters congestion avoidance until packet loss is again

detected. The cycle continues until the 21st RTT when a network timeout

occurs whereby ssthresh is recalculated and cwnd is set to 1 packet.

4.5.2 TCP Reno

In 1990, Van Jacobson refined the congestion control algorithm. He noted

that congestion control should do two things: prevent the pipe from going

empty after a loss (as if it doesn’t go empty, the TCP flow does not have to

spend time refilling it again) and correctly account for all data that is actually

in the pipe (as congestion avoidance should be estimating and adapting to

the rate).

As a consequence of this chain of thought, TCP Reno [Jac88] introduces

major improvements over Tahoe. It still maintains all of the features of TCP

Tahoe (such as the improved RTO calculation and slow start after a timeout)

but changes the way in which it reacts when a loss is detected upon duplicate

acknowledgments.

The concept is that should the network be heavily congested, the receipt

of acks will stop (as the receiver will not receive any data packets to respond

acknowledgments to). Therefore it is highly likely timeouts only occur when

the network undergoes heavy congestion, and that the receipt of dupack

signifies that the network is only moderately congested.

Therefore, the implementation of slow start after a Fast Retransmit in
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TCP Tahoe completely destroys the ack clock unnecessarily and is too con-

servative in its rate reduction.

Given this assumption, under moderate loads the sender should be able

to keep on sending data since the flow still exists (as the equilibrium has not

been completely destroyed). However, the sender should be sending with less

vigour to utilise less resources in order to prevent congestion collapse.

As such, Reno introduces a mechanism called Fast Recovery [Ste97] which

should be activated after a Fast Retransmit. Recall that Fast Retrans-

mits will cause the sender to retransmit the lost packet after receiving three

dupacks. However, under Reno, it will not fall back to slow start, but in-

stead, it should take advantage of the fact that the flow that currently exists

should keep on sending, but using less resources.

By using Fast Recovery, the sender calculates half the number of packets

in-flight just before loss detection. It sets ssthresh to this value and then

subsequently also sets cwnd to the same value, rather than to one packet as

in Tahoe5. As such, this forces TCP Reno to send fewer packets out and

therefore it has indeed reduced its utilisation of the network.

As ssthresh is also updated upon congestion, TCP Reno is therefore also

able to quickly revert back to congestion avoidance should a RTO expiration

occur (causing the TCP flow to enter slow start).

But the shrinking of cwnd means that the TCP flow has already sent out

all the packets that are contained within the window and therefore there is

no way of sending out new packets unless the window is forced to include the

new ones. As the receipt of dupacks under Tahoe does not move this window,

then the only way to shift the window is to (artificially) inflate the size of

5Actually, it is set to half of the the number of packets in flight before the loss plus 3
packets to signify the data segments that have been acknowledged by the 3 dupacks.
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Figure 4.5: Time Evolution of Example TCP Reno Trace.

cwnd upon each dupack received as each represents another data segment

which has left the network. Therefore, upon the receipt of each dupack, the

cwnd is inflated by one segment as each dupack signals the fact that another

packet has left the network.

When all the dupacks have been received (cwnd/2 packets corresponding

to the number of of packets that were in flight prior to the loss detection), the

next ack should be that caused by the retransmission and therefore should

acknowledge all packets. Upon the receipt of this normal ack, the sender

exits Fast Recovery and set its cwnd to ssthresh to maintain sending at a

rate which does not destroy the ack clock.

Therefore, under Reno, slow start is only invoked at the start of a TCP

connection and when a packet is timed out by the RTO, i.e. only when the

ack clock of the TCP flow has been destroyed.

Figure 4.5 shows a typical time evolution of TCP Reno. Slow start is

initiated whereby at the 4th RTT packet loss is detected and ssthresh is

recalculated. Unlike TCP Tahoe, TCP Reno effectively sets cwnd to the value

of ssthresh after Fast Recovery. After this, congestion avoidance is initiated
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until packet loss is detected at the 9th RTT, where Fast Retransmission and

Fast Recovery is again initiated. At the 19th RTT, a timeout occurs and

again ssthresh is recalculated, but cwnd is set to 1 packet whereby slow

start is initiated until cwnd ≥ ssthresh.

4.5.3 Motivation for Improving Loss Detection

A fundamental problem is that TCP acks are cumulative; an ack confirms

reception of all data up to a given sequence number, but provides no in-

formation whether any bytes beyond this number were received. Therefore

upon loss, the Fast Retransmit and Fast Recovery algorithms assume that

only the segment at snd_una is lost per window. This can result in the loss

of ack clocking and timeouts if more than one segment is lost.

Due to the prevalence of FIFO queues in the internet, losses often occur

in bursts [JS00]. As link speeds increase and the internet becomes more

geographically distributed, with more hops, TCP cwnd sizes are increased

to make use of available capacity. The result of this amalgamation is that

single packet loss within a window is rare and multiple losses within the same

window are more likely to be the observed effect.

When Tahoe and Reno experience multiple packet losses in a window of

data (usually in the order of half a window under heavily congested links),

Fast Retransmissions and Fast Recovery are invoked several times in succes-

sion leading to multiplicative decreases of cwnd and ssthresh.

As this happens several times in succession, the left edge of the sending

window advances only after each successive Fast Retransmit and the amount

of data in-flight (sent but not yet acked) eventually becomes more than the

cwnd (halved by the latest invocation of Fast Retransmit). As there are
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no more acks to receive then the sender stalls and recovers from this dead-

lock only through a timeout - which destroys the ack clocking and is only

recoverable through slow start. This has the impact of severely reducing the

throughput of the TCP flow.

Another problem of inducing multiple Fast Retransmits is that the source

retransmits packets that have already been correctly received by the receiver

which increases the potential for classical congestion collapse [FF99].

A more in-depth discussion with diagrams is presented in [FF96].

4.5.4 TCP NewReno

A modification of Reno led to TCP NewReno [FH99] which shows that Reno

can be improved without the addition of SACKs (See Section 4.5.5) but still

suffers without it. Here, the wait for a retransmit timer is eliminated when

multiple packets are lost from a window.

NewReno modifies the Fast Retransmit and Fast Recovery. These modi-

fications are intended to fix the Reno problems of multiple Fast Retransmits

and are wholly implemented in the sender side, in contrast to TCP SACK.

NewReno is the same as Reno but with more intelligence during fast

recovery. It utilises the idea of partial acks; when there are multiple packet

drops, the acks for the retransmitted packet will acknowledge some, but not

all the segments sent before the Fast Retransmit.

In TCP Reno, the first partial ack will bring the sender out of the Fast

Recovery phase and will require a timeout when there are multiple losses in

a window to recover from the losses, thus stalling the TCP connection. In

NewReno, a partial ack is taken as an indication of another lost packet and as

such the sender retransmits the first unacknowledged packet. Unlike Reno,
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partial acks do not take NewReno out of Fast Recovery and it retransmits

one packet per RTT until all the lost packets are retransmitted thus avoiding

the multiple fast retransmits from a single window of data [Flo94b].

The downside of this is that it may take many RTT’s to recover from

a loss episode, and enough new data must be present in order to keep the

ack clock running. Otherwise, re-initiation of the ack clock through a RTO

timeout is still necessary.

The modifications to Reno to enable NewReno are as follows:

Multiple Packet Loss

When first entering Fast Retransmit, the highest sequence number sent so far

is saved in the variable recover. Normal retransmission of data and the Fast

Recovery algorithm are run as normal. However, when a new ack arrives,

an additional check is performed to ensure that this ack covers the value of

recover. If the sequence number of the ack is less than that of recover,

then this ack is a partial ack and signals that another segment was lost from

the same window of data.

As such, TCP can retransmit the segment reported as expected by the

partial ack. There are two versions of NewReno algorithm which differ in

the way that the RTO is updated under this scenario [FHG04]. Under the

‘slow-and-steady’ variant, the RTO is reset on every partial ack. Whilst

with the ‘impatient’ variant the RTO is only set after the first partial ack.

Due to this RTO update, the impatient variant is more likely to be able

to recover quickly under very lossy conditions (or large cwnds) by resorting

to timeouts, whilst the ‘slow-but-steady’ variant will take approximately n

RTTs to recover (where n is the number of lost packets in the window)
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[Hoe96]. In both cases, the TCP connection only exits Fast Recovery if the

new ack’s sequence number is larger than recover.

False Retransmits

In order to prevent the retransmission of segments that have already been

received by the receiver6, the same recover variable as per the previous

discussion is used7. With the initial call into Fast Retransmit after a loss is

detected, the RTO is reset. Upon consecutive RTO’s, the highest sequence

number transmitted so far is also recorded into recover. By checking the

received acks against recover, the TCP sender is able to prevent having to

retransmit unnecessary data.

The sender comes out of Fast Recovery and Fast Retransmits only after

all outstanding packets (at the time of first loss) have been acked.

4.5.5 Selective Acknowledgments (SACKs)

With Selective Acknowledgment, SACK [MMFR96], the data receiver can

inform the sender about all segments that have arrived successfully, so the

sender need retransmit only the segments that have actually been lost. How-

ever, TCP-SACK requires that both TCP senders and receivers be modified

to support SACKs.

In order to be backwards compatible with existing non-SACK TCP re-

ceivers, SACK capability is negotiated during the TCP handshake. If neither

of the TCP hosts implement the TCP SACK option, then TCP-SACK be-

haves the same as TCP Reno - with its associated problem with multiple

6As retransmitted packets may also be dropped.
7Note that the original ‘experimental’ draft of NewReno does not implement the check

against recover.
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drops within a window. To avoid this TCP NewReno was proposed (see

Section 4.5.4).

TCP-SACK has been shown to perform well even at a high level of packet

losses in the network [MM96].

SACK Blocks

SACK attaches detailed information called SACK Blocks in TCP Options

[Pos81b] on each and every ack. Each SACK block specifies a contiguous and

isolated block of data not covered by the TCP Cumulative Acknowledgment

field. Therefore cumulative SACK Blocks reports in the ack segments help

the sender to identify ‘holes’ in the sequence numbers at the receiver; on the

receipt of an ack containing the SACK Block, the sender can infer which

segments are lost and hence retransmit only those segments. Therefore,

SACKs enables a TCP sender to maintain an image of the receiver’s queue

and enables recovery from multiple losses per window within roughly one

RTT.

Each SACK block is described using absolute sequence numbers, with

two sequence numbers describing each block, each taking 4B:

1st Left edge of the block, i.e. the first byte of the block successfully received.

2nd Right edge of the block; i.e. the sequence number of the byte immedi-

ately following the last byte in the block.

Given that the TCP options field is limited to 40B, the maximum number

of SACK blocks per ack is limited8 to four. However, as it is expected that

SACK will often be used in conjunction with other TCP Options such as

8Each TCP option has a necessary associated overhead.



4.5. TCP Variants 73

TCP Timestamps [JBB92] (See Section 5.2.1), typically only 3 SACK blocks

are expected in each ack.

The extra redundancy in having more than one SACK Block in each ack is

necessary due to the lossy nature of network paths and enables ‘robustness’

when acks are lost. It is therefore also important that the SACK option

always reports the block containing the most recently received segment, as

this provides the sender with the most up-to-date information about the state

of the network and the data receiver’s queue.

However, the unacknowledged segments can be treated in different ways

when accounting for outstanding data. The approach promoted by the IETF

is to consider all unacknowledged data to be outstanding in the network.

Holes within SACK blocks indicate potentially lost packets. However, they

may also indicate reordered packets. The method by which SACK is im-

plemented can be conservative or aggressive in the way it treats the holes

within the SACK blocks. The Forward Acknowledgments (FACK) algorithm

[MM96] takes the more aggressive approach and considers the unacknowl-

edged holes between the SACK blocks as lost packets and therefore retrans-

mits the data. The more conservative approach suggested by the IETF is

to consider all unacknowledged segments to be outstanding in the network.

Although the FACK approach can result in better TCP performance it may

increase the retransmission of unnecessary data.

How the sender uses the information provided by SACK is implementation-

dependent. For example, Linux uses a Forward Acknowledgment (FACK) al-

gorithm [MM96] Another implementation is sometimes referred to as Reno+SACK

[MMFR96, MM96].
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D-SACK

As an extension of the SACK mechanism, if a duplicate segment was received,

then the receiver should send an ack, containing as its first SACK block, a

reference to the duplicate data. Using SACK information and the D-SACK

extensions [FMMP00] it is possible to infer the amount of re-ordering on a

path and it is possible to make TCP more robust to re-ordering by using this

information to set the fast retransmit threshold depending on the reordering

detected on a path [BA02, ZKFP02].

4.6 Summary

The functions and implementation of the Transmission Control Protocol

(TCP) were presented and some of the key changes to its algorithms in order

to better utilise network resources upon congestion were given.

As the Internet is a shared resource of many end-nodes sending traffic

into a ‘black-box’ network, it is important that users do not send data into

the network such that congestion collapse occurs. Should the transport al-

gorithms not support a mechanism that is aware of the need for appropriate

use of these resources, then congestion collapse will invariably occur. An im-

portant aspect of TCP is that it introduces the idea of ‘congestion control’ in

order to regulate the rate at which data is sent (and retransmitted) into the

Internet. Because of the success of the Slow Start, RTO calculation, Fast

Retransmit and Fast Recovery mechanisms, it is widely believed that TCP

in all of its variants has prevented the occurrence of Internet collapse.

TCP implements the notion of a congestion window, cwnd, which is the

protocols’ estimation of the rate at which the network can handle network
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traffic for a particular connection. Depending on the network state deter-

mined from the inference of packet loss through the heuristics of acks, TCP

adapts its cwnd. By increasing cwnd such that the rate at which new data

is put into the network is increased TCP is able to take advantage of extra

bandwidth available. And upon indications of network congestion, TCP is

able to quickly free up network resources.

However, in order to reach this ‘steady state’, TCP requires a mechanism

to quickly adapt to network conditions from which Additive Increase Multi-

plicative Decrease (AIMD) can take place. This is implemented via a slow

start regime where the sending rate is doubled every RTT (as long as there

is no loss). In conjunction with a ssthresh variable, TCP is able to switch

between the aggressive slow start and congestion avoidance algorithms.

As TCP is a reliable protocol, TCP needs to deal with potential loss of

packets. It also assumes that loss due to packet corruption is rare9 TCP

infers the difference between the types of congestion by the arrival (or ab-

sence) of acks from the receiver. Under heavy congestion, it is likely that no

data will get delivered, and therefore there will be no acks in response. To

detect packet loss because of this, TCP implements a RTO soft-timer that

will initiate the retransmission of the packet that it believes is lost. Under

moderate congestion, it is likely that only some segments will be lost, and

this is represented in the arrival of dupacks from the receiver.

Much of the developments of TCP in the past have been related to the way

in which it responds to packet loss detection. TCP Tahoe reacts the same to

both heavy and moderate congestion by reverting the TCP connection back

9TCP performance suffers in environments where there exists high Bit Error Rates
(BER) (e.g. wireless/radio). However, the kind of BER considered in this dissertation for
the HEP community typically include high quality links optical interconnects which have
low raw BER of 10−12.
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into slow start. However, this will result in the breaking of the ack clock

which is required for stable TCP connections and therefore would take a

few RTTs to get back into congestion avoidance. Therefore, TCP Reno was

devised to be able to differentiate moderate congestion and react by only

halving cwnd. This is called AIMD in reference to increase of cwnd by one

segment per RTT when probing and the halving of cwnd upon loss.

However, as connection bandwidths and end-to-end latencies of the Inter-

net increase, cwnd has to increase to retain enough state to enable the sliding

window mechanism required for reliable delivery of data. As this occurs, the

chance of multiple losses of segments in a single window increases.

Unfortunately, TCP Reno and TCP Tahoe do not handle such situations

well and each will successively call its corresponding loss detection mecha-

nism. The effect of this is the stalling of the TCP connection as it attempts

to retransmit what it thinks is lost in the network.

Two primary proposals were developed to facilitate the recovery of TCP

under multiple packet losses per window. Of the two, Selective Acknowl-

edgments (SACKs) allow the TCP sender to recover from the losses in the

order of just one RTT. However, it requires that both the sender and receiver

specially implement SACKs in order to operate. TCP NewReno, however,

only requires a sender side modification, but it will take an amount of time

related to the number of lost packets in order to recover. Otherwise, it will

require that a RTO timeout occur at the sender.

Overall, it can be seen that many changes have been made over time in

order to improve TCP’s behaviour with respect to congestion. In the next

Chapter, more recent modifications are considered with the aim of improving

performance in high-speed networks.



Chapter 5

TCP For High Performance

The role of TCP in network transport is an important one. Not only does it

provide reliable replication of data across a multitude of different networks,

but it also prevents congestion collapse.

This chapter looks into the current application of the TCP protocol, real

world implementation difficulties and the effect upon TCP performance.

5.1 TCP Hardware Requirements

TCP is often implemented in software. However, the design of the TCP

protocol requires certain constraints on physical hardware in order to operate

efficiently.

This section investigates the effect of physical hardware upon TCP per-

formance.

77
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5.1.1 Memory Requirements

The reliable data transport design of TCP requires that a sliding window’s

worth of data be stored in memory in order to maintain state about the TCP

connection. Without such knowledge, it would be impossible for TCP to be

able to replicate data reliably across a network. The amount of physical

memory allocated to this sliding window is called the socket buffer memory.

Should the assigned value of this socket buffer memory be less than the

required value of the sliding window for optimal TCP transfers, then the

performance of TCP suffers as it is starved of physical memory space to keep

history for the number of packets in flight.

This is true of both the sending and the receiving TCP end-points; the

TCP receiver must also have a large enough assigned socket buffer memory, or

else TCP’s flow control at the sender will restrict the throughput to maintain

a rate sustainable by the TCP receiver (See Section 4.2.2).

The amount of memory that needs to be allocated to the socket buffer

memory, on both the sending and receiving hosts, is related to the Bandwidth

Delay Product (See Section 4.2.2) [CJ89].

The effect on a TCP connection of having limited memory is shown in

Figure 5.1. The graph shows the statistically multiplexed result of running

various socket buffer sizes from the production network between CERN and

RAL using the machines and configuration as shown in Section 3.2.2. The

test consisted of 490 individual bulk transfers using iperf [TQD+03] with

the socket buffer sizes configured as shown. The theoretical prediction of

the estimated throughput is shown. It can be seen clearly that with small

socket buffers, the throughput is proportionally restricted by the amount of

memory available to the TCP socket.
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Figure 5.1: Effect of limiting the socket buffer size on TCP goodput.

The typical socket buffer memory size for Linux and BSD systems is set

to 64KB. Depending on the latency and stable throughput of the TCP path,

one can see that TCP would perform abysmally over the example link and

that the throughput would be capped so that the TCP window fits within

the 64KB.

To address this problem, grid and network researchers continue to man-

ually optimise socket buffer sizes to keep the network pipe full, and thus

achieve increases of transport throughput by many orders of magnitude.

The amount of memory allocated to each TCP connection on Unix sys-

tems can be changed using the standard Unix setsockopt() [Ste98] call.

However, under Linux systems, the kernel also imposes a limit on the max-

imum size of the socket buffer memory that can be allocated for each con-

nection. As such system administrator privileges are often required to alter

this limit such that userspace applications such as FTP can utilise large(r)

socket buffer sizes. This is achieved using the standard sysctl variables

net.core.rmem_max and net.core.wmem_max for the read and write socket

buffers respectively. Similarly, the default allocated socket buffer memory
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for systems that do not implement the setsockopt() call can be given de-

fault socket buffer settings as defined in the net.core.rmem_default and

net.core.wmem_default sysctl variables.

One may be tempted to assign large default and maximum values to the

socket memory to enable high speed TCP transfers over high BDP paths.

However, this could lead to performance degradation on servers as physical

memory may need to be swapped to and from disk if many such connections

are used. Servers can often have hundreds to thousands of simultaneous

network connections.

5.1.2 Network Framing and Maximum Segment Size

As the TCP/IP paradigm requires the transport of data packets across the

Internet, a fundamental question arises upon the size of each packet or seg-

ment. However, there is an overhead cost due to framing and encapsulation

upon of each packet.

As the IP, TCP and underlying Layer 2 headers are often static in size, by

imposing a larger packet size it is possible to increase the raw data throughput

due to the relative decrease in header overheads. Large packets also result in

fewer interrupts at then end systems which can result in higher throughput

(See Section A.2.4).

However, with larger packet sizes, and with constant Bit Error Rate

(BER), the probability of packet corruption increases - although this issue

only becomes serious with wireless networks [BPSK96, Che01, CKPC03].

The Maximum Segment Size (MSS) [Pos83] is the size of the raw data

which TCP is allowed to store in each packet. To prevent problems due to

fragmentation at the IP level, the Maximum Transfer Unit (MTU) [MD90]
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Figure 5.2: Effect of TCP performance with different MTU sizes.

is used to impose an upper limit on MSS.

These values do not prevent senders from placing larger packet sizes into

the network. However, large segments packets will be ‘fragmented’ [Cla82a,

ZRT95] into smaller packets to overcome the size difference. This imposes

the extra overhead of increased packet header sizes and a higher chance

of packets lost to BER. At the receiver, the individual fragments are then

reassembled to form the original packet. To over come the problems of packet

fragmentation, Path MTU Discovery is often conducted to determine the

appropriate segment sizes on the network [MD90, Lah00].

The effect of using large MTU’s is shown in Figure 5.2 based on tests run

on the DataTAG testbed (See Appendix C.3). TCP counts acknowledgments

by segments rather than by bytes. As such, in order to achieve the same

throughput, larger MSS flows only require a smaller value of cwnd as more

bytes are transferred per unit value of cwnd.

On the other hand, the transport of each large MSS segments requires an

increase in latency in order for routers and switches to transport the segment.

This could lead to a larger RTO which may have a negative influence on TCP

timeouts and hence lead to a deterioration in average throughput. However,
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this effect should be negligible on long latency paths where the extra latency

of processing the larger segment is small compared to the end-to-end latency.

Further information can be found in [Ste94, MDK+00].

5.1.3 CPU Requirements

A context switch requires that the CPU state needs to be stored and restored.

The transport of segments to and from a PC requires the context switching

of hardware and software control such that separate compute processes of

the operating system can gain access to the CPU resources.

Gigabit speeds require the transport of 1,000,000,000
8×1500

= 83, 333 packets per

second using standard MTU sized packets. This means that a packet needs

to be processed about every 12µsec.

As TCP uses feedback from acknowledgments, the TCP sender must also

process all incoming acks. This means that a TCP sender must send out data

and receive acks in order to enable reliable transport. Also, TCP requires

the extra processing overhead of the contents of acks in order to determine

what data needs to be retransmitted1.

At higher speeds, more packets need to be handled by the end systems

which results in higher CPU utilisation.

The overheads required in the context switching of interrupts can be

mitigated via interrupt coalescing (See Section A.2.4) and the use of advanced

queue management techniques such as NAPI (See Section 5.2.3). Using larger

sized packets (See Section 5.1.2) may also help reduce the CPU utilisation

as long as fragmentation does not occur.

Figure 5.3 shows the CPU load during individual TCP transfers between

1Also SACKs prove to be a serious overhead in computational terms.
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Figure 5.3: CPU utilisation with different TCP throughputs.

identical Dual Xeon 2.0Ghz PCs over the MB-NG private WAN (See Ap-

pendix C.2). The configuration of both machines is presented in Table B.2.

The receiver is configured to simulate packet loss by dropping every nth

packet to achieve a desired throughput as determined by the response func-

tion which limits the throughput of TCP based upon the loss rate experienced

(See Equation 5.7). As each TCP connection under Linux is handled under a

single processor thread, the benefits of SMP systems are limited, and this is

demonstrated by nearly 100% utilisation of a single processor at high speeds.

It was observed that the TCP receiver requires a higher CPU load than

that of the sender, with an almost linear relation. The sender, on the other

hand, requires more CPU at higher speeds (with a higher gradient at higher

throughputs), most likely to due to influx of ack packets that require extra

processing overheads (such as duplicate acks and SACKs).

Other research [tePM] confirms the approximate calculation that 1Ghz

CPU is required for each Gigabit/sec throughput when the performance is

restricted to end-node hardware rather than Internet performance.



5.2. TCP Tuning & Performance Improvements 84

5.2 TCP Tuning & Performance Improvements

5.2.1 Standardised Changes to TCP

Inadequate Window

The 16-bit TCP Sequence Number and Acknowledgment fields as proposed

in [Pos81b] imposes a maximum TCP window size of 216 = 64KB. Without

the Large Window extensions [JBB92], the maximum throughput of a TCP

connection is limited by the RTT as given by Equation 4.1. On a typical

long distance link with a RTT of 100ms, the maximum throughput of the

TCP connection is therefore limited to 64KB
100ms

= 5.12Mbit/sec.

The TCP extension for large windows [JBB92] is implemented using a

3-byte TCP Option that defines an implicit scale factor to multiply the win-

dow size as reported in each TCP packet. It increases the size of the TCP

advertised window to 32-bits and then uses a scale factor to carry this 32-bit

value in the 16-bit window field of the TCP header. It is sent only in a

SYN segment at the TCP handshake and hence the scaling factor is fixed

in each direction when a new connection is opened. The maximum window

guaranteed is 230-bytes which imposes a limit of 1GB.

The use of scaling the window imposes problems of sequence numbers

wrapping around and therefore the possibility of acking incorrect segments

in the window. This is dealt with internally to ensure that the sequence

number is within 231-bytes of the left edge of the window. Old acks are also

dealt with using PAWS and through the IP TTL field [Pos81a].
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TCP Timestamps and PAWS

The Timestamp Option [JBB92] provides for timing of every packet in-

flight, rather than only one per RTT as defined in the original specifications

[Pos81b]. This improves the RTT estimation and enables keeping a more

dynamic and accurate value for RTO and hence slightly quicker response to

TCP timeouts.

TCP Timestamps occupy 10-bytes and require the sender to place a cur-

rent timestamp into each packet sent out (including retransmissions) which

is then echoed by the TCP receiver in the ack.

The implementation of the Timestamps option is especially useful for

environments with very variable latencies such as wireless networks [LK02].

However, especially in wireless environments, the implementation has to be

balanced against the extra overhead of header information.

The implementation of a timestamp also enables extra protection against

potential wrap around due to the reuse of sequence numbers for long dura-

tion transfers. [JBB92] defines the Protection Against Wraparound Sequence

Numbers (PAWS) algorithm that enables the checking to ensure that arriving

packets are valid in time for the connection.

The inclusion of the Timestamp option also enables low-level improve-

ments in processing TCP data packets at the receiver. This is referred to

as ‘Header Prediction’ [Jac90] and enables the receiver to quickly process a

TCP segment provided that the timestamp is larger than the previous one

recorded and that the sequence number is the next in sequence.
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Initial Window Size

For short TCP connections that only transfer a small amount of data, the

rate of transfer is limited primarily by the amount of time spent in slow

start. TCP is currently defined to start a connection with an initial cwnd of

one. Therefore, by increasing this value to three segments rather than one,

the amount of data transferred at the start of the connection is improved

by a factor of three and the connection can therefore terminate earlier for

the same amount of data sent. However, due to the larger initial burst, a

connection across links with very small router buffers may experience loss

sooner and therefore resort back into congestion avoidance.

[AFP98] defines an experimental extension that allows an increase of the

initial window to three or four segments. However, the number of segments

sent after an RTO is still fixed at one segment.

However, for large file transfers that take a long time, the time saved by

having a larger initial window is irrelevant as TCP will most likely spend

most of its time in congestion avoidance.

5.2.2 Host Queues

The txqueuelen is a Linux sysctl variable that determines the maximum

number of packets that can be buffered on the egress queue of the kernel

before it enters the NIC’s device driver [ABL+03].

Higher queues sizes means that more packets can be buffered and hence

not lost. This is especially important for TCP in the Linux kernel as the

overflow of this queue will cause immediate congestion control to be instanti-

ated, even though the packet is lost locally rather than on the network. The

Linux Web100 patch [MHR03] determines such action as SendStalls and
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Figure 5.4: Effect of varying RX Interrupt values on CPU load.

can be deactivated using Web100’s net.ipv4.WAD_IFQ sysctl.

However, imposing a large txqueuelen may add to extra delays in the

transport of TCP segments due to extra queuing latencies that may be ex-

perienced. This could result in large variations of RTT and hence result in

poor ack-clocking and spurious timeouts [LK02, GL03].

The default value of 100 for txqueuelen in the Linux 2.4 kernels has been

reported to be insufficient to maintain high throughput transport [ABL+03].

Newer Linux 2.6 kernels implement a default of 1,000.

Similarly, at the receiving end of transport, packets will be queued, once

past the device driver, in a queue called max_backlog.

5.2.3 Driver Modifications

Interrupt Coalescing

By reducing the number of context switches required to process a packet,

CPU overheads can be reduced at the expense of increased latency upon the

incoming/outgoing packets.

Intel e1000 network interface card drivers enable interrupt coalescing in
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granularity of 1.024µsec time slices. This value was varied to investigate

the effect upon CPU utilisation which was measured using the Unix time

command. Figure 5.4 shows the effects of varying the interrupt values on the

Intel e1000 (version 5.2.20) driver on back-to-back tests at 1Gb/sec using

TCP and iperf on the MB-NG testbed network (See Appendix C.2). In all

tests, it can be seen that the most intensive component of CPU utilisation

is that of the kernel process, which involves both the memory handling and

packet interrupts.

Figure 5.4(a) shows the effect of changing the coalescing values on the

sender only, with the receiver set to interrupt on every packet (RXIntValue=0).

It clearly shows the reduction of CPU load on the sending machine as it ap-

proaches 23µsec - which is equivalent to approximately 2 packets (in this

case acks) that are received back-to-back due to the use of ABC (See Sec-

tion 5.2.4) which causes two data packets to be sent back-to-back. As the

receiver is constantly interrupting on every (data) packet, its CPU utilisation

remains constant.

Figure 5.4(b) shows the effects of adjusting the receiver’s RXIntValue. It

can be seen that a small change of this value to approximately the time taken

to process one packet can reduce the CPU utilisation of the kernel by about

half. As it is now the sender which is interrupting on each packet, it can be

seen that there is also the benefit of lower CPU utilisation on the sender at

the same settings.

Figure 5.5 shows similar tests but varying the transmitting TXIntValue

coalesce value rather than the receiving.

It was observed that altering the TXIntValue on the receiver has no effect

on the CPU utilisation of either system. This is due to the fact that even

though ack clocking is important to TCP, it does not affect the number
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Figure 5.5: Effect of varying TX Interrupt values on CPU load.

of data packets that are injected into the network if the acks are slightly

delayed. The effect of varying the transmit interrupt on the sender is that

there is an initially high CPU requirement as the the driver attempts to

interrupt for every packet (<11µsec) and beyond that the CPU utilisation

remains constant.

New API (NAPI)

NAPI is a system implemented into the NIC driver that facilitates the reduc-

tion in CPU loads due to context switching at high speeds. Implemented on

the receiving queue, the API works by switching from interrupts to polling

when the RX ring is reasonably occupied. This has the benefit of decreasing

processing loads, at the expense of increased latency (upto the inter-poll time

between polls).
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5.2.4 Delayed Acknowledgments & Appropriate Byte

Sizing

At high throughput rates, TCP receivers would send a lot of acknowledge-

ment packets on the reverse path of the bulk transfer to facilitate ack-clocking

and to slide the TCP window. Under bulk one-way transport, acks are of-

ten composed of an empty TCP packet (with only header information), and

are therefore normally quite small (56B). As demonstrated in Section A.2.3,

small packets can pose a serious processing burden on both the end-host and

the intermediate switches and routers.

As acks cover all segments prior to the sequence number within the ack,

the advancement of the TCP window is not diminished by reducing the

number of acks sent by the TCP receiver [Cla82b].

Under delayed acknowledgments [Cla82b, APS99], a TCP receiver does

not acknowledge a received segment immediately, but waits for a certain time

(typically 500msec). If a data segment is sent from the receiver during this

time (i.e. as with two way communication), the acknowledgment is piggy

backed into it. Alternatively, if another data segment arrives from the TCP

sender, then the receiver will send a single ack that confirms both segments

at once.

It is suggested by the IETF that delayed acks should be incorporated

into TCP implementations [Cla82b]. However, the consequence may be that

‘stretched’ acks result that will acknowledge more than two full-sized seg-

ments. This would lead to potentially large line-rate bursts of traffic [Pax97]

(which can also occur with large amounts of ack loss).

Typically each arriving ack at the sender advances the sliding window

and increases the congestion window by one segment; thus, a connection with
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Figure 5.6: Effect of delayed acks upon cwnd dynamics.

delayed acks is less aggressive, and increases cwnd at half the rate compared

to a TCP connection without delayed acknowledgments. This results in

reduced throughput over short timescales after each congestion event for any

TCP connection where the receiver is using delayed acknowledgments. This

is shown in Figure 5.6 for machines on a private dummynet network (See

Appendix A.5).

This is especially noticeable in the slow start phase, because in slow start

each arriving ack increases the congestion window by one segment, thus

effectively doubling the rate at which packets are sent.

The Linux kernel implements delayed acking by default [Bra89], but im-

poses a less conservative delayed acking time of up-to 200ms. Linux intro-

duces a feature called quick acks [SK02] which helps to reduce the problems

of reduced responsiveness when using delayed acking during slow start. The

idea is to disable delayed acks at the receiver for the first n packets of the

connection, where n is a configurable parameter, acknowledging every packet

at the beginning of the connection and thus achieving the equilibrium state

(congestion avoidance) in shorter time.

On the other hand, such a policy would increase the probability of net-
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work congestion on the reverse path as more acks are put into the network.

However, as quick acks are designed primarily to reduce the time required for

slow start to complete, the number of quick acks is calculated as n = rwnd
2×MSS

where rwnd is the reciever advertised window and MSS is the maximum seg-

ment size of the connection. This value, n, corresponds to the number of

packets that the TCP connection should take to exit slow start.

Appropriate Byte Counting (ABC) is a technique to eliminate the slow

growth of cwnd with delayed ack receivers and is outlined in [All03]. It gives

details of how TCP senders should behave when updating their congestion

windows through byte counting rather than the more common packet count-

ing. This has the benefit of improving TCP responsiveness without increasing

the amount of ack traffic (relative to the throughput) upon the reverse path.

Figure 5.6 shows the effect of running an ABC enabled sender when trans-

ferring data to a normal delayed ack receiver. It can be seen that the dy-

namics of using ABC is similar to that of a TCP sender sending data to a

receiver with delayed acks disabled.

It can also be observed that the queueing is apparent as the goodput

remains constant as the cwnd continues increasing until finally the buffer

overflows and fast retransmit and fast recovery takes place.

A potential consequence of implementing ABC is an increase in the bursti-

ness of the TCP traffic as two back-to-back data packets are sent for every

delayed ack [All99]. In order to reduce the effects of multiple packet bursts,

especially during slow start, a limit L, is introduced that limits the number

of full sized segments that the cwnd will advance by for each delayed or

stretched ack [All03]. The value of L= 2 means that a maximum of 2 new

segments are sent for every one delayed ack received.
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5.2.5 Dynamic Right Sizing & Receiver Window

When the TCP sender’s window is not constrained by the system socket

buffer size nor by the congestion window, it will be throttled only by the re-

ceiver’s advertised window (as per TCP flow control). The size of the receiver

window is a standard control parameter of TCP [Pos81b]. By advertising a

smaller window the receiver can control the number of segments that the

sender is allowed to transmit (similar to imposing a small socket buffer at

the sender).

[FF01] describe modifications to the Linux kernel that allow the kernel to

tune the buffer size advertised by the TCP receiver. Called Dynamic Right

Sizing (DRS), the receiver’s TCP kernel estimates the bandwidth from the

amount of data received in each round-trip time and uses that estimation to

derive the receiver’s window to advertise back to the sender. Assuming that

the sender is limited only by the network condition (i.e. by its cwnd value),

then the amount of data transferred in approximately one RTT is equal to

one windows worth of data. Therefore, by the TCP receiver measuring the

time taken to receive one windows worth of data, it can determine the RTT of

the connection. This value of RTT is used as an upper bound on the latency

of the link and therefore the appropriate receive window size to advertise in

following TCP acks.

Therefore, the effect of DRS on TCP senders is that their cwnd value

is never allowed to grow beyond what is actually achievable through that

connection and is clamped to the value as calculated by the TCP receiver. As

such, the TCP flow never actually imposes the additive increase of congestion

control and hence does not impose the necessary loss that is typical of the

oscillatory behaviour of TCP.
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Figure 5.7: Effect on cwnd with Dynamic Right Sizing.

This behaviour is especially important for long-distance, high through-

put environments where the Multiplicative Decrease of TCP upon conges-

tion/loss causes a halving in throughput. Another benefit of using DRS is

that with appropriate socket buffer sizing (see Section 5.1.1) it also keeps the

amount of memory utilised to the minimum required for each flow.

Figure 5.7 shows the behaviour of the sender cwnd with and without

DRS along the MB-NG testbed (See Appendix C.2) with periodic loss on the

forward path. MB-NG has a RTT of 6.2ms with 1Gb/sec connectivity. As

such, the Bandwidth Delay Product (BDP - Equation 4.1) is approximately

535 packets.

Figure 5.7(a) shows the effect of queueing resulting in the curved cwnd

graph as the router queues begin to fill2. The initial plateau of cwnd in

Figure 5.7(a) is caused by socket buffer limitations at the sender which enable

flow control by capping the maximum value of cwnd. Figure 5.7(b) shows the

same network and dropping probability, but this time with DRS enabled at

the receiver. It can be clearly seen that the cwnd value is capped to that of

2Note that in this case, the actual loss is imposed by the receiver selectively dropping
packets rather than the network.
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the BDP of the network at just under 600 packets, which is the maximal rate

at which the receiver is able to receive packets as the sender is transferring

data at line rate.

It is clearly visible that the oscillatory behaviour of TCP is minimised

such that the sustained throughput is higher. However, it should also be

noted that due to the drop in cwnd upon loss, the utilisation of a DRS’d flow

is not maximal as with the case of normal TCP. The advantage of imposing

such an algorithm is two-fold: with appropriate measures to minimise the

socket-buffer size to that actually used by the flow (i.e. approximately the

value of cwnd) memory is not wasted; and induced loss through sending too

many packets into the network is also minimised, and therefore should the

buffer provision be small along the path, a DRS’d flow should be able to

obtain higher utilisation than a normal flow.

5.2.6 Socket Buffer Auto-Tuning & Caching

[SMM98] describes modifications to a NetBSD kernel that allow the kernel

to automatically resize the sender’s buffers. It enables a host that serves

many clients (such as a web server) to fairly share the available kernel buffer

memory and to provide better throughput than manually configured TCP

socket buffers. This is called socket buffer autotuning and is important as the

assignment of large default socket buffer sizes for all TCP connections would

result in the reduction of physical memory.

For applications that do not explicitly set the TCP send buffer size via

the setsockopt() options, socket buffer autotuning allows the sender socket

buffer to grow with cwnd and utilise the available bandwidth of the link

(up to the receiver’s advertised window). As the number of flows increases,
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consuming physical memory, the kernel also facilitates the reduction of the

sender’s socket buffer window sizes to reduce the burden of memory swapping.

The modification of socket buffer auto-tuning algorithm were ported to

the Linux 2.4 kernel in 2001 and are controlled by new kernel variables

net.ipv4.tcp_rmem and net.ipv4.tcp_wmem defining the minimum, default

and maximum socket buffer memory allocated to each TCP connection for

the read and write buffers respectively3.

Independent of auto-tuning, the Linux 2.4 and 2.6 kernels implement a

system where connection performance histories of TCP transfers are cached

for up-to 10 minutes. This ‘retentive’ TCP stores details of the measured

/ experienced smoothed RTT and RTT variance, ssthresh and the path

reordering information for previously connected pairs of hosts. These values

are stored for up-to 10 minutes and will prevent a consecutive TCP flow for

that pair to reach congestion avoidance quickly without the excessive packet

losses of a typical slow start. It will also aid in preventing early spurious

timeouts. The cache can be prematurely cleared through the use of the

net.ipv4.route.flush sysctl.

5.3 Network Aid in Congestion Detection

Due to the transient nature of network utilisation, TCP gently probes the

network with increasing number of segments to determine whether it can

achieve more throughput. Therefore, in a sense, TCP has to cause congestion

in order to determine the capabilities of the network path.

Most current routers in TCP/IP networks do not detect incipient conges-

3Note, however, that the maximal tunable socket buffer memory is still limited
by the maximum allocated socket buffer size in the kernel under net.ipv4.tcp mem,
net.core.rmem max and net.core.wmem max.
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tion. When a queue overflows packets are dropped, and reliable transport

protocols, such as TCP, will attempt to retransmit missing data.

The design of router queue provisioning is often not to increase the util-

isation of a single flow going through their network, but that of the aggre-

gate. Given this and the limited resources of physical memory, it is often

not possible to provision large buffers required for high throughput, high

latency transport as required by Equation 4.1 and Equation 5.4.1. Also,

with the increased popularity of VoIP and similarly delay sensitive flows

[KBS+98, JS00], it may not be feasible to utilise a large buffer, which is nec-

essary for efficient high throughput transport due to the increased end-to-end

latencies of large router queues. More important, however, is that a small

queue is insufficient to handle the bursts of packets that are commonplace

on the Internet [LTWW94].

This section looks at providing feedback and queueing disciplines from

routers that may improve the performance of TCP.

5.3.1 Explicit Congestion Notification

In TCP, a packet loss is an implicit notification of congestion. Through the

signaling of an Explicit Congestion Notification (ECN) [RFB01] packet, the

TCP sender should reduce the sending rate to mitigate the possibility of

congestion.

Designed to be complemented with Active Queue Management techniques

(see Section 5.3.2) on routers, ECN is implemented as the last two bits of

the IPv4 TOS octet in the TCP header and implemented such that TCP can

respond to congestion without actually suffering from packet losses.

When experiencing the incipient stages of congestion, an ECN enabled
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router should mark the TCP packets with a Congestion Experienced (CE)

bit pattern and then process it normally. Upon receipt of a packet containing

the ECN codepoints, the TCP receiver should echo back the same bit pattern

in its acks. Should the received packet contain a CE-bit marked, the TCP

receiver should also set an internal flag to indicate that all subsequent acks

should also have the CE-bit set to 1.

When the TCP sender receives a CE marked ack, it should immediately

reduce the transmission rate according to congestion control principles. How-

ever, the signaling of many CE packets must be handled such that TCP re-

acts at most once per window (or approximately once every RTT) to prevent

successive reductions in cwnd [Flo94a].

The TCP sender, after reducing its transmission rate as a consequence

of a CE packet, marks the Congestion Window Reduced (CWR) flag in all

subsequent data packets on the first bit of the ECN codepoint. The TCP

receiver will only stop sending CE marked acks once it has received a packet

with the flag CWR.

The use of this field requires that all routers, switches and firewalls must

not modify packets with ECN-bits unless the node is under congestion. Also,

nodes that do not implement ECN should still pass ECN bits unaltered and

should not consider packets with ECN bits set as malformed and drop the

packets.

ECN has the obvious advantages in avoiding unnecessary packet drops

due to lack of memory. It also avoids the excessive delays necessary for

duplicate acknowledgments and retransmission timeouts. Indeed, experi-

mental validations of ECN have shown that TCP achieves moderately better

throughput [H.K98, SA00]. It also enables the efficient usage of bandwidth on

the forward path of the data transfer and hence improves the responsiveness
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of the TCP flow when a high fraction of losses is less likely.

5.3.2 Active Queue Management & Random Early De-

tection

The prevalence of drop-tail routers in the Internet can result in ‘lock-up’

[FJ92] and the unfair sharing of network resources. The former occurs when

a high throughput flow starves other competing (possibly lower throughput)

flows of any queue occupancy due to the fact that a higher throughput flow

is more likely to have a larger number of packets in an ingress queue. When

‘lock-up’ does not occur, higher throughput flows still occupy a majority of

the queue, hence being unfair to other flows sharing the bottleneck.

The Random Early Detection (RED) [FJ93] algorithm solves the prob-

lems of over-buffering and fair sharing of buffer resources. [BCC98] recom-

mends that RED is used as the default queue management algorithm on

the Internet as there apparently no disadvantages and numerous advantages

[FJ93].

Active queue management attempts to prevent queue overflow by selec-

tively dropping packets in a queue. It also has the advantage that TCP flows

do not have to induce a buffer to overflow as an indication of the congestion.

RED is termed an Active Queue Management solution as a RED enabled

router detects the incipient stages of congestion by observing the exponen-

tially weighted moving average of the queue size.

Defined with minth and maxth, the two values define the thresholds from

which no packets should be dropped and where all packets should be dropped

respectively. Therefore, the average queue occupancy, q, should fall within

minth and maxth. This enables the unavoidable bursts of packets in the Inter-
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Figure 5.8: Random Early Detection Parameters.

net [BCC98] to be accommodated without any bias. The above parameters

are combined with maxp which sets the maximum probability that a packet is

to be dropped at the router. It is defined as a function of the average queue

size and is set to a linear dropping probability from 0 to maxp,whereby ar-

riving packets are marked depending on q. Should q be less than minth

upon an arriving packet, the packet will be processed normally. However,

if q is greater than maxth, then the packet will be dropped. Otherwise, the

incoming packet will be dropped according to the probability related to the

average queue occupancy. This is shown in Figure 5.8.

Therefore, the router selectively drops packets from the queue based on

the various parameters and occupancy of the queue. RED is able to achieve

fairness between flows as higher throughput connections will have a greater

occupancy in the queue, and hence a greater chance of packet drops.

The use of RED can also reduce the possibility of TCP synchronisation

whereby all flows experience drops at the same time and then simultaneously

increases their rates, only to cyclically have all flows experience packet loss.

The occurrence of synchronisation results in poor throughput and low link

utilisation [ASA00].
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RED is wholly implemented on routers and therefore requires no modifi-

cation on TCP hosts. The exception is when RED is used in conjunction with

ECN (see Section 5.3.1) whereby a marked packet will be set to include the

CE-bit rather than be physically dropped by the router in order to mitigate

congestion.

5.4 Analysis of AIMD Congestion Control

For bulk transport of data, the dominant factor in the rate at which data is

transported is the congestion avoidance algorithms of TCP. Unfortunately,

the congestion control mechanisms of TCP constrain the congestion win-

dows that can be achieved by TCP in realistic environments, and hence the

achievable throughput.

The performance of a very long bulk transfer TCP connection is depen-

dent on the packet loss rate, bandwidth and round trip time, and of a con-

nection. These are considered in turn:

Packet Loss Rates Standard TCP implementations can only reach the

large congestion windows necessary to fill a an end-to-end path with a

high bandwidth delay product when there is an exceedingly low packet

loss rate. As standard TCP implementations cannot distinguish be-

tween real network loss (e.g. corruption) and losses due to network

congestion4, the underlying physical network has to be able to maintain

very low loss rates in order for TCP not to invoke congestion avoidance

when a packet is lost through corruption rather than congestion.

4Without network feedback such as ECN which would require deployment throughout
bottleneck routers.
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For example, in real life systems, a packet loss rate of about 10−7 is

comparable to the random losses that occur in long haul fibres, routers,

switches and end-systems. This physical limit imposes an absolute limit

on the throughput that a TCP connection can achieve - even without

competing traffic on the end-to-end path (see Section 5.4.2).

Bandwidth The higher throughput that the TCP connection has to sustain,

the larger its cwnd for the connection. With the implementation of the

current Additive Increase of 1 segment per round-trip time, TCP probes

for extra network capacity slowly, and therefore is unable to effectively

use available network resources that are present on high bandwidth

networks that are not fully utilised.

Also, the detection of packet loss through congestion or network cor-

ruption in TCP results in a halving of its cwnd. When high speeds are

reached this mechanism of Multiplicative Decrease by half leads to a

significant decrease in the throughput of the TCP connection.

As TCP congestion control is cyclic (i.e. it will continue to slowly

increase its sending rate until congestion/loss is detected, where upon

it will halve the rate) the overall utilisation of the link by a single TCP

flow could be low compared to the capacity of the bottleneck link on

the path.

Round-Trip Time TCP utilises acknowledgments to update its window

based algorithms. This provides a feedback loop that drives the linear

increase of cwnd to increase its throughput. As the round-trip latency

increases, the time required for this feedback also increases. This results

in a slower rate of increase (in absolute time) of cwnd and therefore a
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slower rate of throughput increase.

This is especially evident after congestion as TCP halves cwnd. There-

fore, when a TCP connection runs over a low loss, un-congested link it

is unable to achieve high throughput in high-speed, wide area networks

due to the long recovery times and large value of optimal cwnd required

after congestion detection when cwnd is halved.

Therefore, as the geographical distance of the TCP connection in-

creases, the time required to reach congestion (assuming static net-

works conditions) is proportionally increased and its average utilisation

is decreased.

To give context to these problems, a standard TCP connection with 1500B

packets and a 100ms round-trip time (typical trans-Atlantic connection),

would require an average congestion window of 83,333 segments and a packet

drop rate of at most one congestion event every 5 billion packets to achieve a

steady-state throughput of 10Gbit/sec. This requires at most one congestion

event every 1 hour and 40 minutes. This loss rate (which is assumed to be

related directly to the Bit Error Rate) is well below what is possible today

with the present optical fibre and router technology.

5.4.1 Throughput Evolution

A model of the algorithmic dynamics of TCP can be gathered through simple

geometry when considering the steady state behaviour of TCP as a cyclic

iteration over k congestion epochs.

Figure 5.9 shows the evolution of cwnd over time. Assuming that the

time for recovery and the time required to signal the loss is negligible, the
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Figure 5.9: Evolution of TCP congestion window cwnd and throughput w.r.t.
time.

cwnd dynamic of the ith flow at the end of the kth congestion epoch, wi(k),

can be represented as:

wi(k + 1) = βwi(k) + αT (k) (5.1)

where α and β are the increase and decrease parameters of Additive

Increase Multiplicative Decrease (AIMD) such that α = 1 and β = 0.5 (See

Section 4.3).

Let t0(k) be the start time of the kth congestion epoch. At time t1(k) the

queue begins to fill, and at a subsequent time t2(k) congestion occurs and a

packet is lost. For the period t1(k)− t0(k), the number of packets placed into

the network is related to the increase parameter α× T where T is the RTT

of the flow. After t1(k), putting extra packets into the network is simply

buffered in the bottleneck queue of size q, whilst the throughput of the flow

remains at the line rate B. At time t2(k) the queue overflows and congestion

is assumed to be signaled immediately, causing the TCP flow to back-off its

throughput such that the new throughput is β × P where P is the “pipe”

P = BT + q, i.e. the Bandwidth Delay Product (See Section 4.2.2) worth of
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packets traversing along the network, plus the packets buffered at the queue.

Given this, the time taken to just fill the pipe after the kth epoch can

be determined by considering the rate at which packets are put onto the

network:

(βP ) +
α

T
(t1(k)− t0(k)) = BT

t1(k)− t0(k) =
T

α
(BT (1− β)− βq)

(5.2)

At period t1(k) to t2(k), all subsequent packets are buffered at the queue

such that:

α

T
(t2(k)− t1(k)) = q

t2(k)− t1(k) =
Tq

α

(5.3)

And the time between congestion epochs is defined as,

α

T
(t2(k)− t0(k)) = P − βP

t2(k)− t0(k) =
T

α
(P − βP )

(5.4)

Defining the provision parameter γ = qmax/BT and that 1/1+γ ≤ β, i.e.

the queue empties on backoff, the throughput, y, can be calculated as the

area under the graph between t0(k) and t2(k) where the area of the triangle

before the queue begins to fill, (t1(k) − t0(k) × βB, is subtracted from the

area for the entire epoch, (t2(k)− t0(k))×B.

y =
B2T 2(β − 1)(1 + γ)

α
− B2T 2(βγ + β − 1)

2α
(5.5)

Normalising by the total number of packets sent out (i.e. the total area
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of the graph) provides the utilisation of the flow:

η =
β2(1 + γ)2 − 2γ − 1

2(β − 1)(1 + γ)
(5.6)

As such, Equation 5.6 states that the utilisation of the link of capacity B

is dependent on the queue size provision γ and the back-off factor β of the

TCP flow only. This assumes that the only form of congestion signal is that

from the overflow of the buffer from this flow only (i.e. zero packet loss) and

that the number of congestion epochs experienced by the flow is sufficiently

large.

Therefore, substituting the default decrease parameter of 1
2

and a queue

provision of zero gives 75% utilisation of the bandwidth B. Similarly, with

a queue provision γ of 1 (i.e. q = BT , the Bandwidth Delay Product), the

flow will experience 100% utilisation with β = 1/2.

5.4.2 Response Function

Mathematical models of the evolution of a TCP flow have been developed in

order to provide researchers with tools to accurately design new models and

to modify new congestion control models.

One of the most popular is the response curve [PFTK00] that defines the

bulk transfer throughput of TCP Reno for different loss conditions. Unlike

previous models, Equation 5.7 predicts the throughput of TCP under both

timeouts and congestion avoidance and is given by,

B =
s

T
√

2p
3

+ T0

(
3
√

3p
8

)
p(1 + 32p2)

(5.7)
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where the throughput B is related to the RTT, T , the timeout, T0, un-

der loss rates, p using packets of size s. It therefore demonstrates that the

throughput is increased for low latency flows experiencing low loss conditions.

Considering the case of large file transport where the TCP flow will spend

most of the time in congestion avoidance, Equation 5.7 can be approximated

to,

cwnd =

√
3

2p
packets (5.8)

where the Bandwith Delay Product, cwnd = B × T (Equation 4.1) is

used to relate the throughput and the cwnd by the RTT. This is equivalent

to the models presented in [Flo91, LM97, MSMO97].

The importance of this model is that the throughput is inversely related

to the loss rate experienced by the TCP flow. Therefore, a fundamental

limit on throughput of a TCP flow exists even without congestion due to

the physical existence of bit error rates on the Internet. Given a typical link

loss rate of 10−7, and a typical long distance latency of 100ms, TCP is only

capable of achieving approximately 450Mbit/sec.

5.4.3 TCP Generalisation

[JDXW03] considers the evolution of cwnd as a stability problem whereby

cwnd oscillates around an equilibrium position. They specify that the in-

crease of 1 packet per RTT results and the decrease of half results on a flow

level description of the cwnd (w) as:

dwi(t)

dt
=

1

Ti(t)
− wi(t)

Ti(t)
pi(t)

1

2

4

3
wi(t) (5.9)

Where the first term comes from the linear increase of w and the second
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term is derived from the congestion measure5 pi(t) and a drop of half from

the peak cwnd value of 4
3
wi(t).

It can be shown that Equation 5.9 readily reduces to Equation 5.8 when

ẇi(t) = 0.

By defining that:

κi(Ti) =
1

Ti

and ui(wi(t), Ti(t)) =
3

2w2
i

(5.10)

[JDXW03] stipulate that all the design of congestion algorithms can be

generalised by the following:

ẇ = κi(t)×
(

1− pi(t)

ui(t)

)
(5.11)

where κ(t) := κ(wi(t), Ti(t)) and u(t) := u(wi(t), Ti(t)) and is defined as

the gain function and the marginal utility function respectively.

By choosing an appropriate value of u(t) which is equivalent to the loss

probability, the time variance of wi can be minimised and therefore enable a

more ‘stable’ flow. Meanwhile, the choice of κ(t) facilitates a quick adaptation

to the equilibrium value of w.

Therefore, the choice of the variables κ(t) and u(t) play an important

role in the stability and responsiveness, and the equilibrium properties re-

spectively.

5Which for this discussion is equivalent to the the indication of packet loss.
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5.5 Summary

Even though TCP has been a fundamental part of the success of the Internet,

enabling reliable data transfers and preventing congestion collapse, it was

never designed to be scalable in terms of throughput. As such TCP has

problems with long distance, fast networks which will form the backbone of

future grids in order for computers to interoperate and share data files.

There has been a recent interest in utilising the new backbone speeds

available in today’s Academic and Research networks, especially in terms of

large scale data replication that is required for projects such as the LHC

[CFK+01, SRGC00]. As such, network researchers have pushed the bound-

aries on tuning host hardware and software to facilitate high utilisation of

network resources. Many of the techniques used have been studied in detail

in this Chapter.

However, [ST] states that 90% of bulk transports (i.e. those over 10MB)

typically achieve transfer speeds of less than 5Mbit/sec. Furthermore, Equa-

tion 5.6 shows that the maximum utilisation of a single TCP flow has a

theoretical limit of 75% when there is zero buffering. Full utilisation is only

achieved when the queue size is equal to the BDP of the TCP flow.

Loss is also a fundamental limit on the throughput achievable with Stan-

dard TCP. It was shown that the maximum throughput of a typical trans-

Atlantic transfer without competing flows sharing the network path is only

450Mb/sec - because of physical limits upon bit error rates.

Therefore, it has been demonstrated both experimentally in Section 3.2.2

and theoretically that TCP is simply incapable of high throughput in long

distance, high capacity paths - regardless of the amount of tuning performed

outside of the AIMD algorithms.



Chapter 6

New-TCP Transport

Algorithms

TCP is the most widely used transport protocol with ‘network friendly’

congestion control mechanisms. It has been extensively studied, extended,

and refined in the last two decades and has proven to be reliable under a

variety of network conditions and applications requirements. Increasingly,

however, the standard TCP implementations are becoming inadequate to

support high-performance distributed applications emerging in the science

community. These science applications are expected to generate petabits

per second of traffic to be distributed to scientists in different geographical

location [CFK+01, SRGC00].

The previous chapters have shown that the practical throughput of TCP’s

default AIMD parameters over paths with a large Bandwidth Delay Product

(BDP) are far below the supportable link speeds of the underlying network.

Therefore, further research and development efforts are required to enhance

110
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TCP so that it will deliver and sustain many gigabits per second for scientific

applications.

The requirement for adapting the TCP algorithms, rather than inventing

and deploying a completely new transport protocol are two fold:

• TCP has been proven to be remarkably robust over the evolution of

the internet and has prevented network collapse. It already offers many

facilities that are deemed essential for most data transport applications

such as reliable data delivery, flow control and congestion control.

• It is very likely that TCP will play a continued role as the transport

protocol of choice due to the requirements of web, file and mail delivery

on the Internet. The development of new transport protocols will also

require the phased introduction of new applications to support such

protocols.

This chapter gives an overview of different proposed changes to the TCP

AIMD algorithms to enable high speed transport.

6.1 Survey of New-TCP Algorithms

Several proposals have been made that offer solutions to obtaining high

throughput transport in high-speed and high delay environments. The survey

presented here gives an overview of the many different approaches to enable

higher speed communications through the adaptation of the TCP congestion

control algorithms.

Amongst those, only algorithms that require sender side modifications to

the TCP stack are presented. This is important as it allows compatibility

with existing TCP implementations and would ease deployment.
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6.1.1 HighSpeed TCP

The HighSpeed TCP for Large Congestion Windows was introduced in [Flo03]

as a modification of TCP’s congestion control mechanism to improve perfor-

mance of TCP connections with large congestion windows.

The strategy under HSTCP is to slowly improve the performance of the

TCP flow as a function of the current cwnd such that when the cwnd is

larger, the increase parameter is increased and reduction of cwnd upon loss

detection is decreased. Therefore, as the HSTCP flow deviates from the

expected achievable cwnd of standard TCP, both the reduction in the change

of throughput upon congestion is decreased, and the rate of increase at which

HSTCP probes for extra bandwidth increases.

HSTCP is based on the adaptation of the response function in Equa-

tion 5.7 such that the high throughputs are achievable under realistic loss

conditions. The HSTCP response function is defined using three parameters:

Wswitch, WHigh and P . They are used to establish a point of transition from

standard TCP behaviour to HighSpeed TCP behaviour.

As such, HighSpeed TCP’s response function is the same as that of the

Standard TCP when the current congestion window, cwnd, is less than or

equal to WSwitch. HighSpeed TCP uses an alternative response function when

the current congestion window is greater than WSwitch. WHigh and P are used

to specify the upper end of this response function, where the packet drop rate

P is that needed to achieve an average congestion window of WHigh under

the HighSpeed TCP regime. Also, 0 < Hdecr ≤ 0.5 is specified such that

when cwnd = WHigh and a congestion event occurs, cwnd will be decreased

by a factor of Hdecr such that cwnd← cwnd−Hdecr × cwnd.

The HighSpeed TCP response function is therefore represented by new
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additive increase and multiplicative decrease parameters which change ac-

cording to the current value of cwnd. These translate to new additive increase

and multiplicative decrease parameters α and β as such:

ACK: cwnd ← cwnd +
α(cwnd)

cwnd
(6.1)

LOSS: cwnd ← β(cwnd)

cwnd
(6.2)

where α(cwnd) is a function of cwnd and α = 1 when cwnd ≤ WSwitch

and α > 1 when cwnd > WSwitch. β(cwnd) is also a function of cwnd and

β = 0.5 1 when cwnd < WSwitch and α > 1 when cwnd ≥ WSwitch with

0.5 ≤ β < 1:

α(w) =
W 2

High × P × 2× (1− β(w))

2− (1− β(w))
(6.3)

β(w) = 0.5− (Hdecr − 0.5)× (log(w)− log(WSwitch))

log(WHigh)− log(WSwitch)
(6.4)

The recommended settings of WSwitch, WHigh, P and Hdecr are 38, 83,000,

10−7 and 0.1 respectively. The use of these settings for HighSpeed TCP will

be henceforth be referred to as HSTCP.

Figure 6.1 shows a typical cwnd trace of a single flow of HSTCP. Due

to the compute cost of calculating a continuous function for the values of

α(cwnd) and β(cwnd), it is suggested that implementations should use a

look-up table to determine the appropriate values [Flo03]. The dynamic

change of the AIMD parameters is shown in Figure 6.1(b) - it clearly shows

the adaptation of the increase and decrease parameters to make the HSTCP

algorithm more aggressive as the value of cwnd increases.

1Traditionally, represented as cwnd ← cwnd − b(cwnd)
cwnd . However, for consistent com-

parision against other New-TCP algorithms, define β(cwnd) = 1− b(cwnd).
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Figure 6.1: cwnd dynamic of HSTCP (Single flow on Dummynet, link capacity
200Mbit/sec, RTT 150ms, queue size 500 packets.)

6.1.2 ScalableTCP

ScalableTCP [Kel03] defines a mechanism by which the number of RTTs

to recover from a loss event is independent of the of the link bandwidth.

The design of ScalableTCP ensures that the recovery time required at any

throughput is approximately a constant regardless of the RTT of the connec-

tion. It therefore ensures a degree of scalability of the algorithm regardless

of the link capacity of the path that enables ScalableTCP to outperform

standard TCP.

The generalised ScalableTCP window update algorithm responds to each

acknowledgment received in which congestion has not been detected with the

update:

ACK: cwnd ← cwnd + α (6.5)

LOSS: cwnd ← β × cwnd (6.6)

where α is a constant with 0 < α < 1 and β is a constant with 0.5 < β < 1.

The scaling property applies for any choice of the constants α and β. The
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Figure 6.2: cwnd dynamic of ScalableTCP (Single flow on Dummynet, link capac-
ity 200Mbit/sec, RTT 150ms, queue size 500 packets.)

recommended values of α = 1
100

and β = 7
8

are used.

In order to provide compatibility with Standard TCP, a variable WSwitch is

defined to determine the mode switch point from Standard TCP behaviour

to Scalable TCP behaviour. It is defined in terms of the cwnd, so that

when cwnd ≤ WSwitch Standard TCP is invoked. The recommended value of

WSwitch = 16 segments is used.

Figure 6.2 shows the cwnd evolution of ScalableTCP as a function of

time. The small decrease of cwnd upon packet loss guarantees high through-

put for individual flows. Meanwhile, the multiplicative increase means that

approximately a constant number of RTTs would be required to reach the

value of cwnd just before congestion.

The scaling property of ScalableTCP means that it implements an ex-

ponential increase in the sending rate when no loss is detected. This kind

of increase, with the associated multiplicative decrease, is known as Multi-

plicative Increase Multiplicative Decrease (MIMD). [CJ89] states that MIMD

based algorithms do not converge to fairness in drop-tail environments.
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6.1.3 H-TCP

H-TCP [LS04a] was designed to address the issues of the slow transient con-

vergence between similar flows of HSTCP and ScalableTCP.

H-TCP is based on the same idea of HSTCP and ScalableTCP such that

the rate at which TCP allows packets into the network should reflect the

prevailing network conditions. What is unique about H-TCP is the fact

that it incorporates a mode-switch between a Standard TCP regime and

that of a faster mode for each and every congestion epoch (whereas HSTCP

and ScalableTCP incorporates a switch from Standard TCP mode to their

relevant ‘high-speed’ modes if the cwnd is larger than some value).

The H-TCP can be encompassed in the following algorithm:

ACK: cwnd ← cwnd +
2(1− β)× α(∆)

cwnd
(6.7)

LOSS: cwnd ← β × cwnd (6.8)

with

α(∆) =

1 ∆ ≤ ∆L

max(ᾱ(∆)Tmin, 1) ∆ > ∆L

(6.9)

β =

0.5 |B(k+1)−B(k)
¯B(k)

| > ∆B

min( Tmin

Tmax
, βmax) otherwise

(6.10)

∆ is the (real) time since the last congestion epoch and ∆L is a constant

parameter. Tmin and Tmax are the flows’ minimum and maximum experienced

latencies and B(k) and B(k+1) are the measured goodputs of the H-TCP flow

at the moment of congestion for the previous and current epoch respectively.
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∆B is a design parameter.

By increasing the value of α(∆) such that it slowly increases as a function

of time, H-TCP is able to switch in to an aggressive mode which under heavy

congestion is fair with Standard TCP flows, but is able to utilise available

bandwidth quickly. This transition into H-TCP’s high-speed mode is effected

a certain time ∆L after the last congestion event such that the Standard

TCP update algorithm is used while ∆ ≤ ∆L. The suggested value of ∆L is

1 second.

A quadratic increase function ᾱ is suggested in [LS04a], such that:

ᾱ(∆) = 1 + 10(∆−∆L) + 0.25(∆−∆L)2 (6.11)

Therefore, the growth of cwnd is such that H-TCP operates similarly to

Standard TCP in conventional networks where the period between congestion

events is small. Under high speed long distance networks, H-TCP switches

to a polynomial increase in cwnd to take advantage of available capacity

where Standard TCP is incapable of high performance. As the mode switch

is based on time rather than on the current value of cwnd, sources already in

a high speed mode do not gain a long term advantage over new flows starting

up and therefore guarantee fairness.

The calculated increase parameter ᾱ(∆) is multiplied by the minimum

experienced latency, Tmin, of the flow in order to facilitate fairness between

competing flows with different latencies [LS04b]. This feature is called RTT

Scaling.

In order to utilise the capacity effectively, H-TCP defines a back-off factor

β(k) derived from the desire to maintain a queue occupancy after congestion

such that the queue is not empty for too long. Under the assumption of the
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validity of Equation 4.1, [LS04a] states that this is successful when the max-

imum queue size is equal to the maximum RTT measured and the minimum

(zero) queue size occurs when the flow experiences the minimum RTT.

The bandwidth delay products before and after congestion are:

Before congestion: R(k)− =
cwnd

RTTmax

(6.12)

After congestion: R(k)+ =
β × cwnd

RTTmin

(6.13)

A simple way of ensuring full utilisation of the network by this single

H-TCP flow would be to equate R(k)− and R(k)+. As such, this constraint

can only be achieved by enforcing that:

β(k) ≥ RTTmin

RTTmax

(6.14)

where β(k) is the value of β at the k’th congestion epoch. The calculation

prevents the queue size from emptying upon loss/congestion detection by the

TCP flow and therefore maintain maximum throughput for the TCP flow.

However, high values of β would cause slow convergence between flows.

Therefore, a parameter βmax specifies the largest value of β such that 0.5 ≤

β ≤ βmax to enable compatibility with Standard TCP whilst being able to

keep high utilisation of the network path.

To further aid the fair sharing of network bandwidth, H-TCP specifies

that should the measured throughput of a flow at the next congestion epoch

be greater than the parameter ∆B, then β should default back to 0.5.

∆B and βmax have suggested values of 0.2 and 0.8 respectively.

Figure 6.3 shows the H-TCP algorithm in action. It shows the slow ‘TCP-

friendly’ α increase immediately after loss, and then the switch into the high
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Figure 6.3: cwnd dynamic of H-TCP (Single flow on Dummynet, link capacity
200Mbit/sec, RTT 150ms, queue size 500 packets.)

speed mode a period ∆i later. After this period, the growth of cwnd is

polynomial in nature, reaching very high values before loss is induced and

the cycle begins again. The adaptive backoff is also shown, with an initial

value of 0.5 and later set to 0.8 due to the (relatively) large queue which

means that the ratio of the minimum and maximum latencies is capped by

the algorithm.

6.1.4 BicTCP

BicTCP [XHR04] attempts to address an issue with HSTCP and ScalableTCP

whereby competing flows would starve the throughput of a Standard TCP

flow due to the faster growth of cwnd.

The implementation of BicTCP is based around two separate algorithms;

A binary search to determine the optimal cwnd size, and an additive increase

to ensure fast convergence and RTT-fairness.

Binary search is used to determine whether the current sending rate (or

window) is larger than the network capacity. This is achieved with a variable

wtarget that holds a value halfway between the values of cwnd just before and
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just after the last loss event. The cwnd update rule seeks to rapidly increase

cwnd when it is beyond a specified distance Smax from wtarget, and update

cwnd more slowly when its value is close to wtarget.

The second algorithm complements the binary search algorithm by pro-

viding a mechanism to maintain high values of cwnd (and hence high through-

put) without incurring large values of packet loss. This is implemented by an

aggressive additive increase of cwnd after congestion such that it can quickly

reach wtarget. The additive increase is controlled by a parameter Smax that

defines the rate of increase of cwnd such that temporal equality of cwnd and

wtarget is reached so that cwnd does not induce loss as quickly as pure linear

increase alone. This also provides a plateau which enables an almost con-

stant value of cwnd around the binary searched value of wtarget and therefore

high throughput can be maintained.

Similar to ScalableTCP, a constant multiplicative backoff factor β is used

that is greater than Standard TCP’s 0.5.

The BicTCP algorithm can be represented as follows:

ACK:

δ = wtarget−cwnd

B

cwnd ← cwnd + α(δ,cwnd)
cwnd

(6.15)

LOSS:


wtarget =


1+β

2
× cwnd cwnd < wtarget

cwnd otherwise

cwnd ← β × cwnd

(6.16)
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α(δ, cwnd) =



B
σ

(δ ≤ 1, cwnd < wtarget)or(wtarget ≤ cwnd < wtarget + B)

δ 1 < δ ≤ Smax, cwnd < wtarget

wtarget

B−1
B ≤ cwnd− wtarget < Smax(B − 1)

Smax otherwise

(6.17)

where the parameter B is set to 4.

If BicTCP is successful in maintaining a larger cwnd than wtarget (as after

a while the difference between wtarget and cwnd will be larger than Smax if

no losses are experienced), BicTCP initiates slow-start to probe for new pa-

rameters to maximise throughput utilisation. During this timed regime, the

pre-calculated value of wtarget may be wrong, and it is therefore recalculated

as the maximum cwnd value at the time of packet loss. Therefore, upon the

next iteration, cwnd will rise quickly to the new value of wtarget at the point

of loss.

[XHR04] argue that as the design specifies a logarithmic increase in cwnd

as it approaches the targeting window sizes, the need to retransmit packets

due to losses from aggressive probing is reduced.

Similar to the regimes utilised by HSTCP and ScalableTCP, BicTCP

imposes fairness with Standard TCP by utilising the standard AIMD pa-

rameters when cwnd is less than 14 packets.

Many varying versions of the BicTCP implementation exist [XHR04,

LL04] where β = 7
8

or 0.8 and other features such as ‘Low Utilisation Detec-

tion’ whereby upon detection of low network utilisation, a more aggressive

algorithm is implemented to increase utilisation. The version used through-

out this study is based on version 1.1 of the official BicTCP implementation

and uses a value of β = 0.8 with Low Utilisation Detection.
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Figure 6.4: cwnd dynamic of BicTCP (Single flow on Dummynet, link capacity
200Mbit/sec, RTT 150ms, queue size 500 packets.)

Figure 6.4 shows the binary search and increase algorithm of BicTCP.

It demonstrates the aggressive probing with the additive increase algorithm

followed by the almost zero increase in cwnd as cwnd approaches wtarget.

There is then consecutive slow start which induces loss and a subsequent

aggressive additive increase is initiated to equalise cwnd to the value before

loss. As a second probing does not facilitate the discovery of a new wtarget,

wtarget is calculated as the mid-point between the minimum and maximum

cwnd’s during the second probe and the cycle begins again. At the start of

the connection, successful slow start attempts to find a new wtarget can be

seen where the slow start cycle is initiated until loss is detected.

6.1.5 FAST

TCP Vegas [BP95] uses end-to-end delay as a signal to adapt a source’s

sending rate. Increased end-to-end delay indicates congestion, leading to a

reduction in cwnd; decreased delay is associated with less congestion and

leads to an increase in cwnd. The result is a congestion control which at-

tempts to avoid packet loss and has bandwidth allocation properties that
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differ from those with traditional congestion control.

FAST TCP [JWL04] is an adaptation of the Vegas algorithm to enable

high speed data transport. Its primary difference is that it utilises RTT es-

timation as its primary feedback from the network. The assumption used

is that the queuing delays conveys the ‘right congestion information’ to

maximise the network utilisation and that it scales with network capacity

[JDXW03, CL03, PWLD03]. Their argument for a delay-based congestion

avoidance algorithm is that at high speeds, loss based algorithms will nec-

essarily change their windows to maintain stable state. Under such circum-

stances, the evolution of the window through time is defined in Equation 5.9.

Using only binary packet loss as an indication of congestion is insufficient

to maintain equality between the utility function ui(t), and the end-to-end

congestion feedback pi(t).

The design of FAST incorporates the utility function such that the win-

dow adjustment is small when close to equilibrium, and largely otherwise

independent of where the equilibrium is. Therefore, the slow convergence

properties due to the necessary oscillation of loss based algorithms are elim-

inated.

On a packet level implementation, the evolution of cwnd (w) is restricted

such that the calculated optimal window is defined by:

ACK: w ← min{2w, (1− γ)w + γ

(
Tmin

T̄
w + α(w, Tq)

)
} (6.18)

LOSS: w ← w

2
(6.19)

where Tq = T̄ −Tmin, T̄ is the exponentially averaged instantaneous RTT

of the TCP connection and Tmin is the minimum experienced latency. To
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eliminate the variance of Tq, it is smoothed such that,

T̄ (k + 1) = η(tk)T (k) + (1− η(tk))T̄ (k) (6.20)

where η(tk) = 50 is a design paramter of FAST.

Window changes are implemented over two RTTs and adjusted such that

at maximum cwnd doubles in each RTT (i.e. slow start) such that α(w, Tq) =

aw when the queuing delay Tq is zero. However, this growth only occurs until

Tq > 0, after which α(w, Tq) = α where α is a constant which determines

the number of packets per flow that is (attempted to be) maintained in the

network buffers at equilibrium.

This rudimentary definition of α means that the bottleneck queue size

needs to scale with the number of competing FAST flows. Therefore, in order

for n competing FAST flows to reach equilibrium and stabilise, a queue-size

of at least n × α is required. In the current [JWL04] version of FAST, a

simple algorithm to tune α based on the achieved throughput is used.

Throughout this study, the default parameters of γ = 50 is used, and that

α(w, Tq) is calculated from the measured goodput of the FAST flow. More

specifically, the value of α(w, Tq) changes such that it is set to 8, 20 or 200

when the measured goodput is less than 10Mbit/sec, less than 100Mbit/sec

and greater than 100Mbit/sec respectively.

6.2 Discussion and Deployment Considerations

of New-TCP Algorithms

The optimisation of high performance, high throughput network transport

protocols is very important. There is a clear need to maximise the net-
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work transport performance and efficiency in order to maximise the network

resource utilisation. As the Standard TCP AIMD algorithms have been

proven to be very robust, replacement algorithms for TCP should also be as

robust. Furthermore, the development of new transport protocols must be

scalable with network capacities and adaptable to different types of trans-

mission medium and different types of applications.

Congestion control can be interpreted as a distributed optimisation prob-

lem where sources and links carry out a distributed computation to maximise

the sum of individual source utilisations [LPD02, LS03].

As high speeds networks become more prevalent on today’s Internet, it

is important to be able to utilise the spare capacity quickly. This inherently

implies that the deployment of New-TCP algorithms should be compatible

with the standard windowing mechanisms of TCP [Pos81b]. All of the algo-

rithms in this survey are sender side modifications to the congestion control

algorithm and therefore only requires the modification of the sending host

to facilitate high throughput transfer - with sufficient network resources and

tweaking as outlined in Chapter 5.

6.2.1 Scalability and Network Utilisation

One problem of Standard TCP being able to attain high speeds is that a

very low loss rate is required in order to maintain large values of cwnd. As

Standard TCP cannot differentiate between packets lost to congestion and

that lost to transmission errors this becomes a serious problem on lightly

loaded networks.

However, the primary reason for requiring a replacement congestion con-

trol algorithm is that Standard TCP, with its linear cwnd increase, simply
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does not scale to utilise available bandwidth.

As higher capacities and latencies become more common, it is important

the dynamic by which TCP determines that there is spare capacity is suffi-

ciently scalable. A trivial solution to this problem is to shorten the congestion

epoch time. This can be achieved by increasing the value of α such that the

rate of growth of the cwnd is increased. Therefore, large increases in the

probing rate will facilitate the utilisation of spare capacity over short time-

scales. This is most evident with ScalableTCP and H-TCP; ScalableTCP

with its multiplicative increase ensures that the next congestion epoch is

reached quickly.

However, especially for loss-based algorithms, this large increase in cwnd

will result in a higher probability multiple lost segments within the same win-

dow which have to be retransmitted. The result of this retransmission may

result in much burstier flow and could lead to congestion collapse. It is there-

fore prudent to minimise the amount of data that needs to be retransmitted

when congestion occurs [KRB05].

FAST minimises this requirement by slowly adjusting its optimal cwnd

value according to multi-bit feedback from network delay. Meanwhile, BicTCP

increases the utilisation of network resources by maintaining a similar plateau

for its cwnd dynamic as it finds its wtarget value.

However, as defined in Equation 5.6, the actual time independent (i.e.

sufficiently long) utilisation of a flow depends upon not the increase param-

eter, but the algorithm’s decrease parameter β assuming a linear increase in

α.

Obviously, the decrease of half used in Standard TCP is too severe at

high speeds. The simple solution would be to minimise this decrease to say,

7
8

as with ScalableTCP. This would therefore result in a network utilisation
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of 93.75%2, rather than 75% for Standard TCP with zero buffering along the

network path.

However, with an increase in the value of the decrease parameter to max-

imise utilisation, comes the problem of interaction between similar flows. As

this decrease applies only every congestion event, a pair of flows with the

same end-to-end latency and sharing the same bottleneck will take a greater

number of congestion events before they equalise to a fair share of the net-

work capacity.

The matter in which the capacity is shared by the flows is broadly known

as fairness [CJ89, BG87, Kel97, LS04b]. Two generally used fairness criteria

are max-min fairness and proportional fairness.

The max-min fairness concept [BG87, Jaf81] emerged from fair queuing

models whereby routers utilise a separate queue per flow and implement the

round-robin model to serve the flows in turn. Therefore, under this model,

the flows that send less data receive higher priority than flows that send bulk

data. Conversely, proportional fairness favours the flows that have more

packets over those with fewer packets. Proportional fairness is useful for

designing pricing models for the Internet [Kel97].

[XHR04] points out that more aggressive TCP leads invariably to unfair-

ness between the flows, unless care is taken.

Should the competing flows be synchronised in terms of network conges-

tion events, then this time variant nature of converging to a fair share is

directly related to the value of β; if β is large, then many congestion events

are required before convergence; if β is small, then convergence is reached

quickly - but at the expense of reduced utilisation.

H-TCP directly considers this convergence to fairness by measuring the

2Actually less due to the increased growth rate of α with respect to time.
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throughput at congestion: should the change of throughput at consecutive

congestion points be larger than 80%, then it sets β to 0.5 (as with Standard

TCP) to aid faster convergence to fairness.

Another important factor of scalability is the adaptation of the algo-

rithms at different network capacities (or more accurately with large cwnd

values). The design of HSTCP is explicitly such that you have to ‘tune’

the increase and decrease parameters depending on the required loss rates

against the response function (See Section 5.4.2). The current specification

of HSTCP suggests tuning appropriate for 10Gb/sec network flows. Whilst

Section A.2.3 suggests that it is currently not possible to reach such speeds,

even with the best currently available hardware, with time this is sure to

change. As such, when it becomes possible to enable network speeds greater

than 10Gb/sec (or in the unlikely even that the Internet becomes more lossy),

then all deployed versions of HSTCP will need to be ‘re-tuned’ to suit the

new networks available.

All of the other algorithms have no such problem in terms of utilisation.

However, with the larger cwnd values, an aggressive increase parameter may

require extra buffering to accommodate the extra packet bursts due to ag-

gressive algorithms, which may lead to a fundamental limit to the scalability

of the algorithm. This feature is most evident for ScalableTCP which has a

consistent large increase parameter.

FAST has a theoretical utilisation of 100% [JWL+03, JWL04]. However,

a problem with the use of latency measurements to determine the incipient

stages of congestion is that unless one-way delay is used, both the forward

and reverse paths of the connection’s latency is measured. As such, should

the reverse path be congested, rather than the forward path, then FAST (and

TCP Vegas) suffers from low throughput as it cannot differentiate between
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the congestion points [GM, BC]. Another problem related to this is the

prevalence of asymmetric links on the Internet [BPK99] which means that

the actual calculation of the bandwidth delay product could be wrong and

hence also affect the calculation of the appropriate window size. Indeed, it is

paramount that TCP Vegas and FAST maintain some indication of the RTT

through the injection of packets in order to successfully operate, otherwise

persistent congestion may occur [LWA98, JWL+03].

However, the same problem of avoiding the induction of packet loss on

a network also prevents algorithms like Vegas and FAST from being able to

compete with other loss-based algorithms on the same link. As loss based

algorithms only decrease their sending rates in response to loss, in order for

FAST to compete comparatively it will have to induce loss. As TCP Vegas

is incapable of inducing packet loss, it is unable to compete with aggressive

loss based flows [KRB05].

6.2.2 Buffering and Packet Bursts

[KRB05] state that the losses experienced by a TCP flow under drop tail

conditions are related to the algorithm’s increase parameter. This is impor-

tant as it implies that the aggressiveness of any algorithm is limited by the

provision of network buffers available.

ScalableTCP as shown in Figure 6.2 has a continuously high increase

value as a result of its multiplicative increase parameter. H-TCP, on the

other hand, experiences only periods of very high α. It should be noted

however, that the increase is only temporary: with its time based increase

factor, the extra buffering after congestion is reduced due to the reversion of

H-TCP back to α = 1.
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A similar approach to H-TCP is taken with BicTCP, with almost zero

increase in cwnd as it approaches its wtarget. FAST, however, with its design

to stabilise the value of cwnd means that it is scalable with any buffer size.

But, this only applies when it is stable. In order to reach equilibrium, the (up-

to) exponential increase in cwnd can cause serious implications for network

traffic. Again, this increase is determined by the value of α in the utility

function.

One way of preventing large losses as a result of small buffer allocations is

to utilise packet pacing [ASA00] whereby packets are not sent back-to-back

but spread out over each RTT to prevent the large number of sequential pack-

ets drops due to drop-tail queuing mechanisms. However, findings in [ASA00]

suggest that applying global TCP pacing would result in large amounts of

TCP synchronisation due to the higher average queue occupancy of inter-

mittent routers. Synchronisation occurs when flows competing along a link

experience congestion at the same time, and as a result they all backoff to-

gether and ramp-up together. Depending on the backoff factor of the flows (as

defined by H-TCP’s adaptive backoff factor), the link may be under-utilised

as a result of synchronisation.

The size of network queues is also important. As defined previously,

network queues are necessary to buffer the increase in packets caused by

the various algorithms’ increase parameters. Equation 5.6 states that for

Standard TCP, a queue provision equal to the bandwidth delay product is

necessary for 100% utilisation. Indeed, this requirement is often stipulated

in simulations involving network bulk transport [VS94]. However, [AKM04]

states that the inclusion of such large amounts of buffer memory is not fea-

sible due to physical size of Static RAM and the long latencies of DRAM.

This problem raises concerns for fast long distance networks as the required
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amount of buffering increases substantially. Fortunately, [AKM04] also states

that due to the lack of synchronisation between competing flows, the queue

size provision (for Standard TCP flows) requirement is related to the inverse

square root of the number of flows.

Another method to reduce synchronisation is to implement RED on the

bottleneck queue to cause non-synchronised drops from competing flows. It

also has the benefit of being able to actively prevent congestion by the drop-

ping of packets before a potential buffer overflow and therefore the ability

to maintain smaller sized buffers and provide lower-delay interactive services

[BCC98].

6.2.3 Interaction with Legacy and other Traffic

As phased deployment of any Internet protocol is likely, New-TCP algorithms

should be able to coexist fairly with Standard TCP flows. Whilst the inves-

tigation of interaction with legacy traffic is more suited to a discussion of the

self-similar nature of TCP aggregate flows [LTWW94, PKC97], the interac-

tion between the bulk transport of data using Standard TCP and New-TCP

algorithms should be studied.

This co-existence with other traffic is considered trivially by nearly all

of the algorithms by simply defining a threshold at which the New-TCP

algorithms will switch from their low-speed modes to their high speed modes.

This is implemented by defining an arbitrary value of cwnd such that they

mimic the standard AIMD algorithm below this value. This ensures that the

algorithms can co-exist with Standard TCP under low cwnd environments,

yet are able to achieve high throughput on high-BDP paths.

H-TCP, however, proposes a radically different way of determining how
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algorithms should be friendly. It implements the idea that upon congestion

the H-TCP flow should always revert back to Standard TCP and hence main-

tain at least temporary fairness with Standard TCP. Only after a period of

time, after congestion, should the high speed mode be applied.

However, the balance between being able to co-exist with legacy traffic,

and being able to achieve high throughput seems difficult. On one hand, it is

a necessity to increase the aggressiveness of the congestion control algorithm

in order to utilise spare bandwidth. On the other hand, this potentially

means starving less aggressive flows of network resources.

This also applies to flows of the same algorithm as it is unlikely that

two flows on the Internet sharing a bottleneck will also have the same end-

to-end latency. Therefore, a question arises over how fair these algorithms

are in sharing bandwidth when competing flows have different end-to-end

latencies. The problem of this RTT unfairness stems from the fact that low

latency flows are more responsive, and hence more aggressive, than flows on

longer latency links. Therefore, it is possible that the flows on a low latency

path completely starve the less responsive flow of throughput.

H-TCP implements a ‘RTT scaling’ function in order to maintain fairness

between competing flows of different RTT’s. This is implemented by altering

the value of its increase parameter α such that it is scaled by the ratio of the

experienced minimum latency and the average latency for a flow [LS04b].

It is also possible to help impose fairness between flows using AQM (See

Section 5.3.2). Using RED, for example, would drop a higher proportion of

packets from a more intensive flow; and therefore reduce its throughput and

equalise fairness [Has89]. This also has the beneficial effect of preventing

lock-out [FJ92] by aggressive flows that prevent less aggressive flows from

getting any throughput.
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6.3 Summary

The recent rise of high performance networks and long latency links has lead

to the visible deterioration of TCP performance in real life situations. As

such, there has been much interest in the transport community in the need

to replace the standard TCP congestion control algorithms with something

that is capable of attaining reasonable throughput under realistic network

conditions.

A question arises over the manner in which deployment should occur. As

these protocols have never been widely tested in real network environments, it

is difficult to determine whether there are potential hazards to running these

New-TCP algorithms on the Internet. Whilst running a single flow through

the Internet is unlikely to cause problems, the aggregation of many flows

may. The problem lies in the possibility of lock-out and severe unfairness

that will prevent competing users from sharing network resources. However,

the modeling of such systems prove very difficult to do realistically [AF99]

due to the heterogeneity of the Internet.

Many of the proposals presented often cite the inclusion of AQM to mit-

igate the potential problems that aggressive algorithms may pose. [FJ93]

states that AQM should be implemented, however, this is often far from the

truth as most networks on the Internet still employ drop tail queuing. There-

fore, when it comes to the question of the near term deployability of such

protocols, special attention should be given to ensure that it is not dangerous

to use such congestion control algorithms now.

The other question is which New-TCP algorithm should people use? Each

protocol appears to have distinct advantages and disadvantages; for example,

ScalableTCP ensures that high capacity can be attained regardless of network
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capacity - however, at what cost? [CJ89] states that MIMD based algorithms

may have serious convergence, and hence unfairness issues. FAST has a

theoretical network utilisation of 100% - but is based on TCP Vegas which,

despite its various advantages, was never widely deployed for general usage

due to its inability to compete against aggressive flows, and hence the user

perception of throughput was lower. Also TCP Vegas suffers from poor

performance when the path is asymmetric [FLcL01].

So why cannot users simply choose their own algorithm to use? Indeed,

this appears to be the situation at present as new congestion control algo-

rithms appear all the time. However, very little research has been conducted

to gauge the effectiveness of these algorithms against each other in similar

network conditions. Furthermore, most of the analysis of New-TCP algo-

rithms are centred around simulation based studies. Whilst the modeling of

new algorithms in simulations is no doubt necessary, there may be physical

limitations of running TCP protocols at high speeds - which may have nega-

tive consequences on network stability. For example, the aggressive increases

of some of the algorithms may cause global synchronisation which will in fact

lower network utilisation rather than increase it [ASA00].

Therefore, there is a clear need to test these algorithms on real hardware

in realistic environments, and possibly on real Internet networks. The goal

of such an investigation should not only focus on the performance in terms of

throughput achieved, but also on other factors such as fairness, how quickly

algorithms converge to fairness and the potential for congestion collapse.



Chapter 7

Testing Framework for the

Evaluation of New-TCP

Algorithms

Details of the methodology and definitions of performance metrics are given

whereby the performances of New-TCP algorithms can be compared and

contrasted in order to gain important insights into the benefits and disad-

vantages of each algorithm.

From this information, systematic testing of the new and old flavours

of TCP algorithms will result in the development of ‘capable’ New-TCP

algorithms.

135
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7.1 Metrics

In this section, metrics which are considered important for the evaluation of

bulk data transport are presented and discussed.

7.1.1 Goodput

Define goodput, x̄i, to be the mean rate of useful application layer data trans-

ferred per unit time, such that for the ith flow, xi(t) is the rate of of useful

data sent in the time period t. More formally it is defined as the throughput

less losses.

x̄i := lim
T→∞

1

T

∫ T

0

xi(t)dt, (7.1)

Another consideration is that as the number of flows increases, this can

be extended to define the aggregate goodput, X̄, when there are n flows com-

peting along the same bottleneck to be:

X̄ :=
n∑

i=1

x̄i (7.2)

Define the short-term average goodput as the exponentially weighted

moving average,

x̂(t)i =

∫ t

0

exp[−λ(t− s)]xi(s)ds (7.3)

where λ is typically selected proportional to the bandwidth-delay product so

that the averaging window scales with the congestion epoch duration.

In order to convey the New-TCP dynamics over a range of cwnd values,

a range of network capacities and latencies should be investigated in order

to obtain a general perspective of this particular performance metric. The

effect of algorithmic mode switches from low to high speed regimes of the
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various New-TCP algorithms should also be investigated.

7.1.2 Stability

In order to gauge the stability of a TCP flow, it must understood that TCP

flows are inherently unstable as they strive to always probe for extra band-

width and adapt to network conditions.

However, under static environments, the characteristics of the long term

stability of a TCP flow in steady state can be determined. Define the follow-

ing simple metric for the stability, Si, of a flow i for a period s = 1, ..., t:

Si :=
1

x̄i

√√√√ 1

n− 1

t∑
s=1

(xi(s)− x̄i)2 (7.4)

The stability, S, of n competing flows is therefore:

S :=
1

n

n∑
i=1

Si (7.5)

S as defined is the standard deviation of the average goodput of n flows,

each normalised by its mean goodput, and can be used as an indication

of goodput predictability of n flows. It is therefore preferable to have high

average goodput, x̄i, and low standard deviation, Si, and hence low S.

7.1.3 Convergence Time

On long time-scales, such as with bulk transfer, the performance of TCP

is dependent on the responsiveness of TCP flows to changes in the network

state. In order to take advantage of increases in network capacity or to reduce

sending rates to enable fair share of network traffic, it is important that the
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TCP flows are responsive to these network changes.

In dynamic environments where flows join or leave the system often, the

sending rate of each flow will adapt (i.e. lower) to enable sharing of band-

width for new incoming flows. Due to this dynamic, the efficiency and fairness

of the system may not always be optimal.

Define ε-convergence time following start-up of a new flow to be the time

before the short-term average throughput x̂(t)i of the new flow is within a

factor ε of its long-term average value. Arbitrarily choose ε = 0.8 yielding

the 80% convergence time.

7.1.4 Fairness

As the Internet is a shared resource, congestion avoidance algorithms should

ensure that network users obtain a reasonable allocation of network resources

depending on network conditions and the state and condition of competing

users. This concern is embodied into the metric of fairness and depends upon

the state and conditions of the competing flows.

Define fairness as a ratio of goodputs experienced by competing flows. As

the dynamics of congestion control of competing flows with different RTTs

will result in different growth rates of cwnd, the effect of having users with

different RTTs upon the fairness of each flow should also be considered.

The dynamics of the Standard TCP congestion control algorithm can

be estimated from an analysis of cwnd geometry such that at any time k,

the cwnd value wi(k) is dependent upon the decrease fraction βi(k) and the

increase value αi for the congestion epoch k with round trip time Ti(k), and
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assuming equilibrium such that wi(k) = wi(k + 1) and Ti(k) = Ti(k + 1):

wi(k) = βiwi(k) + αiTi(k) (7.6)

Assuming that queuing delay is negligible and where αi and βi are con-

stant values, define that the expectation values of wi and Ti are E(wi) and

E(Ti), Equation 7.6:

E(wi) =
αiE(Ti)

λi(1− βi)
(7.7)

where λi is the probability that a congested system will result in imme-

diate back-off of flow i. Similar to [CJ89], define that cwnd fairness as the

ratio of cwnd between the two AIMD TCP flows, i and j, such that:

wi

wj

= min

(
αi

λi(1−βi)
αj

λj(1−βj)

,

αj

λj(1−βj)

αi

λi(1−βi)

)
(7.8)

where the quantity
λj

λi
defines the synchronicity between the two flows as

defined by the ratio of drops experienced between the two competing flows.

Using the BDP (Equation 4.1) to relate goodput and latency for a single

flow, the fairness, Fi,j between two flows, i and j with αi = αj and βi = βj

(i.e. both flows have the same AIMD parameters) is:

Fi,j =
X̄i

X̄j

= min

(
λj

λi

(
RTTj

RTTi

)2

,
λi

λj

(
RTTi

RTTj

)2
)

(7.9)

Therefore, the fairness between two competing Standard TCP flows de-

pends upon the synchronicity and the square of the ratio between the laten-

cies of the flows. As the growth rate of cwnd of the short RTT flow is greater

than that of the long RTT flow, the increased growth rate in time results in
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higher throughput achieved by the lower latency flow.

Also, under symmetric network conditions, two flows when perfectly syn-

chronised and experiencing the same end-to-end latencies, should have a

fairness of unity for all environments.

It is therefore important to investigate the effects of RTT unfairness be-

tween New-TCP algorithms such that long latency flows do not experience

severe unfairness because of the increased aggressiveness of shorter latency

flows.

7.1.5 Friendliness

The deployment of New-TCP is unlikely to be sudden, and therefore gradual

deployment whereby New-TCP algorithms have to co-exist with Standard

TCP on the Internet is expected. As such, the dynamic between New-TCP

stacks and legacy Standard TCP should be studied.

New-TCP algorithms should be able to utilise spare capacity of the net-

work; however, it should also not starve legacy TCP flows of bandwidth.

Conversely, in low-speed networks, they should share bandwidth fairly with

legacy TCP.

Therefore, define friendliness to be (the value of) the fairness metric, Fi,j

when the ith flow is that of Standard TCP.

7.1.6 Overhead

Loss based congestion control algorithms must generate packet loss in order

to probe for free bandwidth. The increase in the rate of probing will increase

the number of congestion epochs per unit time, and as a result, the rate of

packet loss also increases. This is especially important as the large number
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of packets in flight as a result of large values of cwnd leads to a larger number

of packets that may be lost due to packet bursts and having a too aggressive

increase in α [KRB05].

It is important in order to prevent classical congestion collapse and im-

prove goodput that the fraction of retransmitted packets is kept low [FF99].

Therefore, given that, the ith TCP flow retransmits ri(k) bytes of data in the

duration s, define the ratio of retransmitted packets for s = 1, ..., t as:

εi =

∑t
s=1 ri(s)∑t
s=1 ui(s)

(7.10)

where ui(s) is the amount of data transfered during the period s of the

ith flow.

In order to give a comparable metric between stacks that achieve different

goodputs under identical network conditions, normalise all εi by the total

goodput of all flows, X̄, to give the total overhead, ξ:

ξ =

∑n
i εi

X̄
(7.11)

Therefore a low value of ξ is desirable and should not be much greater

than that of Standard TCP to facilitate the stability of the Internet.

7.2 Environment

The goal of this investigation is to be able to compare and contrast the

performance metrics of New-TCP algorithms against that of Standard TCP

in order to gauge the advantages and disadvantages of each.

In order to get a representation of the performance of these congestion
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control algorithms over a wide range of environments, the metrics defined in

Section 7.1 are applied to a series of different experiments designed to show

the differences between the New-TCP algorithms.

The following network conditions can effect the performance of TCP

transport. It is therefore desirable to test over a range of different network

environments encompassing these conditions to obtain a good representation

of New-TCP performance.

Network Capacity & Link Latency Greater link capacities result in larger

values of cwnd and hence the number of packets in flight. Similarly,

longer latencies also result in larger values of cwnd. It is also important

to understand the affects of how these algorithms will ‘switch’ into their

high speeds modes and how that may adversely affect the performance

metrics outlined in Section 7.1.

Bottleneck Queue Size As mentioned in Section 5.4.1, the buffering of

packets is important to absorb packet bursts and to increase bulk trans-

port efficiency. The dynamic of the queue provision is also important

as competing web traffic may affect the metric dynamics of the New-

TCP flows. Whilst the short term dynamics of web traffic is not well

understood [BPS+98, CB95], it is argued that the bulk transfer of data

will play an important part in future networks.

Number of Flows (and type) It is important to gauge the scalability of

these flows in terms of how they share bandwidth. In terms of friendli-

ness, it is also important to measure the unfairness of New-TCP flows

against Standard TCP. Related to the bottleneck queue dynamics, the

burstiness of TCP flows may also affect the various performance metrics

such as convergence time and overhead.
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Figure 7.1: Topology of Framework tests for the Evaluation of New-TCP algo-
rithms.

Using the topology illustrated in Figure 7.1, a suite of simple tests was

implemented that exercises the performance of New-TCP algorithms. Even

with the simplicity of this topology, the advantages and disadvantages of

the various New-TCP algorithms can be demonstrated when applied to the

performance metrics oulined in Section 7.1:

Queue-size The importance of how these algorithms perform over a range

of bottleneck queue-sizes is especially important as large BDP’s are

reached due to the hardware limits on the amount of physical memory

on intermediary routers and switches.

Symmetric Network It is expected that all New-TCP algorithms are fair

when identical TCP flows are competed against each other across a

range of different network environments. As a sanity check, it is ex-

pected that all algorithms will achieve higher goodputs than that of

Standard TCP in high bandwidth delay environments, yet should be

able to compete equivalently under low bandwidth delay environments.

Asymmetric Network As higher capacities are introduced into the Inter-

net, it is important that New-TCP algorithms can scale such that a

flow with larger cwnd does not starve a larger latency (and hence less
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responsive) flow and hence cause lock-up [FJ92]. It is therefore impor-

tant that the unfairness between flows of different end-to-end latencies

is not (much) greater than that of Standard TCP.

Friendliness The phased deployment of New-TCP requires that immediate

performance benefits are achieved, without causing significant perfor-

mance penalties for existing Standard TCP flows.

7.3 Summary

A generic framework was presented such that comparative testing of New-

TCP algorithms can be accomplished. The comparative testing of algorithms

is important to understand why each New-TCP algorithm performs better

in each network scenario so that better algorithms can be developed.

The framework consists of a set of metrics such as goodput, conver-

gence time and fairness which must be applied to a range of network con-

ditions/environments. Whilst the parameter space for such an analysis is

vast, it is important that such large changes to the TCP congestion control

algorithms should be well understood and potential problems identified prior

to widespread deployment.



Chapter 8

Systematic Tests of New-TCP

Behaviour

Implementations of the New-TCP protocols and algorithms outlined in the

Chapter 6 are now tested and evaluated under controllable network environ-

ments using the framework outlined in Chapter 7.

The focus of this Chapter is not to determine a specific ‘winner’ or the

‘best’ New-TCP algorithm, but to understand the specific environments and

reasons why different New-TCP stacks perform better or worse.

8.1 Methodology

The testing of network protocols is often difficult due to the changing char-

acteristics, unpredictable loads of Internet traffic and uncontrollable deter-

minants of performance. As such, an initial investigation into the dynamics

of New-TCP algorithms was performed under repeatable network conditions

145
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where all network factors such as bandwidth, end-to-end latency and back-

ground loads could be controlled and altered.

This investigation focuses upon the real-life implementation of these al-

gorithms and as such relies upon real hardware and software on which the

tests are performed. Careful selection of network conditions were selected

such that hardware limitation, such as the lack CPU horse power, did not

dominated the results.

8.1.1 Dummynet

All tests in this Chapter were performed in simulated environments in order

to better understand the performance of these protocols using real equip-

ment. Experiments were conducted on a dummynet [Riz98] testbed in order

to present results that should be indicative of real-world performance with-

out the implications on the necessary analysis of real network cross-traffic.

Dummynet provides the facility to emulate the effects of network queues,

bandwidth limitations and communication delays and also enables the repe-

tition of tests under controllable conditions.

Dummynet utilises the FreeBSD [UCB] IP firewall, ipfw [AKN+], to allow

the selection of IP packets based on a combination of source and destination

addresses, ports and protocols types (TCP, UDP, ICMP, etc), interface, and

direction (in or out). This selection allows the packets arriving at a dum-

mynet router to be forwarded onto dummynet pipes which simulate the effects

of a network link.

The topology of the testbed is shown in Figure 7.1 with further details

in Figure C.1. It consists of a simple dumb-bell topology with two pairs of

high-end commodity PCs connected to gigabit ethernet switches which are
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fed into the dummynet router via two separate NIC’s (Intel e1000’s). The

dummynet router is of a similar hardware specification to the testbed PCs

(See Table A.5), but runs FreeBSD 4.8 instead of Linux 2.6.

The dummynet set-up is an idealised network in the sense that all aspects

of the network variables are configurable and is perfect for validating the

performance of New-TCP algorithms against the theoretical performance.

The chosen latency values1 of 16ms to 162ms give a good indication of

the trans-European to trans-Atlantic transmission times on today’s Internet.

Bottleneck capacities of upto 250Mbit/sec were chosen as hardware limita-

tions resulted in unrepeatable results at higher capacities. Relatively small

bottleneck link speeds of 10Mbit/sec were used to investigate the algorithmic

switching of various New-TCP algorithms into their ‘high-speed’ modes.

8.1.2 altAIMD Kernel

The various New-TCP algorithms have their independent patches publicly

available. However, certain deficiencies in the Linux networking stack [Lei04]

suggest that testing of these algorithms using their publicly available imple-

mentations would most likely yield the testing of the various Linux perfor-

mance patches rather than the actual New-TCP algorithms. As the various

patches either do not address the issues at all, or do so in different ways, it was

necessary to build the congestion control algorithms into a common kernel

for the purpose of this investigation so that only the algorithmic differences

of New-TCP algorithms were comparatively analysed.

This kernel will hereby be referred to as the altAIMD kernel. It is based

on the Linux 2.6.6 kernel and incorporates the following features:

1The minimal limit of 16ms is imposed by Dummynet as tests performed at lower
latencies exhibited strange unaccountable effects upon throughput.
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Implementation of New-TCP Algorithms A single sysctl [Rub97] is

used to switch between New-TCP algorithms without the requirement

of rebooting the machine.

Appropriate Byte Sizing (RFC3465) [All03] The counting of ack’s by

the number of bytes acknowledged rather than the number of ack’s

received to counter the problems of reduced cwnd growth under delayed

ack’s.

SACK Processing Improvements The current implementation of SACK

processing in the Linux kernels requires a processing time which is

O(cwnd) [Lei04]. This has serious performance implications when deal-

ing with a large number of packets in flight which is common with large

BDP’s. A more robust algorithm was implemented with complexity of

O(lost packets) (which is equivalent to number of un-sacked packets).

Cap Sets cwnd to minimum of packets in packets in-flight and ssthresh,

and therefore reduces the influence of miscalculations in the network

stack which helps prevent packets bursts.

Throttle Patch A build-up of ack packets at the sender can cause an over-

flow in the Linux network ring buffers which causes all packets to be

dropped. A modification to prevent this behaviour was implemented.

Undo Patch The Linux implementation of undo’s [SK02] was modified to

suit the appropriate New-TCP network stack.

Web100 Instrumentation of the TCP stack were recorded and logged via

Web100 Linux kernel patch [MHR03] in order to validate and check all

results gathered.
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Various other constraints on TCP network performance were also re-

moved, such as the default low limits on the TCP socket buffer sizes. txqueuelen

and max_backlog values were left at acceptable default values (under Linux

2.6) of 1, 000 and 300 respectively. Default device driver settings were also

used which were found to be sufficiently provisioned for these tests.

8.1.3 Overview

In order to minimise the effects of local hosts’ queues and flow interactions,

only a single TCP flow was injected from each source machine into the testbed

through the dummynet router using iperf [TQD+03] . All flows were run

with slow-start enabled upon the start of each transfer to give a representative

test of real users competing for bandwidth when conducting bulk transport

along the network path.

A second flow was initiated at a random time after the first flow such

that the perturbation of the second flow’s slow start covered a range of times

within a congestion epoch of the first flow. This was to ensure that a repre-

sentative range of convergence times and cwnd dynamics was captured.

As defined in [Cla82b], all TCP receivers were run with delayed acking on.

As Linux 2.6 kernels were used, the effects of quick-acking (See Section 5.2.4)

were left enabled. All TCP senders were configured with Appropriate Byte

Sizing (See Section 5.2.4).

Each individual test was run for at least ten minutes. This duration gave

a good representation of the number of congestion epochs required for all

of the New-TCP algorithms. In the case of tests involving Standard TCP,

individual tests were run for up to an hour as the long epoch time of Standard

TCP, especially at large BDPs, requires more time to reach steady state.
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In order to obtain a good representation of the range of performance

metrics, all tests were repeated 5 times and the arithmetic mean taken. The

error on each measurement was taken as the standard error from this mean

[Boa83] and is presented in all plots.

Furthermore, due to the prevalence of FIFO queuing mechanisms in use on

the Internet, the study is limited to drop-tail environments to gauge the worse

case scenario whereby network feedback is limited only by buffer overflows.

8.2 Test Calibration

8.2.1 Response Function

The validation of the altAIMD algorithm and the representative New-TCP

algorithms is shown in Figure 8.1. It shows the theoretical and measured

response function of a single New-TCP flow (See Section 5.4.2) under the

dummynet test network. The loss rate was controlled by the dummynet p

variable that defines the average random loss rate experienced through a

dummynet pipe.

It can be seen that the measured results match very well to the theoret-

ical predictions as specified by the respective New-TCP authors. The most

notable deviation is that for both ScalableTCP and HSTCP, where there

is a gradual, rather than immediate switch from their low speed modes to

their high speed modes; this is represented by their increased goodputs over

the regions of the switch. This was found to be due to the mode switching

from Standard TCP into their representative high speed modes (this does not

apply to FAST or H-TCP) as cwnd values approach their relevant thresholds.

For HSTCP (Figure 8.2(a)), it was observed that the actual average cwnd
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Figure 8.1: Effect of varying the dummynet random loss probability on a single
TCP flow (250Mbit/sec, 162ms RTT, Bottleneck queue-size 20% BDP).
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Figure 8.2: Magnification of New-TCP mode switch from low-speed into high-
speed modes (250Mbit/sec, 162ms RTT, queue-size 20% BDP).

value of 65 packets is actually a lot higher than the theoretical prediction of

38 packets. As the cwnd is directly related to the goodput achieved by the

TCP flow (Equation 4.1), it is unsurprising from this that the goodput is

higher than the prediction allows. A factor that contributes to the larger

value of cwnd is that cwnd is held as an integer under Linux; this causes a
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Figure 8.3: H-TCP cwnd dynamics showing the mode switch from low-speed into
high-speed modes (250Mbit/sec, 162ms RTT, queue-size 20% BDP).

higher value of cwnd upon loss as the calculation of β is overestimated2.

However, the main cause of the high cwnd values is due to the random loss

nature of the dummynet packet drops; there are occasions where the value

of cwnd reaches the next ‘stage’ in the HSTCP algorithm where the increase

and decrease parameters are higher; making the cwnd algorithm grow more

aggressively, and fall back to a relatively higher value upon loss.

Figure 8.2(b) shows the cwnd trace of ScalableTCP at 0.5% loss rate.

Again, it was observed that the actual average cwnd value of 24.3 is much

larger than the predicted 16 packets. It is worth noting that 16 packets

is actually the threshold where ScalableTCP starts to engage its high-speed

mode, and the effects of this can be clearly seen as almost none of the conges-

tion events result in the Standard TCP cwnd drop to a half. As the decrease

parameter β of 0.875 is also implemented in the same way as HSTCP, it was

observed that the decrease in cwnd upon loss is actually less than theory due

to the quantisation of the values of cwnd (especially at such low values of

cwnd).

Figure 8.1 clearly shows that H-TCP is able to achieve very high utilisa-

tion across the range of loss environments. Figure 8.3 shows the cwnd trace

2As it is implemented traditionally where cwnd← cwnd− b× cwnd where b = 1− β.
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Figure 8.4: Standard TCP cwnd dynamic (250Mbit/sec, 162ms RTT, queue-size
20% BDP).

of H-TCP at 0.2% loss rate. It was observed that there are periods whereby

the cwnd reaches (relative to the test) very high values; where it takes a few

congestion events before the cwnd decreases to a more ‘stable’ value. The

large values of cwnd are compounded by H-TCP’s increase parameter which

is polynomial with respect to time. As a direct consequence of the large cwnd

values, H-TCP is able to achieve high goodput, and the longer the conges-

tion epochs, the greater the achievable value of cwnd. Whilst the authors of

H-TCP do not provide the calculation of H-TCP’s response function, they

claim that it is comparable to that of HSTCP [LS04a].

As Standard TCP approaches low loss rates, higher values of cwnd are

observed; however, so too is the very slow growth of AIMD. This is observed

in Figure 8.4(b) where the slow increase and the dramatic decrease of cwnd

results in the low utilisation of the link over time-scales less than a single

congestion epoch, after detected loss. Also, it is this slow growth which

prevents Standard TCP from reaching high values of cwnd under a specific

loss rate compared to the other New-TCP algorithms.

BicTCP argues that the correct response function to balance between
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Figure 8.5: BicTCP cwnd dynamic (250Mbit/sec, 162ms RTT, queue-size 20%
BDP).

friendliness and scalability lies within a region between HSTCP and Scal-

ableTCP [XHR04]. Figure 8.5(a) shows the cwnd trace of BicTCP at p =

0.002 and p = 10−4. It is visible from Figure 8.5(b) that the aggressive ad-

ditive increase enables BicTCP to reach large values of cwnd, whilst the low

decrease parameter of 0.8 maintains the high value of cwnd even under consis-

tent loss. The plateau of cwnd which BicTCP uses to maximise throughput

is less visible at such (relatively) high loss rates. This is especially true in

the case of p = 0.002 where the cwnd growth after loss undergoes additive

increase.

FAST has been excluded from these results due to its dependence upon

network delay rather than network loss.

8.2.2 Bottleneck Queue Size

As bottleneck queue-sizes are important in being able to accommodate packet

bursts, it is important to provide sufficient memory at ingress and egress

queues. The larger values of the congestion avoidance increase α of New-

TCP algorithms are likely to impose a greater need for larger queue-sizes as
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Figure 8.6: Effect of varying the bottleneck queuesize on two symmetric competing
flows (100Mbit/sec, 82ms RTT, BDP 683 packets).

more packets will be sent out for each ack received [KRB05].

Figure 8.6 shows the effect of two competing TCP flows under symmetric

conditions sharing a bottleneck link with various queue size allocations. It

shows that the experimental results of goodput match closely to that of

simulation results from ns2 [ns2] for Standard TCP.

With a queue provision of less than about 5% of the BDP, all algorithms

perform badly due to packet bursts which flood the network queue. Between

this latter area and the area where the algorithms reach line rate, it can be

seen that all New-TCP algorithms perform better than Standard TCP; with

ScalableTCP and BicTCP achieving the highest aggregate goodput.
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Figure 8.7: cwnd trace of ScalableTCP at various queue-size provisions under
symmetric network conditions (100Mbit/sec, 82ms RTT, queue-size as shown).

It is worth noting that even though Equation 5.6 specifies that 100% util-

isation of Standard TCP should only occur at 100% BDP queue provision,

the calculations assume that only one flow exists in the system or that all

flows are perfectly synchronised. As such, the experimental results demon-

strate the lack of synchronisation between competing Standard TCP flows

which increases bottleneck utilisation.

Fairness between two flows of the same New-TCP algorithm across the

range of queue provisions is shown in Figure 8.6(b). It shows the difficulty

in being able to achieve consistent fairness results from the New-TCP al-

gorithms, with relatively large errors shown. However, the results do show

that all of the algorithms, with the exception of ScalableTCP, are reasonably

fair across the difficult queue-size provisions. The problems of achieving fair-

ness with ScalableTCP is shown in Figure 8.7 where the long convergence

times required for steady state are clear which (combined with the method

of measuring fairness) contribute to low fairness.

As all algorithms share the same SACK code base, the overhead gives an

indication of aggressiveness of the underlying congestion control algorithm
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Figure 8.8: cwnd and retransmissions dynamic of FAST at various queue size pro-
visions under symmetric network conditions (100Mbit/sec, 82ms RTT, Queuesize

as shown).

upon network bursts. This is shown in Figure 8.6(c). It was observed that all

New-TCP algorithms achieve higher throughput at the expense of increased

fractional losses. However, even at large queue provisions, all of the New-

TCP algorithms induce much more packet loss, with no obvious benefit in

extra goodput. This is demonstrated by the differences between the overhead

of Standard TCP and nearly all of the New-TCP algorithms. The exception

to both points is FAST, which manages to avoid excessive losses, but only

when sufficiently large queue-sizes of > 30% of BDP are provisioned.

Figure 8.8 shows the number of bytes retransmitted for the experiments.
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Figure 8.9: Instantaneous retransmissions of ScalableTCP every 100ms at 80%
queue size provision under symmetric network conditions. (100Mbit/sec, 82ms

RTT).

It can be seen that the cwnd of FAST is flat, suggesting that it is able to

utilise its RTT calculation effectively to settle into a constant cwnd value. As

such, there are almost no losses and retransmissions during the course of the

test. However, upon start-up, FAST’s slow start algorithm (which is different

from standard slow start) induces much loss and hence retransmissions. This

effect is much more pronounced in the small queue size provisions (where

Figure 8.8(d) shows almost no retransmissions) than in the large queue size

provisions, which result in the much lower overhead of FAST with larger

queue sizes.

In contrast, loss based algorithms, such as ScalableTCP as shown in Fig-

ure 8.9 have to induce loss continuously for the entire duration of the test.

Figure 8.9 corresponds to the cwnd trace presented in Figure 8.7(b) and

it can be seen that the larger cwnd flow (Scalable 1) experiences greater

loss than that of the second flow. This is due to the aggressive nature of

ScalableTCP’s algorithm with its decrease value β which favours the higher

throughput (and hence larger cwnd) flow. This is common to all loss-based

algorithms, and implies that with large capacities, much more data will have

to be retransmitted in order to maintain congestion avoidance.
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Figure 8.10: Aggregate Goodput of two competing New-TCP flows under sym-
metric network conditions (Bottleneck Queuesize set to 20% BDP).

8.3 Results

This section focuses upon the dynamics of only two competing flows along

a bottleneck link. Even though the topology and set-up of the tests are

relatively simple, it is observed that even with these straightforward tests

much information can be gathered and assessments of the various New-TCP

algorithms can be made.
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8.3.1 Symmetric Network

Goodput

Figure 8.10 shows the aggregate goodputs of two competing flows under sym-

metric environments. All New-TCP algorithms are able to achieve greater

goodput than Standard TCP, with ScalableTCP and BicTCP achieving the

highest utilisation. The poor performance by all algorithms at 16ms in the

10Mbit/sec environment is attributed to bottleneck queue-size provision of

only two packets, which results in complete queue flooding with just a single

flow (as ABC bursts two packets per ack under Standard TCP).

FAST appears to have erratic goodput performance across the range of

different bandwidths and latencies; for example its goodput performance is

comparable to all the other algorithms at 10Mbit/sec. However, it actually

achieves lower goodput than Standard TCP for low latencies in the higher

speed environments.

HSTCP is able to achieve greater goodput as the BDP increases. At the

largest BDP tested, it was observed that HSTCP has similar goodput perfor-

mance to that of the other New-TCP algorithms. The change in aggression

of HSTCP over the range of latencies is shown in Figure 8.11. It clearly

shows that with increased latency (and hence BDP) α and β values are also

increased which enables HSTCP to become more aggressive and hence able

to utilise more of the available bandwidth.

Fairness

Figure 8.12 shows the fairness achieved between two New-TCP flows. Scal-

ableTCP appears to have serious fairness problems at all capacities, being

the most unfair for long latencies and all capacities. An example cwnd trace
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Figure 8.11: AIMD parameters of HSTCP of competing flows under symmetric
network conditions (100Mbit/sec, Bottleneck Queuesize set to 20% BDP).
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Figure 8.12: Fairness between two competing TCP flows with symmetric network
conditions (Bottleneck Queuesize set to 20% BDP).
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Figure 8.13: Unfairness between ScalableTCP flows (Symmetric network,
100Mbit/sec, 162ms RTT, queuesize 20% BDP).
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Figure 8.14: Unfairness between ScalableTCP flows (Symmetric network,
10Mbit/sec, 22ms RTT, queuesize 20% BDP).

of the unfairness experienced by ScalableTCP is shown in Figure 8.13. Sim-

ilar to the effects of having large queue size provisions, it can be seen that

the unfairness between the two ScalableTCP flows is caused by very slow

convergence. Similar results were gathered for all cases where ScalableTCP

showed unfairness.

ScalableTCP also demonstrates unfairness at 22ms and 42ms under the

10Mbit/sec environment. This was found to be due to its low/high speed

mode switch when cwnd is equal to or more than 16 packets and the vastly

different cwnd update algorithms as shown in Figure 8.14.
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Figure 8.15: Unfairness between HSTCP flows (Symmetric network, 250Mbit/sec,
42ms RTT, queuesize 20% BDP).
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Figure 8.16: Unfairness between HSTCP flows (Symmetric network, 250Mbit/sec,
82ms RTT, queuesize 20% BDP).

There are also fairness problems with HSTCP at certain latencies, caused

by the regions of mode switching between the different α and β regimes.

This is visible at 82ms with 10Mbit/sec, 42ms at 100Mbit/sec and 42ms

at 100Mbit/sec. An example of this cwnd and AIMD dynamic is shown in

Figures 8.15 and 8.16 and shows that the unfairness appears to be caused

by the quantisation of HSTCP’s AIMD parameters of the two flows. This is

caused by the implementation of the look-up table as defined in [Flo03] with

discrete values of AIMD for the various operating regions of HSTCP.

In Figure 8.12(a), it can be seen that BicTCP appears to have prob-
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Figure 8.17: Unfairness between BicTCP flows (Symmetric network, 10Mbit/sec,
162ms RTT, queuesize 20% BDP).

lems achieving fairness at low capacities and high latencies, although it is

more capable at higher speeds. The problems at low capacities are shown

in Figure 8.17 which shows that at such small values of cwnd, the plateau

of BicTCP is almost non-evident, resulting in a simple aggressive additive

increase algorithm.

H-TCP appears to have to no problems achieving fairness across all net-

work conditions, and was observed to be more fair than Standard TCP in

these tests.

Overhead

The overhead of the New-TCP algorithms is shown in Figure 8.18. It can be

seen that Standard TCP has the clear advantage in terms of this metric.

At high latencies, FAST with its delay based congestion control manages

to retransmit less data per unit of goodput than Standard TCP. But at lower

capacities and latencies, the overhead of FAST is actually approximately two

orders of magnitude worse than Standard TCP. Also, at the most extreme

setting of 250Mbit/sec with 324ms delay, FAST’s goodput performance is
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Figure 8.18: Overhead of New-TCP algorithms with two competing TCP flows
with symmetric network conditions (Bottleneck Queuesize set to 20% BDP).

actually quite poor in relation to the other algorithms. This was found to

be due to FAST requiring sufficiently provisioned bottleneck queue sizes in

order to provide the multi-bit network information for FAST to be able to

settle into a constant value of cwnd. Otherwise, FAST has to resort to an

aggressive probing of bandwidth with large values of α, which induces loss

and hence decreases efficiency. This is confirmed by [KRB05] which states

that the queue has to be sized to enable the bursts of packets caused by this

increase.

The cwnd dynamic of FAST is shown in Figure 8.19. Under the lower

latency network of 42ms, it can be seen that FAST is continuously attempting
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Figure 8.19: FAST cwnd dynamics (Symmetric network, 250Mbit/sec, queuesize
20% BDP).

to increase its cwnd value through very aggressive probing, whilst under the

longer latency (and larger buffer size) of 162ms, the cwnd is able to stabilise

very quickly (after a very noisy stabilisation period at the start) to equal

sharing of the network path, with almost no losses induced by either flow;

however, towards the end of the test, the two flows’ cwnd diverge. It is worth

noting that these dynamics were typical of measurements across a range of

network environments and are not selected as worse cases behaviours. This

divergence was found to be due to the sensitivities of FAST to changes in

throughput which are only propagated into a change in cwnd dynamic a

period of time after the bandwidth change is detected [JWL+03].

Indeed, the experimental results also agree with [KRB05]. FAST incor-

porates switching between different values of α depending on the throughput

(currently measured by the rate of packets) such that in low speed environ-

ments α = 8. When performing upto 100Mb/sec α = 20 and above this it

is 200. In the experimental results, FAST only manages to stabilise cwnd

(similar to that as presented in Figure 8.19(b)) when the latency is 162ms,

42ms and 82ms for network capacities of 10, 100 and 250Mb/sec respectively.
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Figure 8.20: H-TCP cwnd dynamics (Symmetric network, 250Mbit/sec, queuesize
20% BDP).

These tests correspond to network buffer sizes of 27, 70 and 342 packets re-

ceptively which correspond approximately to the sum of α for both competing

FAST flows respectively.

At high latencies, H-TCP increases its overhead by almost an order of

magnitude; however at low latencies the results are comparable to those of

Standard TCP. A zoomed figure of the cwnd trace of H-TCP is shown in Fig-

ure 8.20 and shows the complex synchronisation between the two competing

flows.

As expected ScalableTCP has the highest overhead due to its very ag-

gressive exponential algorithm (with the exception of FAST at low speeds).

Although it should be noted that at 10Mbit/sec and 100Mbit/sec with very

long latencies, H-TCP was observed to have a higher overhead than Scal-

ableTCP.

Convergence Time

Figure 8.21 shows the convergence times between the two symmetric New-

TCP flows. The small decrease of cwnd upon loss in ScalableTCP results in a
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Figure 8.21: Convergence time to 80% throughput between two competing flows
under symmetric network conditions (Bottleneck Queuesize set to 20% BDP).

visibly increased amount of time for convergence to fairness (See Figure 8.13).

FAST, on the other hand, manages fast convergence, although this calcu-

lation arises from the interplay between flows before it converges to a stable

operating region. Also, FAST appears to have problems maintaining a stable

equilibrium (See Figure 8.19).

BicTCP and HSTCP have very similar profiles for convergence, although

it should be noted that the scales are in log form in Figure 8.21. To put

context to this, HSTCP and BicTCP spend almost a third of a ten minute

test converging to stable state for the longer latency tests.

H-TCP is able to converge quickly even in high latency environments.



8.3. Results 169

This is due to the adaptive back-off (See Figure 6.1.3) whereby upon sudden

changes in bandwidth at congestion, a more conservative back-off of 0.5 is

utilised. This is aided by the short congestion epoch time as a result of its

polynomial increase. Even with a RTT of 324ms, two H-TCP flows converge

to 80% throughput ratio within approximately half a minute under all tested

conditions; this is about four times faster than BicTCP or HSTCP.

The low convergence times of Standard TCP for the latencies of 162ms

were found to be caused by the second Standard TCP flow’s cwnd to grow

beyond the of the first flow as a consequence of slow start; which causes

immediate convergence between the two competing flows.

8.3.2 Asymmetric Network

The interaction between New-TCP flows of different latencies was investi-

gated. This was accomplished by keeping the initial flow at a latency of

162ms and varying the latency of the second flow from 16ms to 162ms.

In order to determine the effects of buffering upon the competing flows,

two values were use for the queue-size 20% of the BDP of the short latency

flow (small queue-size) and that of 20% of the long latency flow (large queue-

size).

Small Queue-size

Figure 8.22 shows the aggregate throughput of both flows under asymmetric

network conditions with a queue size buffer set to 20% BDP of the smallest

latency flow which is marked on the abscissa.

Similar to the results shown in Figure 8.10, ScalableTCP and BicTCP

managed to achieve the highest throughput out of all the New-TCP algo-
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Figure 8.22: Aggregate Goodput of two competing TCP flows with asymmetric
network conditions. The first flow is set to 162ms RTT and the second flow to
that as shown (Bottleneck Queuesize set to 20% BDP of the low latency flow).

rithms. Also FAST appears to have problems with some of the lower BDP

network conditions which is most evident with the small bottleneck queue-

sizes of the low latency network with 250Mbit/sec capacity.

What is most notable under this test is that H-TCP’s utilisation is notably

decreased with larger network capacities. Figures 8.23 and 8.24 shows the

cwnd and goodput histories for H-TCP and BicTCP respectively. A compar-

ison against BicTCP was chosen as it achieves very close to line rate in this

set of tests for all capacities. Due to the inverse relation between throughput

and latency (See Equation 4.1), the shorter latency flow is able to consume
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Figure 8.23: H-TCP under asymmetric network conditions (250Mbit/sec capac-
ity, with Flow 1 experiencing 162ms RTT and Flow 2 experiencing 22ms RTT,

queuesize 20% BDP of 22ms).
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Figure 8.24: BicTCP under asymmetric network conditions (250Mbit/sec capac-
ity, with Flow 1 experiencing 162ms RTT and Flow 2 experiencing 22ms RTT,

queuesize 20% BDP of 22ms).

more of the network resources which results in a higher throughput com-

pared to the longer latency flow. It can be seen that the first BicTCP flow

consumes almost all of the available throughput. H-TCP, however, is able

to maintain (almost) cwnd fairness, and as such the longer latency H-TCP

flow is still capable of a achieving a respectable proportion of the network

throughput.

The fairness between the New-TCP algorithms is shown in Figure 8.25.
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Figure 8.25: Fairness between two competing TCP flows with asymmetric network
conditions. The first flow is set to 162ms RTT and the second flow to that as shown

(Bottleneck Queuesize set to 20% BDP of the low latency flow).

A typical example of the performance of Standard TCP under asymmetric

networks is shown in Figure 8.26. The lack of synchronisation between Stan-

dard TCP flows have been captured in the theoretical calculations of fairness

as show in Figure 8.25.

Whilst the unfairness experienced by all algorithms is similar to Standard

TCP under low speed 10Mbit/sec tests, at higher capacities it was observed

that there is a marked difference in the unfairness properties of each New-

TCP algorithm.

ScalableTCP has the most severe unfairness being upto two orders of
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Figure 8.26: Standard TCP under asymmetric network conditions (100Mbit/sec
capacity, with Flow 1 experiencing 162ms RTT and Flow 2 experiencing 42ms

RTT, queuesize 20% BDP of 42ms).

magnitude more unfair than Standard TCP in identical test environments.

HSTCP, BicTCP and FAST have similar unfairness properties at across the

board. Out of all the algorithms, only H-TCP shows fairness across the

range of RTT ratios that is more than that of Standard TCP. This suggests

that on a long distance link, H-TCP flows will not be starved of throughput

by shorter latency H-TCP flows, whilst the other New-TCP algorithms are

likely to cause lock-up of the competing New-TCP flow.

Large Queuesize

The effect of a larger queue size clearly shows an almost full utilisation of

the network capacity for all algorithms as shown in Figure 8.27. However,

Standard TCP still suffers from reduced goodput with long latencies. This

effect was also observed with HSTCP (although not as much), and is expected

as it only gradually deviates from that of Standard TCP with larger BDP at

such low cwnd values.

The fairness between the flows is shown in Figure 8.28. The effect of

differing queue sizes upon the fairness between two asymmetric ScalableTCP
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Figure 8.27: Aggregate Goodput of two competing TCP flows with asymmetric
network conditions. The first flow is set to 162ms RTT and the second flow to
that as shown (Bottleneck Queuesize set to 20% BDP of the high latency flow).

flows is shown in Figure 8.29. In both cases the long latency flow is severely

handicapped by the aggressiveness of the second flow.

H-TCP is much more fair with bandwidth allocation between flows as

shown in Figure 8.30. It shows that even with large latency differences be-

tween flows, the longer, and hence less responsive flow is able to maintain

a sufficiently large cwnd to enable high throughput transport, and hence

achieve fairness. As the bandwidth is inversely proportional to the latency

of the flow, a larger cwnd is required by a longer latency flow in order to

remain fair. This is shown in Figure 8.30(b).
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Figure 8.28: Fairness between two competing TCP flows with asymmetric network
conditions. The first flow is set to 162ms RTT and the second flow to that as shown

(Bottleneck Queuesize set to 20% BDP of the high latency flow).
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Figure 8.29: ScalableTCP under asymmetric network conditions (100Mbit/sec ca-
pacity, with Flow 1 experiencing 162ms RTT and Flow 2 experiencing 16ms RTT).
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Figure 8.30: H-TCP under asymmetric network conditions (100Mbit/sec capac-
ity, with Flow 1 experiencing 162ms RTT and Flow 2 experiencing 22ms RTT.

Bottleneck queue size at 20% BDP of the 162ms flow).

8.3.3 Friendliness

Figure 8.31 shows the aggregate throughput between a Standard TCP flow

and a New-TCP flow under symmetric network conditions.

As the New-TCP algorithms are more aggressive, especially in high BDP

environments, the question is by what ratio the goodput is shared between

the legacy TCP flow and the New-TCP flow. Figure 8.32 shows the friendli-

ness of New-TCP algorithms against Standard TCP under identical network

conditions across a range of different network environments.

The aggressiveness of a ScalableTCP flow against Standard TCP can be

seen in Figure 8.33. Even under environments where Standard TCP is still

capable of high throughput, the cwnd dynamic of ScalableTCP forces the

goodput of Standard TCP to well below fair sharing of the link. It can be

seen that all loss-based congestion algorithms predictably become less fair to

Standard TCP as the bottleneck capacity increases. At 10Mbit/sec, however,

ScalableTCP and FAST are still more aggressive to the Standard TCP flow

and impose an unfairness of approximately 1:5.
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Figure 8.31: Aggregate Goodput of a Standard TCP flow competing against a
New-TCP flow with symmetric network conditions (Bottleneck Queuesize set to

20% BDP).

The interaction between Standard TCP and FAST is shown in Figure 8.34

and shows that the increase in average queue occupancy of the Standard TCP

flow causes the FAST flow to back away due to the delay-based response

to congestion control of FAST. The effect of this approach is that FAST

exhibits an almost opposite representation of the Standard TCP goodput.

The result of this is that FAST is especially friendly under environments

where Standard TCP is incapable of high goodput, but also implies that the

FAST flow actually achieves less goodput at the cost of increased fairness

with Standard TCP.
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Figure 8.32: Friendliness between a Standard TCP flow competing against a New-
TCP flow with symmetric network conditions (Bottleneck Queuesize set to 20%

BDP).
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Figure 8.33: Standard TCP competing against ScalableTCP under symmetric
network conditions (100Mbit/sec capacity, 82ms RTT, 20% BDP queuesize).
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Figure 8.34: Standard TCP competing against FAST under symmetric network
conditions (100Mbit/sec capacity, 82ms RTT, 20% BDP queuesize).
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Figure 8.35: Standard TCP competing against FAST under asymmetric network
conditions (250Mbit/sec capacity, 42ms RTT, 20% BDP queuesize).

The failure of the FAST dynamic upon insufficiently provisioned queue-

sizes is shown in Figure 8.35. In contrast to the dynamic as shown in Fig-

ure 8.34, FAST continually induces an aggressive ramp up without being able

to stabilise into its congestion control algorithm. The result is unfairness be-

tween the Standard TCP flow and the FAST flow that is actually more ag-

gressive than that of ScalableTCP. The utilisation under such environments

is also lower than that of just two Standard TCP flows, due primarily to

flooding of packets into the network by the FAST flow at 250Mbit/sec.

Conversely to the other loss-based algorithms, H-TCP at high speeds
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Figure 8.36: Standard TCP competing against H-TCP under asymmetric network
conditions (250Mbit/sec capacity, 20% BDP queuesize).

shares its goodput very fairly in low latency environments, and becomes

more aggressive as the RTT increases; utilising more of the path capacity

in environments where Standard TCP would be incapable of high transport.

This is shown in Figure 8.36. This dynamic is due to the time based adaptive

congestion control that becomes more aggressive as the congestion epoch time

becomes larger, and indicates that Standard TCP is incapable of utilising the

network resources. However, the use of a polynomial increase function results

in a very aggressive algorithm that results in less friendliness to Standard

TCP compared to that of HSTCP and BicTCP in high bandwidth delay

product environments.

It was observed that the friendliness of BicTCP and HSTCP follow similar

trends to each other. Figure 8.37 shows the interaction between BicTCP and

Standard TCP for 22ms and 162ms with a bottleneck capacity of 250Mbit/sec.

It can be seen that the plateau’ing of BicTCP’s cwnd facilitates the growth

of Standard TCP’s cwnd and hence improves fairness upon long latency en-

vironments - whilst still maintaining a high value of cwnd to enable high

utilisation of the network capacity. However, under short latency environ-
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Figure 8.37: Standard TCP competing against BicTCP under asymmetric network
conditions (250Mbit/sec capacity, 20% BDP queuesize).
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Figure 8.38: Standard TCP competing against HSTCP under asymmetric network
conditions (250Mbit/sec capacity, 20% BDP queuesize).

ments, the plateau has negligible effect and effectively becomes an aggressive

linear increase causing unfairness against the Standard TCP flow.

The performance of HSTCP’s friendliness is shown in Figure 8.38. Com-

pared to that of BicTCP (Figure 8.37), it is observed that the period between

(synchronised) congestion events is less, therefore forcing Standard TCP into

a slightly lower average cwnd causing less friendliness of HSTCP against

Standard TCP than that of BicTCP. At lower latencies, the opposite is true;

HSTCP induces congestion less frequently and therefore is more fair against

the Standard TCP flow.
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Asymmetric

New-TCP Symmetric Small Buffer Large Buffer Friendliness

Standard TCP 207.6±1.3 187.7±1.9 212.1±1.1 207.6±1.3
BicTCP 229.7±0.0 228.9±0.2 229.9±0.2 228.7±0.1
FAST 219.6±6.4 208.7±0.2 229.8±0.1 229.6±0.1
HSTCP 218.4±0.0 219.3±0.1 229.7±0.6 219.8±0.1
H-TCP 225.9±0.0 219.8±0.1 227.4±0.7 221.4±0.4

ScalableTCP 229.7±0.5 229.9±0.1 230.2±0.0 229.7±0.1

Table 8.1: Summary goodput (in Mbit/sec) of two competing New-TCP flows at
250Mbit/sec bottleneck and 82ms RTT.

8.4 Discussion of Results

Even simple tests can show the very different performances of the different

New-TCP algorithms. This section describes the various congestion control

algorithms and how they affect the performance metrics.

8.4.1 Goodput

All New-TCP algorithms fulfill the primary goal of being able to achieve

high goodput across the range of network environments under investigation

as shown in Table 8.1.

Amongst the algorithms, ScalableTCP and BicTCP are consistently able

to achieve the highest utilisation of the all of the algorithms tested.

FAST also has good prospects of utilising all of the capacity of the path.

However, it appears to be hampered by the requirement to have a queue

size buffers suited to the value of its α parameter in order to remain stable.

When the network buffer size is approximately less than the sum of FAST’s α

values for every FAST flow then the performance is seriously degraded as the

flows cause the bottleneck queue to overflow, which induces large oscillations
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Asymmetric

New-TCP Symmetric Small Buffer Large Buffer Friendliness

Standard TCP 0.87±0.05 0.34±0.04 0.40±0.04 0.87±0.05
BicTCP 0.97±0.02 0.01±0.00 0.02±0.00 0.07±0.00
FAST 0.31±0.14 0.10±0.00 0.11±0.00 0.44±0.00
HSTCP 1.00±0.00 0.05±0.00 0.05±0.00 0.05±0.00
H-TCP 1.00±0.00 0.59±0.00 0.59±0.13 0.06±0.00

ScalableTCP - 0.01±0.00 0.01±0.00 0.01±0.00

Table 8.2: Summary fairness of two competing New-TCP flows at 250Mbit/sec
bottleneck and 82ms RTT.

in FAST’s throughput which can be less than that of Standard TCP.

As expected, HSTCP shows very little deviation from Standard TCP

goodput at low speeds, but the increase of BDP shows HSTCP to be as

aggressive as the other algorithms as larger cwnd values are reached.

H-TCP has similar goodput performance to that of HSTCP.

8.4.2 Fairness and Friendliness

Whilst the fairness between symmetric flows was not expected to be a difficult

test for the New-TCP algorithms, results showed otherwise. This was most

noticeable for ScalableTCP and FAST and is demonstrated in Table 8.2. In

the former case, unfairness resulted primarily because of the long convergence

times required due to the small back-offs experienced by the high throughput

flow which requires many congestion epochs to result in fair share between

flows.

FAST, on the other hand, appears to have instability issues across the

tested environments which result in both short term and long term unfair-

ness issues. Unlike the loss-based algorithms, the dynamics of FAST are

very dependent upon the queue size allocation. At small sizes, the aggres-
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sive probing of FAST causes severe unfairness against Standard TCP and

other FAST flows. However, with sufficiently provisioned buffers, sized to

the sum of α value(s) of the FAST flow(s), long term fairness is optimal,

even when competing against Standard TCP. The term optimal is used as

it is not aggressive against the competing flow, but facilitates the usage of

all of the spare bandwidth on the link. It is therefore optimal in the sense

that it attempts to not induce loss on the competing flow and hence en-

ables the perturbative flow to achieve as much goodput as it can without

inducing losses on the network path that could result in unfairness. This

is especially important in high-speed, high-delay networks as there is plenty

of spare bandwidth, and FAST is capable of using the throughput without

being too aggressive.

H-TCP also shows high friendliness at low latencies, however becomes

less friendly with high latencies due to the increased congestion epoch times.

More revealing are the asymmetric tests which show that all algorithms

exhibit lower fairness than that of Standard TCP with the exception for

H-TCP. The implication of RTT unfairness upon all of the loss-based algo-

rithms is that short latency flow almost completely prevents the long latency

flow from achieving any throughput. The way in which fairness scales is of

vital importance as higher network capacities (and BDPs) result in a greater

degrees of unfairness between flows of different latencies as the high through-

put flow becomes more aggressive. This is most evident with ScalableTCP

and BicTCP which almost consistently prevent another flow from attaining

sufficiently large values of cwnd to enable fairness.

More interestingly, whilst ScalableTCP and BicTCP perform the best

with regards to goodput performance, they are the worst performers under

the fairness metrics.
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New-TCP Convergence Time

Standard TCP 32.8±12.3
BicTCP 45.2±5.1
FAST 4.7±0.2
HSTCP 60.2±3.7
H-TCP 29.6±2.7

ScalableTCP -

Table 8.3: Summary convergence times (seconds) of two competing New-TCP flows
at 250Mbit/sec bottleneck and 82ms RTT under Symmetric network conditions

(20% BDP queue-size).

HSTCP also shows RTT unfairness which is caused by the relatively low

increase parameters and small decrease factors of low cwnd flows. This results

in a flow that is not as aggressive as the low latency flow (which gain large

cwnd values quickly) and therefore incapable of achieving high throughput.

H-TCP, with its RTT Scaling, enables fairer sharing of asymmetric links;

so much so that it is actually fairer than Standard TCP. This therefore

prevents lock-out and will ensure that even very long latency flows will not

be starved of goodput.

8.4.3 Responsiveness/Convergence Time

It can be seen in Figure 8.13 that the convergence times of ScalableTCP are

very slow (it does not converge to fairness as shown in Table 8.3). Even

though ScalableTCP has a small congestion epoch time, the decrease factor

of 0.875 means that the drop in throughput of the first flow at the moment

of congestion is small, and is therefore slow to react to sudden decreases in

available bandwidth.

This effect is also evident with HSTCP during the time of the test (see

Figure 8.21) and can readily be seen that the convergence time is in the
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order of hundreds of seconds for a symmetric latency of 162ms. In HSTCP’s

case, even though the decrease factor is not static, but dependent upon the

cwnd value, a high capacity flow has smaller a back-off per congestion, and

therefore many more congestion epochs are required for the flows to converge

to fairness. Meanwhile, HSTCP flows with small cwnds experience large

decreases upon congestion, and therefore are much more likely to take a

longer time under periodic losses to reach a large value of cwnd. [NY04]

specifies an adaptation to the back-off times of HSTCP such that the decrease

factor is the same as that of Standard TCP (β = 0.5) under a detected

downward trend of cwnd at consecutive congestion events.

Slow convergence is also evident with BicTCP, where even though the

decrease parameter is static, the time between congestion epochs is dependent

upon the increase parameter. Under low BDP’s, BicTCP reverts to an almost

‘additive increase only’ regime which aids short congestion epoch times and

therefore improves convergence times. However, as larger cwnd values are

reached by BicTCP, the result of this plateau is that the congestion epoch

time is larger, and as such the convergence time increases.

FAST, unlike all of the loss-based algorithms, always results in the per-

turbing flow achieving larger cwnd values upon start-up than that of the

existing flow. As a result, the convergence times for FAST is very small -

however, this does not include the time required to actually reach stability

between competing flows.

H-TCP takes the approach whereby under highly variable environments,

the back-off factor is reduced to that of Standard TCP. Also, as H-TCP’s

α is polynomial in time, the period between congestion epochs is always

small. The combination of these two factors results in a fast convergence

between competing H-TCP flows where for long latency environments, the
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Asymmetric

New-TCP Symmetric Small Buffer Large Buffer Friendliness

Standard TCP 0.52±0.01 2.09±0.15 1.57±0.25 0.53±0.01
BicTCP 5.08±0.00 6.44±0.70 5.05±0.67 3.25±0.40
FAST 20.2±10.9 29.2±0.61 0.36±0.04 0.01±0.00
HSTCP 2.95±0.01 7.63±0.65 6.53±0.77 3.98±0.21
H-TCP 3.11±0.04 4.99±0.09 4.47±1.00 3.99±0.13

ScalableTCP 9.64±0.15 12.3±0.64 11.45±0.83 22.4±0.08

Table 8.4: Summary overhead (Bytes/Mbit/sec × 1e-7) of two competing New-
TCP flows at 250Mbit/sec bottleneck and 82ms RTT.

convergence time is almost constant.

8.4.4 Overhead

H-TCP is good at being fair and switching into aggressiveness to utilise

spare capacity as shown in Table 8.4. However, the polynomial increase with

respect to time means that a lot of packets can be lost in one window, and

efficiency decreases as a result. This is most evident for network environments

which result in large periods of congestion epochs, whilst the overhead is

similar to Standard TCP under environments with short congestion epoch

times.

FAST, with its delay based approach to congestion control, is also very

capable of low loss rates, but requires that the bottleneck queue sizes are

provisioned such that they are at least equal to the number of flows multiplied

by their α values. Under such environments, the overhead of FAST can be

as much as two orders of magnitude better than Standard TCP. However,

under environments with low levels of queue provisioning along the path,

the loss rates of FAST are much higher resulting in two orders of magnitude

less efficiency compared to StandardTCP. This is caused primarily by the
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aggressive increase of FAST as it attempts to determine an optimal rate to

send data at.

BicTCP does very well in terms of reducing the number of losses due to

the use of its plateau as this helps maintain a high throughput and increases

the amount of time between congestion epochs (and hence loss events). The

subsequent additive increase after loss also facilitates the quick probing of

capacity and determination of a new plateau for cwnd, without substantially

increasing the overhead associated with the subsequent probing.

ScalableTCP, whilst very aggressive, does not have that much more of an

overhead than that the other algorithms under test (except FAST with low

BDP queue-size allocations).

8.5 Summary

The deployment of New-TCP is important in order for network applications

to be able to utilise future network resources effectively. However, due to the

requirement of large values of cwnd in order to maintain sufficient amounts

of data on the network to facilitate high throughput transport, the dynamic

of growing and maintain these large cwnd values plays a vital role in the

various performance traits of New-TCP algorithms.

All algorithms tested have very different characteristics in achieving large

cwnd values and the way they respond to loss events. However, a careful

choice of α and β is required to maintain a balance between flows such that

neither slow convergence nor lock-out occurs. There is a similar argument

for friendliness; the slow increase and large decrease of Standard TCP means

that it will nearly always result in low goodput performance when competing

with New-TCP flows which result in low fairness/friendliness.
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The importance of analysing the performance of each New-TCP with

more than just a single metric was demonstrated. Whilst ScalableTCP and

BicTCP show the highest goodput of all of the New-TCP algorithms, they

have problems with slow convergence which results in short term unfairness

between competing flows.

Also, whilst FAST appears to have problems competing with another

FAST flow, it shows benefits in short term deployability with its reactive ap-

proach to congestion by ensuring high levels of friendliness with a competing

Standard TCP flow.

One problem which is exhibited by all New-TCP algorithms, except for

H-TCP, is RTT unfairness. At lower capacities, the level of unfairness is

much lower. However, at much higher capacities the increased aggressiveness

of most of the algorithms means that lower latency flows are much more

aggressive and therefore cause almost complete lock-out of the longer latency

flow.

H-TCP also has the advantage of fast convergence between competing

flows, exhibiting almost constant convergence times at longer latencies. How-

ever, H-TCP also has problems with increased overhead with long latencies

due to its time based approach to congestion control.



Chapter 9

Transport Over Wide Area

Networks

The understanding of New-TCP protocols through laboratory networks is

important to understand the deviations from their theoretical dynamics.

However, the application on real life networks may provide insight into un-

expected performance problems. This section investigates the limits of New-

TCP in terms of hardware and software constraints and analyses the perfor-

mance of these protocols in real high speed network environments.

9.1 Transfer Tests Across Dedicated Private

Wide Area Networks

The application of tests on real network hardware will demonstrate the po-

tential problems that users will face in providing high throughput transport

across the Internet.

190
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Two projects that have aided in the facilitation of understanding high

speed network transport are the cross-UK MB-NG development network (See

Appendix C.2) and the transatlantic DataTAG testbed (See Appendix C.3).

Both networks were configured to provide a link capacity of 1Gbits/s and

the performance of New-TCP algorithms was investigated.

9.1.1 Methodology

A series of tests were conducted to analyse the performance of New-TCP

flows at 1Gb/sec on the DataTAG and MB-NG testbeds. The two extremes

of latencies available with these two networks enable analysis of the cwnd

dynamics of New-TCP. DataTAG provides the high capacity, high latency

networks at which Standard TCP fails and these algorithms are designed to

operate, whilst the low latencies of MB-NG can provide information regard-

ing the switch between the low and high speed mode of these algorithms.

At the time of the testing only HSTCP, ScalableTCP and H-TCP had

been proposed and were therefore available for testing. As such, the results

within this section are limited to only these New-TCP algorithms.

iperf [TQD+03] was used to initiate TCP flows that simulate bulk trans-

fer using standard IP packet sizes of 1500B. All machines used in the tests

were installed with the altAIMD kernel version 0.3 and were run with Ap-

propriate Byte Counting (See Section 5.2.4) with local host buffers set to

sufficiently large values as shown in Table B.2 to ensure that performance

bottlenecks did not exist in the end-host systems.

All flows were also configured with sufficient socket buffer allocation to

prevent host-based flow control and each test was repeated at least three

times to determine an appropriate standard error.
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A series of different network conditions were created in order to monitor

the performance of New-TCP algorithms. They are described as follows:

Variable UDP Background Load

Given a static queue-size, a path may experience varying loads that would

represent the background traffic of the path. Therefore, an experiment was

devised to test the capability of these algorithms as the average queue occu-

pancy is increased as a result of an increase in background traffic load.

Whilst the buffer dynamic of running constant bit rate (CBR) traffic

would not be representative of the complex interactions of self-similar traffic

[CB95, LTWW94, PKC97], UDP CBR background traffic is used to simplify

understanding. As such, a custom made tool, FIP, was developed to generate

UDP based background traffic to guarantee packet delivery times of a specific

traffic profile based on the number of packets that should be sent out per

time interval.

Tests were conducted with both single and ten concurrent New-TCP flows

competing against various loads of CBR background traffic. For the case of

multiple concurrent TCP flows, the flows were distributed evenly over the

available testbed PCs in order to reduce hardware and scheduling constraints

imposed by running many flows on a single machine.

Number of Concurrent Flows

As New-TCP protocols are designed to be replacement protocols for the

Standard TCP algorithm, it is important to understand the affects of running

many flows on the network. Therefore, an experiment was devised to run

many concurrent ‘parallel’ New-TCP flows on the test networks to determine
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the goodput and fairness characteristics of the aggregate traffic.

Impact

The primary aim of New-TCP proposals is to utilise the available link band-

width better. However, the result of this increased utilisation is that it

will disrupt the traditional ‘background’ traffic sharing the link by ‘stealing’

bandwidth from Standard TCP flows and causing unfriendliness (See Sec-

tion 8.3.3). The amount by which New-TCP algorithms affect varying num-

bers of legacy Standard TCP bulk transport flows can be defined through a

impact which provides an interpretation of fairness and an indication of how

intrusive a New-TCP algorithm is:

Impact =
B(n)−B(i)

B′(n)−B′(i)
(9.1)

Given a pipe with n TCP flows, define B(n) to be the aggregate goodput

of n Standard TCP flows and B(i) to be the goodput of i Standard TCP

flow in the presence of the aggregate. Under identical network conditions,

also define B′(n) to be the aggregate goodput of n flows, of which n − i

flows are that of Standard TCP flows in the presence of i New-TCP flows.

Furthermore, define that B′(i) is the aggregate goodput of i New-TCP flows.

As such, the impact provides the ratio of achieved goodput of the Stan-

dard TCP aggregate with and without the inclusion of i flows of New-TCP.

Therefore, this represents the impact of i New-TCP flows upon the goodput

achieved by n Standard TCP bulk transport users compared to that of Stan-

dard TCP flow. A value of UIF > 1 means that the goodput experienced

by a legacy TCP flow as a result of being run concurrently with a New-TCP

flow is diminished due to the aggressiveness of the New-TCP algorithm.
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Figure 9.1: Response Function of New-TCP over dedicated test networks.

9.1.2 Calibration

A calibration test was conducted to ensure the appropriate implementation of

the New-TCP algorithms under the altAIMD 0.3 kernel. This was achieved

by comparing experimental results with that of theory for the response func-

tion (See Section 5.4.2).

This was performed between a single pair of end systems where packets

were selectively dropped at the receiver in a regular fashion making use of a

kernel modification to achieve the drop. The implementation of this packet

drop relies on the counting of all received data packets at the receiver whereby

the checksum for every n’th packet is declared invalid in order to simulate

bit error on the network path and at packet loss rate of p = 1/n.

Figure 9.1 shows that the introduction of a single packet drop per window

is handled well in the kernel, and that the experimental results match very

closely to theory for both networks. And in agreement with theory, Scal-

ableTCP is consistently able to obtain better or equivalent throughput than

both HSTCP and H-TCP over the range of the drop rates.

It can be seen that the mode switch from low to high speeds matches

closely to theory and is handled well in ScalableTCP and HSTCP in the low
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Figure 9.2: Quantisation of cwnd.

latency environment of MB-NG. The exception is the introduction of a slight

glitch just before the mode switch of ScalableTCP at approximately p = 0.02

and the slightly higher goodput of HSTCP at approximately p = 0.001. In

both cases, this was due to the switch between the respective low and high

speed modes, which due to the constant packet loss rate results in larger

values of cwnd and hence high goodput (See Section 8.2.1).

The slightly higher goodputs experienced in the experimental tests com-

pared to the theory for MB-NG for ScalableTCP and HSTCP are due to

quantisation effects as the Linux kernel stores the value of cwnd as integers1.

As the implementation of the decrease calculation of cwnd upon congestion

in Linux is cwnd ← cwnd − b × cwnd, the calculation of cwnd upon loss is

such that the rounding error is less than what it should be and hence the

final value of cwnd is in fact higher.

This is shown for ScalableTCP at 0.02 p in Figure 9.2 where the maximum

value of cwnd is 18 packets. As the back-off b of ScalableTCP is 1/8, the

corresponding value of cwnd upon packet loss should be 15.75; however, due

to the quantisation of cwnd, the actual value used is 16. This results in the

1In order to determine when to update cwnd, a separate integer counter cwnd cnt
which is increased per valid ack and checked to see if it is larger than cwnd before cwnd
is increased by a whole number. Thus maintaining an increase of 1 cwnd per RTT under
Standard TCP.
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observed slight increase in the goodput in Figure 9.1.

Conversely, the decrease factor of H-TCP is programmed such that cwnd←

β × cwnd and therefore, the calculation upon loss actually results in a lower

cwnd and goodput. The effect of this is most notable on the MB-NG network.

The observed higher goodput achieved with Standard TCP on the DataTAG

link is attributed to the method by which packets are dropped by the receiver

and the limited duration of the test. As the counting of packets also include

those under slow start, a large initial value of cwnd occurs due to the expo-

nential increase of slow start. Therefore, with lower loss rates, a high average

for the goodput is achieved due to the goodput bias as a result of slow start.

This effect is less apparent for the New-TCP algorithms due to the fast(er)

increases in α which ensures a fair number of congestion epochs and therefore

stable operation of congestion avoidance. A solution to this bias would be

to run the tests of Standard TCP for a prolonged period of time. However,

due to to practical reasons this was not feasible.

On both networks, as lower loss rates result in goodputs reaching 1Gb/sec,

the New-TCP flows are no longer limited by the dynamics of cwnd, but by

physical limitations of the NIC which causes saturation of goodput at the

physical line rate.

9.1.3 Results: CBR Background Traffic with 1 New-

TCP Flow

Figure 9.3 shows the goodput achieved by a single TCP flow competing

against various loads of CBR traffic along both MB-NG and DataTAG. Under

MB-NG, all of the algorithms achieve roughly the same throughput; with H-

TCP actually being able to get a little more bandwidth than all of the other
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Figure 9.3: Goodput of a single TCP flow against various Background Loads.
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Figure 9.4: Goodput of 10 New-TCP flows against various CBR Background
Loads.

algorithms. ScalableTCP (and less so with HSTCP) flows apparently achieve

lower goodput for regions of low competing background rates.

However, tests on the DataTAG testbed shows very different goodput

profiles for each New-TCP algorithm which are discussed in depth in Sec-

tion 9.1.7.
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9.1.4 Results: CBR Background Traffic with 10 New-

TCP Flows

Figure 9.4 shows the goodput of running 10 New-TCP flows against varying

amounts of CBR traffic and shows that on both networks, the aggregate

goodput of all algorithms were almost identical - including that of Standard

TCP on the DataTAG network. Generally, ScalableTCP and H-TCP are

able to squeeze a little more out of the available bandwidth than the other

algorithms on MB-NG, yet achieved similar rates to HSTCP on DataTAG.

ScalableTCP was also able to achieve a little more combined goodput at

around 500Mbit/sec CBR background on the long latency link of DataTAG.

Figures 9.5 and 9.6 gives a representation of the fairness between the 10

New-TCP flows on the MB-NG and DataTAG respectively. They show box-

plots representing the range and quartiles of the achieved mean goodput of

the 10 competing New-TCP flows under each CBR background rate. In order

to give a comparative analysis of the fairness in each network environment,

the box-plots are normalised by the mean goodput of the flows which is plot-

ted on the secondary y-axis. While the aggregate goodput results gathered

represent the means and standard deviations on the mean of many iterations

of the tests, the figures shown only present that of a single iteration.

Under MB-NG the fairness distribution between H-TCP flows was sim-

ilar to that of Standard TCP. It can be argued that ScalableTCP shows a

greater variation in the fairness distribution between flows with less compet-

ing background traffic. However, ScalableTCP shows similar fairness to that

of the other algorithms at higher background rates (i.e. lower average TCP

goodputs).

However, it was observed that there was a wider distribution of goodput
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Figure 9.5: Fairness distributions between 10 New-TCP flows against various Back-
ground Loads on MB-NG.

under DataTAG for Standard TCP compared to that of HSTCP and H-TCP.

This is due to the slow growth of cwnd under this environment which results

in a lack of congestion epochs which are required for flows to back-off and

converge to fairness. Therefore, the unfairness between Standard TCP flows

in the DataTAG environment is more dependent upon the exit value of cwnd

after slow start (rather than the dynamic of AIMD) due to the relatively short

duration of the tests. These results demonstrate the short term unfairness

experienced between Standard TCP flows under high BDP environments.

It was observed that ScalableTCP is mostly fair, except for stray flows

which achieves approximately 1.5 to 2 times the mean goodput of the other

flows. This is demonstrated in the box-plots by the consistent outlier point in

each test. However, ScalableTCP shows a much greater variation in average

flow goodputs than that of both HSTCP and H-TCP.
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Figure 9.6: Fairness distributions between 10 New-TCP flows against various Back-
ground Loads on DataTAG.
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Figure 9.7: Aggregate goodput of n New-TCP flows.

9.1.5 Results: Multiple Flows

These sets of experiments demonstrate the fairness between identical New-

TCP flows as the number of competing flows is increased. There is no com-

peting traffic and all flows in each test are distributed between the testbed
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Figure 9.8: Fairness between various number of concurrent parallel New-TCP flows
on MB-NG.

PCs.

Figure 9.7 shows the achieved aggregate goodput of n flows of each stack.

A slight increase in the total achieved goodput of all flows on MB-NG was

observed with an increase in the number of ‘parallel’ flows. All New-TCP

algorithms on MB-NG also exhibit similar aggregate goodputs, with Scal-

ableTCP and H-TCP achieving a greater goodput than that of HSTCP.

This is unsurprising due to the relatively large queue size allocations of the

network which facilitates high utilisation of the network.

On the DataTAG link, it was observed that Standard TCP bulk goodput

scales poorly on the long latency link, with an almost linear increase in

performance with the number of flows up to about 10 flows. Beyond this

value, the differences in the aggregate goodput between HSTCP, H-TCP and

Standard TCP are less apparent, showing a maximum utilisation of about
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Figure 9.9: Fairness between various number of concurrent parallel New-TCP flows
on DataTAG.

80%. ScalableTCP achieves similar goodputs to that of the other New-TCP

algorithms with a small number of flows, but is able to achieve utilisation

with more flows.

Figures 9.8 and 9.9 show the fairness distributions of running numerous

concurrently parallel flows of each algorithm. Under the low latency network

of MB-NG, it was observed that ScalableTCP appears to have poor fairness

for 5 or more flows, with 33 flows demonstrating severe unfairness. However,

this is also true of the other algorithms - including Standard TCP. It can

be argued that the fairness performances of HSTCP, H-TCP and Standard

TCP are comparable under this low latency environment.

With the longer latencies of DataTAG, the lower mean goodput of each

Standard TCP flow is apparent. Out of all of the algorithms, H-TCP appears

to have the best fairness, with the smallest distribution of goodputs for all
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Figure 9.10: Impact of New-TCP flows on Standard TCP Bulk Traffic on MB-NG.

number of flows. HSTCP shows similar fairness profiles to that of Standard

TCP. This is expected due to the deviation towards standard AIMD pa-

rameters with smaller cwnd values of each flow. The unfairness experienced

between Standard TCP flows is primarily due to the lack of congestion epochs

between flows which keeps the flows at fixed unfairness for a longer period.

ScalableTCP has clearly the largest spread of goodputs and is therefore

the least fair of the algorithms shown. It also suffers from consistently high

number of outlying points suggesting that a small number of flows always

achieves large values of goodput compared to the other flows.

9.1.6 Results: Impact

Figures 9.10 and 9.11 show the impact of running 1 and 10 New-TCP flows

upon various numbers of Standard TCP bulk transport flows. As noted

before, an impact greater than unity implies the degree of unfairness between

the Standard TCP flows and New-TCP flows.

In both networks, impact tends to unity due to the decreased average

goodput per flow due to sharing of the network capacity.

Under MB-NG, it was observed that these New-TCP algorithms are rela-



9.1. Transfer Tests Across Dedicated Private Wide Area Networks 204

 0

 5

 10

 15

 20

 1  10

Im
pa

ct

Number of Standard TCP Flows

HSTCP
HTCP

ScalableTCP
Unity

(a) 1 New-TCP Flow

 0

 5

 10

 15

 20

 1  10

Im
pa

ct

Number of Standard TCP Flows

HSTCP
HTCP

ScalableTCP
Unity

(b) 10 New-TCP Flow

Figure 9.11: Impact of New-TCP flows on Standard TCP Bulk Traffic on
DataTAG.

tively fairer under the low latency network due to the low cwnd values associ-

ated with the bandwidth delay product of the MB-NG network. H-TCP, on

the other hand, appears to be ‘too fair’ with the competing background traf-

fic, by actually facilitating a higher goodput of the background traffic. This

was found to be due to the slower cwnd increase of H-TCP while the con-

gestion epoch time was small combined with the overly aggressive decrease

implementation as a result of cwnd quantisation.

Under DataTAG, it was readily observed that the larger cwnd values as-

sociated with the large bandwidth delay products increased the impact of

the New-TCP flows. Surprisingly, H-TCP appears to be the most aggressive

under single flows. Upon closer inspection of the cwnd traces, it was found

that this was due to the severity of the cwnd decreases due to SACK process-

ing and moderate_cwnd() which lowered goodput of both ScalableTCP and

HSTCP. H-TCP was aided by the relatively faster convergence times which

facilitate higher goodput, and hence also increased impact.

With a larger number of New-TCP flows, these problems were alleviated

due to smaller bandwidth delay products per flow, and clearly shows the
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aggressive impact of ScalableTCP. Both HSTCP and H-TCP appear to have

similar impact properties, with H-TCP being a little bit more aggressive with

larger numbers of Standard TCP flows.

9.1.7 Discussion of Results

In order to better understand the lack of bandwidth utilisation of a sin-

gle New-TCP flow when competing against CBR traffic (See Figure 9.3),

Figure 9.12 shows the cwnd and goodput traces of the various New-TCP

algorithms with 200Mbit/sec and 600Mbit/sec CBR background loads. For

HSTCP, at low background loads and after congestion, the value of cwnd

diminished below the value of ssthresh. It is this decrease in cwnd after

congestion that lowers the goodput even though extra bandwidth is avail-

able.

Similar results were observed for ScalableTCP. However, unlike HSTCP,

there are intermittent periods whereby the cwnd actually drops to very low

values and ScalableTCP has to grow cwnd all the way from very low values of

cwnd upto the point of congestion. At lower goodputs, ScalableTCP is able

to function appropriately, with a very small back-off per congestion event

which results in a slightly higher goodput compared to the other algorithms.

It was observed that H-TCP’s dynamic is not as severely affected under

large bandwidths as that of ScalableTCP or HSTCP, which explains the

slightly higher value of H-TCP under MB-NG.

As the TCP specifications [Jac88] state that the cwnd should be set to

the calculation of ssthresh upon congestion (plus 3 packets for the duplicate

acknowledgments), is it surprising that the values of ssthresh for these tests

show that there is no recalculation. This suggests that these drops in cwnd
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Figure 9.12: cwnd trace of New-TCP algorithms with various CBR Background
Traffic loads on MB-NG.

were not associated with time-outs.

This effect is more pronounced with the DataTAG results (See Figure 9.3(b)),

whereby a large dip in goodput was experienced for all algorithms in the re-

gion between 100Mbit/sec and 400Mbit/sec CBR background.

Figure 9.13 shows the large variation of cwnd dynamics of New-TCP al-
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Figure 9.13: cwnd trace of New-TCP algorithms with various CBR Background
Traffic Loads on DataTAG.

gorithms on the DataTAG testbed. With 600Mbit/sec background, the cwnd

dynamic of ScalableTCP is as expected which results in high utilisation of

the path (with the exception of an early packet drop which forces the flow to

undergo ScalableTCP congestion avoidance in order to fill the pipe). How-

ever, with 200Mbit/sec background, a different cwnd dynamic was observed

whereby consecutive sequential recalculations of ssthresh causes cwnd to

reach small values which takes much time before cwnd reaches its previous

maximum. Similar dynamics were observed (but not shown) with HSTCP.

As observed in Figure 9.13, the amount of time required for H-TCP to

recover from these low values of cwnd is much faster than that of ScalableTCP

- it is this responsiveness of H-TCP that allows it to achieve a greater goodput
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Figure 9.14: cwnd trace of Standard TCP with various CBR Background Traffic
Loads on DataTAG.

than ScalableTCP on the DataTAG testbed.

The problems of Standard TCP along high BDP environments are demon-

strated on the DataTAG link in Figure 9.14 and shows the slow growth of

Standard TCP’s cwnd which causes the low goodputs achieved in the tests.

It was observed that Standard TCP achieves a goodput almost independent

of the competing background traffic rate (unless there is over 700Mbit/sec

background). It was found that this profile is determined primarily by the

exit value of slow start when the TCP flow is initiated because of the slow

cwnd growth in congestion avoidance.

TCP Acknowledgments

Further investigation into the Web100 [MHR03] traces showed that the drops

of cwnd below ssthresh as observed on the MB-NG testbed were not caused

by time-outs but rather through a call of the function moderate_cwnd()

which causes the recalculation of cwnd under ‘dubious’ circumstances. This

effect is not due to the algorithmics of TCP congestion control, but rather

through the way in which the basic TCP features are implemented.
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Figure 9.15: Number of instance calls of moderate cwnd() of HSTCP with various
CBR Background Traffic Loads on MB-NG.

Figure 9.15 shows the correlation of these calls with HSTCP and 200Mbit/sec

background traffic. When there is only 600Mbit/sec background traffic it was

observed that there is a negligible number of calls of moderate_cwnd() which

in turn results in clean cwnd traces. Similar results were gathered from the

other algorithms.

moderate_cwnd(), when called, sets the current cwnd value to that of

the number of packets in flight. Therefore, under normal operation, cwnd

should not be affected (much) when this function is called as the process

of ack clocking ensures that the number of packets in flight is the same as

the cwnd value [Jac88]. However, when ack clocking is broken, these two

values can stray such that the cwnd value is larger than that of the number

of packets in flight.

This is most noticeable under congestion where ack clocking efficiency

is reduced. Under such circumstances, the ‘dubious’ conditions whereby

moderate_cwnd() is called, are prevalent. A dubious condition, as defined

by the code of the Linux kernel, is when an ack is received by the sender

which acknowledges more than 3 data packets. Should the TCP receiver not
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Figure 9.16: Histogram of the Number of Segments acknowledged per ack under
a Dummynet Link of 600Mbit/sec and 40ms RTT.

obey delayed acking where an acknowledgment is generated for every other

data packet, then a dubious circumstance occurs. Similarly, if the reverse

path of the TCP data connection is congested, then acknowledgments may

be lost which will also generate a dubious event. Similarly, if ack packets are

reordered, a dubious event will also occur. As the testbed networks did not

have any reverse traffic, the latter two possibilities are unlikely.

Figure 9.16 shows the number of segments acknowledged by each ack. It

clearly shows that there is a high number of acks that acknowledge more than

just the two packets expected for delayed acking. Under such circumstances,

dubious conditions will be prevalent and calls to moderate_cwnd() will occur

and therefore goodput performance diminishes.

SACK Processing

The reductions of cwnd due to moderate_cwnd() do not account for the

double or triple reductions in ssthresh upon congestion which are evident

under the DataTAG tests. Should TCP Reno or NewReno be used for these

tests, the multiple reductions can be explained by the multiple drops per

congestion window which Reno and NewReno would require to exit from loss

recovery (See Section 4.5.3). However, as all tests were run with SACKs,
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Figure 9.17: cwnd and SACK Block trace of H-TCP with 400Mbit/sec CBR Back-
ground Traffic Loads on DataTAG.

recovery should occur completely within one RTT.

However, the use of SACKs also imposes an extra processing burden for

the TCP sender. This is shown in Figure 9.172 which shows a Web100 trace

of H-TCP on DataTAG with 400Mbit/sec background CBR traffic. The

zoomed plot on the right shows a magnified section of the same experiment.

Each measurement point for each variable is indicated with a marker. It is

apparent that shortly after the initial congestion notification that there are

periods where no measurements were taken. This is demonstrated with the

lack of measurement markers and the large increases of the number of SACK

Blocks as soon as measurement continues.

This can be explained with the fact that Web100 is composed of two

parts; a kernel part which actually increments all the relevant variables, such

as the number of SACK Blocks; and a user-land library which polls the

/proc structure to retrieve the TCP measurements. Therefore, the periods

of silence shown in Figure 9.17 are due to the lack of servicing by the system

of the user-land application. Meanwhile, the counters are still incremented

2Graph courtesy of Baruch Evans of Hamilton Institute.
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Figure 9.18: Histogram of SACK Processing Time in processor ticks of Standard
TCP under Dummynet with 600Mbit/sec link capacity and 40ms RTT.

as they work in kernel space.

The number of packets in flight is roughly equal to the bandwidth de-

lay product (See Section 4.1). Therefore, the TCP sender, assuming perfect

delayed acking, will need to process half of the number of packets in flight;

with each ack containing a maximum of 3 SACK Blocks. As the process-

ing of each SACK Block results in a linear traversal of the unacknowledged

packets in transmission buffers (and subsequent updates to the TCP Control

Block) such that data segments that need to be retransmitted can be identi-

fied, there is a huge processing burden with large bandwidth delay products.

Therefore, under large fluxes of SACK Blocks, the system processor is com-

pletely saturated by the need to process SACK information.

The processing time required to process both normal (TCP Fast Path)

and duplicate (TCP Slow Path) acknowledgments are shown in Figure 9.18.

It clearly demonstrates that even though there is a higher number of normal

acks, duplicate acks can take up-to 10 times longer to processes.
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9.1.8 Summary

The main conclusion from these sets of experiments is that there are imple-

mentation problems associated with the deployment of New-TCP algorithms.

The problem stems not directly from the dynamics of the cwnd update al-

gorithms, but with the actual TCP protocol when used at high speeds.

For typical trans-Atlantic link such as DataTAG, as much as 10,000 pack-

ets worth of segments must be kept in memory to facilitate TCP’s sliding

window. Under delayed acknowledgments, this could result in flux of 5,000

packets per RTT.

The processing burden of having to scoreboard all these acks is increased

with SACK information that is supposed to aid faster recovery upon conges-

tion detection under multiple packet losses per window. It was demonstrated

that a high flux of SACK Blocks can cause processing lock-out, and therefore

a stall in the TCP ack clocking, and more importantly, a serious decrease in

the goodput performance of the TCP stack.

Another concern is that Linux TCP receivers do not strictly adhere to

delayed acking, and as result may generate many ‘stretched ack’s’ which also

break the ack clock and may skew the calculation of RTT/RTO and cwnd

to the number of packets in flight.

The result of this is under these ‘dubious’ circumstances, the TCP sender

will recalculate the cwnd to be the number of packets in flight (as per [Pos81b,

Jac88]) which will result in deviations from the theoretical cwnd dynamics

and hence reduced goodput performance.

The interaction of many New-TCP flows were also compared and con-

trasted. Due to the reduced bandwidth delay product of having many flows,

the effects of the above mentioned implementations are often mitigated.
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It can be argued that ScalableTCP, especially under long latency en-

vironments experiences unfairness between competing flows. This was often

observed with either a large distribution of per flow goodputs and or frequent

outlying points which show that a small number of flows often achieved much

higher goodput than that of the other flows.

9.2 Preferential Flow Handling Using Diff-

Serv

The recent decrease in price to link capacity ratio has meant that it is much

more cost effective to upgrade the capacity of the network rather than to

engineer a lower speed one. This acceleration is much faster than the observed

bandwidth usage from traditional Best Effort (BE) traffic. Thus in the short

to medium-term there is excess capacity available, especially in the core.

However, as shown in Section 9.1, Standard TCP is incapable of utilising

such spare capacity due to slow growth of its congestion windows and the

requirement for very low loss rates.

Another problem is that due to the implementation issues of the Linux

kernel and the processing overheads of SACKs, transport of New-TCP algo-

rithms in Best Effort (BE) environments at high speeds is difficult.

One way in which it is possible to utilise this spare capacity is to imple-

ment some form of mechanism in the network whereby network users can be

differentiated to offer better (or worse) service, depending on a number of

factors; such as their price plan, types of traffic or network usage.

The different service qualities can be addressed by a variety of mecha-

nisms. However, the actual deployment of those mechanisms in the current
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structure of the Internet is rare. Network layer mechanisms such as ATM

assume a homogeneous infrastructure between two end-systems, which for

economic reasons may not exist. The Integrated Services (IS) Architecture

[BCS94] does not depend on a homogeneous infrastructure but often requires

that the end-systems have specialised software installed and that every net-

work device is capable of per flow handling of traffic - which has serious

implications upon scalability and manageability.

Differentiated services (DiffServ) [BBC+98] defines a new packet-handling

framework that addresses the concerns of scalability. The DiffServ architec-

ture defines ways that a packet should be treated by interior routers based

on associated classes called per-hop-behaviour (PHB) [HFB+99, JNP99]. It

requires that edge routers are capable of identifying flows and marking them

with this appropriate class of service whereby core routers can provide the

related PHB.

However, in contrast to previous Quality of Service (QoS) architectures

such as RSVP [BCS94], DiffServ focuses on the behaviour of aggregates

rather than individual flows. Packets are identified by simple markings that

indicate which aggregate behaviour they should be assigned to. By imple-

menting the complex task of identifying flows at the edges of the network,

core routers need only provide the service for each aggregate based on these

markings.

Packets are marked either by applications or by edge routers. However,

marking by applications will often require policing by the edge routers to

enforce that the correct ‘codepoints’ are marked on the packets. If edge

routers mark packets, they may choose to do so on a per-flow basis or on any

other criteria. These definitions should be agreed between different providers

through Service Level Agreements (SLAs).
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The DiffServ architecture offers new opportunities for building preferen-

tial macro-flow handling for end-to-end networks. However, it also introduces

new challenges. [FKSS98, YR99b, YR99a] show that it is difficult to guaran-

tee requested throughputs for TCP flows, because of the flow and congestion

control mechanisms used by TCP, which result, for example, in bursty traffic.

Two recent developments can significantly contribute to tackle the prob-

lems of high capacity service differentiation: Proposals for high throughput

TCP algorithms and the availability of DiffServ enabled networks at gigabit

speeds.

9.2.1 Methodology

Sections 9.1.3 and 9.1.6 and suggests that a mechanism for segregating traffic

sharing the same packet-switched path would be beneficial. The reasons for

this are two fold:

• To protect traditional traffic from the possible aggression of the New-

TCP algorithms and hence be more ‘fair’ to existing Internet users.

• To provide a guarantee on the level of end-to-end service predictability

for the New-TCP proposals.

As such, DiffServ provides a facility to offer protection of the background

traffic whilst maintaining a predefined pipe whereby the high-speed New-

TCP flow can fully utilise the link.

Two PHB classes were configured: BE for traditional Best Effort [CF98]

traffic and Assured Forwarding (AF) [HFB+99] to provide network resources

for the New-TCP flows. Traffic was marked with an appropriate Diffserv

codepoint (DSCP) [BBC+98] at the sending host and each class is put in
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a physically different router output queue. Each queue is then assigned a

minimum guaranteed bandwidth using weighted round robin.

Background CBR UDP traffic was injected into the network using iperf

[TQD+03] and marked to be treated as Best Effort traffic. A subsequent time

after, a single flow of New-TCP traffic is started using iperf and marked to

the AF class to give higher priority over the BE background traffic.

Various allocations percentages of the AF and BE classes were investi-

gated and the cwnd dynamic and goodput performances were measured.

Metrics

As DiffServ is only active when there is congestion on the network such that

the traffic breaches the defined DiffServ handling, it is important to measure

how effectively the bandwidth allocations work. This is especially important

for TCP traffic as the congestion avoidance algorithms of TCP cause a lower

utilisation of available resources.

This utilisation, stability and class protection of both the background

BE traffic and the AF TCP flow can be quantified through the computa-

tion of two parameters which are defined as the BE QoS efficiency factor

(QEFBE) and the AF QoS efficiency factor (QEFAF ) for the BE and AF

class, respectively.

QEFBE =
BUDP

BBE

(9.2)

QEFAF =
BTCP

BAF

(9.3)

Where, BUDP and BTCP are the achieved (measured) goodputs of the

UDP and TCP flows respectively with allocated bandwidth allocations of

BBE and BAF for the corresponding BE and AF classes. Therefore, QEF s
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give an indication of the bandwidth utilisation of the BE and AF classes.

Test Set-up

The experiments were performed on the DataTAG testbed (See Appendix C.3)

and DiffServ was enabled on the Juniper M10. This testbed is unique in

providing a DiffServ network with high propagation delay with Gigabit per

second bandwidth capacity.

The testbed PCs of DataTAG as shown in Table B.2 are used and results

are obtained for a TCP connections with congestion moderation turned on

- i.e. the code of moderate_cwnd() are left as per the Linux defaults. The

experiments were conducted by continuously running a 1Gb/sec UDP BE

flow running and by switching on and off different New-TCP algorithms for

different bandwidth allocation tuples.

The UDP flow was injected into the network using iperf and was set

to inject packets into the network at line rate, i.e. 1Gb/sec. As such, and

because the background BE UDP traffic does not back off in the event of

congestion, the BE class is always oversubscribed. Therefore, whenever AF

under utilises its allocated bandwidth, (i.e. QEFAF < 1) the BE throughput

should show a proportional gain (BE > 100%).

Calibration

The bandwidth scheduling and DiffServ systems of the Juniper router were

initially tested with UDP CBR in both the AF and BE classes in order ensure

correct calibration of the system. Figure 9.19 shows the achieved bandwidth

allocations of the BE and AF flows as the router configuration was changed

on-the-fly between the bandwidth allocations of 90:10, 70:30, 50:50, 30:70
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Figure 9.19: Dynamic switching of BE:AF bandwidth allocations every 60 seconds
from 90:10, 70:30, 50:50, 30:70 and 10:90.

and 10:90 between the AF class and BE classes.

The results show that the bandwidth scheduler works well as the allo-

cations are changed approximately every minute. The peaks and drops of

throughput at each change are a result of the dynamic switching whereby

the bandwidth scheduler is over providing the AF flow.

9.2.2 Results

Figure 9.20 shows the measurement of QEF for the different allocations of

AF:BE ratios. Compared to the results of Figure 9.3, where in the absence of

differentiated traffic, Standard TCP performs very poorly, the improvement

in goodput of single TCP flows when the TCP flow is protected is dramatic

- utilising at least 95% of the pipe allocation (so at 90% AF Standard TCP

is able to achieve approximately 85.5% of the pipe).

Surprisingly, however, is that the other algorithms perform relatively

badly with large AF allocations with ScalableTCP showing the lowest utili-

sation of its AF pipe. At the lowest AF allocations, all algorithms perform

identically.

The dynamic bandwidth allocations between the AF and BE classes is
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Figure 9.20: QoS Efficiency Factors for various AF:BE allocations.

demonstrated by the over utilisation of the BE class’s traffic when the AF

class is under-provisioned due to the failure of the New-TCP flows in being

able to achieve 100% utilisation.

9.2.3 Discussion

Given the dynamics of cwnd, it would be expected that the performance of

Standard TCP should be poor under high bandwidth, long latency environ-

ments. However, Figure 9.20 clearly indicates that HSTCP and ScalableTCP

appear to have problems under DiffServ environments - not Standard TCP.

As a DiffServ enabled network should provide protection for AF flows, the

goodput performance of New-TCP flows were expected to be greater.

At small AF allocations, i.e. small available bandwidths, it is expected

that the performance differences between algorithms are negligible due to

the sizes of cwnd. However, as the bandwidth, and hence cwnd increases due

to a larger AF provision, one would expect HSTCP and ScalableTCP to be

able to utilise the extra capacity more effectively.

Figure 9.21 shows the cwnd and goodput trace of Standard TCP with

90% AF, 10% BE allocation. Apart from an initial burst of traffic which
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Figure 9.21: New-TCP cwnd and throughput dynamic with 90% AF allocation.

is captured by the router, it can be seen that the cwnd and hence goodput

of the Standard TCP flow is relatively static in value as the test progresses.

This is due to the very small growth rate of Standard TCP which is incapable

of inducing packet loss at the bottleneck queue.

The differences in cwnd dynamic between Standard TCP, HSTCP and
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Figure 9.22: Effect of Congestion Moderation on Standard TCP with 90% AF
allocation.

Scalable TCP is shown in Figure 9.21. It can be argued that the main

difference between the three results was the high frequency with which Scal-

ableTCP appears to re-enter its slow start-like phase, with HSTCP only

occasionally also doing so.

Similar to the previous single flow tests without DiffServ (See Figures 9.1),

the cwnd histories showed that these drops in cwnd value were not associated

with slow-starts, but with a large number of function calls of moderate_cwnd().

9.2.4 Congestion Moderation

An investigation into the performance of New-TCP algorithms with and with-

out the facilitation of congestion moderation via the Linux moderate_cwnd()

function was conducted. Note this is would be in violation of the TCP pro-

tocol specifications [Pos81b, Jac88], but would provide a simpler fix than

rectifying the problems of Linux receivers imposing stretched acks.

With Standard TCP, the difference with and without congestion moder-

ation is shown in Figure 9.22. Standard TCP with congestion moderation

turned off allows the cwnd to grow without the frequent reductions in cwnd



9.2. Preferential Flow Handling Using DiffServ 223

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0  50  100  150  200  250  300

cw
nd

 a
nd

 s
st

hr
es

h 
(p

ac
ke

ts
)

Time (seconds)

cwnd
ssthresh

(a) 70% AF with Congestion Moderation

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0  50  100  150  200  250  300

cw
nd

 a
nd

 s
st

hr
es

h 
(p

ac
ke

ts
)

Time (seconds)

cwnd
ssthresh

(b) 70% AF without Congestion Moderation

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0  50  100  150  200  250  300

cw
nd

 a
nd

 s
st

hr
es

h 
(p

ac
ke

ts
)

Time (seconds)

cwnd
ssthresh

(c) 90% AF with Congestion Moderation

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0  50  100  150  200  250  300

cw
nd

 a
nd

 s
st

hr
es

h 
(p

ac
ke

ts
)

Time (seconds)

cwnd
ssthresh

(d) 90% AF without Congestion Moderation

Figure 9.23: Effect of Congestion Moderation on HSTCP with 70% and 90% AF
allocation.

to very low relative values.

Even without congestion moderation, it was also observed that there were

a few drops in cwnd and goodput, which were briefly raised (not through slow

start nor congestion avoidance) to their previous values before the drop. The

cause of this action was found to be due to Linux undo’s [SK02] during

which the ssthresh and cwnd values are reduced due to an indication of

congestion. However, shortly afterwards, DSACK (See Section 4.5.5) and/or

ack information infers that the congestion event was in fact not necessary and

therefore the TCP cwnd and ssthresh values are readjusted to the previously

recorded values.

Without congestion moderation, HSTCP shows an appreciable difference
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Figure 9.24: Effect of Congestion Moderation on ScalableTCP with 70% and 90%
AF allocation.

in the cwnd dynamic for the 70% and 90% AF bandwidth allocations as

the probability of dubious events that cause moderate_cwnd() function calls

with is higher due to the increased bandwidth delay product with larger

AF allocations. The absence of congestion moderation appears to be more

beneficial for the 700Mbit/sec AF bandwidth allocation, whereas the problem

is only partially solved for a 900Mbit/sec AF allocation.

Figure 9.24 shows the cwnd dynamics of ScalableTCP with and without

congestion moderation at 70% and 90% AF bandwidth allocation. Similar to

the results observed for HSTCP, the improvement gained without congestion

moderation under 70% AF allocation is dramatic based on reduction of the

large decreases in cwnd after congestion detection. However, the results
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under 90% AF allocation still show serious problems with the cwnd dynamic

which consequently results in reduced goodput performance.

The main difference between ScalableTCP and HS-TCP flows are that the

occurrence of the slow start like events for HS-TCP are much lower, mak-

ing the effects of the congestion moderation much less noticeable. As such,

the HS-TCP cwnd dynamics are much cleaner and nearer to the theoretical

traces than those of Scalable TCP. However, having congestion moderation

turned off has less overall effect on the cwnd dynamics when AF is allocated

900Mbit/sec - regardless of the TCP algorithm used.

The inference is that even without the implications of congestion modera-

tion, SACK processing is still a dominant factor which causes cwnd dynamic

deviations from theory that result in the observed decreased goodput per-

formance. When the AF allocation is 700Mbit/sec, it was observed that the

dominant factor is congestion moderation - as the removal of the function

call completely resolves the problem of deviations of the cwnd dynamic from

theory. But when the AF allocation is 900Mbit/sec, the flux of SACKs is so

high that removing the congestion moderation code only partially resolves

the problems of cwnd dynamics entering low values.

9.2.5 Active Queue Management

In this section, the negative effects of SACK processing are mitigated using

an active queue management solution. The objective was to lower the rate

of SACK events after multiple drops and therefore allow the sending host to

process the SACK Blocks appropriately.

Neither Standard TCP nor HSTCP experienced as many slow-starts as

ScalableTCP. Therefore, an AQM solution was implemented for ScalableTCP
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Figure 9.25: WRED profiles.

only and for the most challenging AF allocation of 900Mbit/sec.

The aim of these tests is to smooth out the observed cwnd deviations from

theory by means of configuring different Weighted Random Early Detection

(WRED) [FJ93] drop profiles for the AF class.

Methodology

As the New-TCP algorithms under investigation in this section are loss based

protocols, the cwnd dynamic of each necessarily require the oscillation of

cwnd below the point of congestion. Therefore, it is important not to impose

too great of a random loss upon the AF class as this would correlate to

high(er) loss rates for the single ScalableTCP flow and thus a decrease in

goodput (See Section 5.4.2). As such, a gentle WRED drop profile was used.

From a packet-level perspective, the justification for using WRED is based

on the belief that a smoother distribution of the loss-pattern in the AF queue

will help lower the burst length of SACKs and therefore it will help avoid

deep stalls of cwnd in the TCP sending host.

Using the same network topology and hardware and software configura-

tions as used previously, three WRED drop profiles are configured on the

Juniper M10 router as shown in Figure 9.25.
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Figure 9.26: Effect of a gentle WRED upon ScalableTCP with 90% AF allocation.

Congestion moderation was kept disabled during the test to simplify the

interpretation of the SACK processing results.

Results

The improvement of cwnd dynamic when WRED2 is employed is dramatic

as shown in Figure 9.26 which demonstrates that the cwnd dynamic of Scal-

ableTCP no longer exhibits the large drop of cwnd values that result in low

goodput performance as seen without WRED.

This result validates that gently redistributing the loss pattern in order to

avoid the large flux of SACK Blocks is beneficial to the goodput performance

of TCP flow at high speeds. This was necessitated from the processing burden

of large bursts of SACKs which cripple the sending host.

9.2.6 Summary

This section has shown that the performance penalties due to software and

hardware limitations on the transport of TCP data across large bandwidth

delay networks can be alleviated with both Linux TCP stack modifications

and hardware intervention from network nodes.
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Also, with the successful deployment of these faster New-TCP algorithms,

the interaction with Standard TCP will cause unfairness that may cripple

the bulk transport of data using Standard TCP.

As such, network traffic separation and protection via DiffServ was de-

ployed to guarantee the protection of traditional BE traffic against the possi-

ble aggression of these New-TCP algorithms. DiffServ would also guarantee

the full utilisation of the pipe reserved and, as a consequence, of the whole

link. Moreover, it guarantees a certain level of service predictability for net-

work transfers.

Surprisingly, Standard TCP not only performed well under the DiffServ

environment but also shows the best performance, followed by HSTCP and

then, at some distance, ScalableTCP. Standard TCP was able to maintain

high bandwidth utilisation due to the slow growth of cwnd whereby the

Standard TCP did not induce self loss, and also due to the lack of packet

loss as a result of low bit error rates encountered on the testbed.

However, for longer transfers where there are higher probabilities of hav-

ing Standard TCP packets lost due to the physical limit of bit error rates, the

halving of cwnd under AIMD would also result in the halving of goodput. As

shown previously in Section 5.4.1, the rate at which Standard TCP probes

for extra bandwidth is also slow and therefore would require much time in

order to fully occupy the AF pipe (assuming no further packet losses).

Therefore, there is still a requirement for the use of high speed TCP

algorithms under DiffServ enabled long distance, high capacity networks.

HSTCP and ScalableTCP attempt to solve the problem of low goodput by

growing cwnd more aggressively that Standard TCP; this self induction of

loss instead leads to worse performance than Standard TCP. This self-induced

loss invariably requires the processing of a large flux of SACK Blocks which
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can cause stalls in the data transfer which lowers the achievable goodput.

Due to Linux specific implementation TCP features that were designed

to lower the processing overhead on the receiver, many ‘dubious events’ were

observed which causes the TCP sender to recalculate cwnd to that of the

number of packets in flight which caused a reduction in the observed goodput.

In order to reduce the processing burden of SACKs, an AQM solution

(WRED) was implemented. Specifically, a drop probability in the router

AF queue with a gentle gradient was proven to be extremely effective in

maintaining high goodput for ScalableTCP. This validates the belief that the

SACK processing is a dominant reason for having poor goodput performance.

This AQM solution can relax the requirement of any further optimisation

of the SACK code. However, it is believed that the main limitations in using

aggressive TCP protocols under high BDP IP DiffServ-enabled paths lies

in not having enough CPU speed to cope with both the sheer number of

packets both coming in and out and extra burden of multiple packet drops

in the same cwnd that they induce.

9.3 Internet Transfers

The transport of New-TCP protocols across real-life wide area networks is

investigated in this section. The goal is to to determine the real-world per-

formance of the various New-TCP proposals using single flow transfers across

Transatlantic and pan-European academic networks.
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9.3.1 Test Methodology

The variable loads and unpredictable performance of Internet traffic makes

obtaining consistent results across the Internet difficult. A long duration

single transfer test of each New-TCP algorithm to each host would yield

insufficient comparison between measurements as the network load may have

changed sufficiently such that it is a measurement of the variability of the

network, rather than that of the performance improvements of the New-TCP

algorithm.

However, running many short tests may not provide sufficient time for

the TCP flows to reach a steady state whereby the flow spends enough time

in congestion avoidance instead of slow start.

A simple solution would be to run the tests for a fixed number of bytes.

However, the variability of Internet performance may result in tests having

to run for a very long time due poor network goodput.

By imposing completely random start times and random sequences in

which the the various locations and New-TCP algorithms were run, unfair

comparison between algorithms due to the time based patterns of network

load is minimised. Therefore, many 5 minute TCP transfers were conducted

over the Internet from CERN in Switzerland to various locations in the

United States of America and Europe. The Internet link from CERN to

the Internet consisted of a 1Gb/sec connection. The hardware and software

specification of the test machine is defined in Table B.3.

All tests were run with the Linux 2.6.6 altAIMD-0.6 kernel using iperf

to conduct the TCP bulk transfers.

Table 9.1 shows the number of individual measurements that where taken

for each destination host and for each New-TCP algorithm. The tests were
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Stanford LBL Dublin Rutherford

Standard TCP 220 28 145 168

HSTCP 246 75 151 208

ScalableTCP 249 173 149 172

H-TCP 248 206 143 234

FAST 249 221 65 238

BicTCP 247 135 152 240

Table 9.1: Number of individual New-TCP measurements to each site.

run over the period of 2 months between October and December of 2004 and

were ran over a 24 hour period, 7 days a week.

All traffic was either routed through Dante’s GEANT network if the des-

tination was European, or through the DataTAG network via its production

link over to the U.S. whereby it was locally routed onto Internet2’s Abilene

network. All network paths are shown in Appendix D.

There are problems associated with the way that Linux accounts for the

number of packets in flight whereby there is no artificial inflation of cwnd

during loss recovery. The result of this is that upon a TCP time-out (when

cwnd is set to 1 segment) it will limit the number of packets that can be

retransmitted each RTT. Because there is no artificial inflation of cwnd,

loss recovery occurs at a rate of 1 packet per RTT after a TCP time-out.

Therefore the loss recovery time is proportional to the number of packets

lost. For large cwnd values where many packets can be lost, this recovery

time can be very long for long distance networks. This is documented in

[HLW+04].

This effect was especially noticeable during the initial slow-start period of

tests and caused many occurrences whereby the TCP flow spent nearly all of

the test time in loss recovery. As such, the initial slow start was disabled such
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Figure 9.27: Goodput from CERN to Stanford.

that results could be gathered. This was achieved by setting the initial value

of ssthresh upon a TCP connection to 2 segments rather than max(INT). The

effect of disabling slow-start would be similar to the effects of large bursts of

transient cross traffic which would similarly cause slow-start to exit early.

9.3.2 Results: CERN to Stanford

Goodput

Figure 9.27 shows the goodput performance distributions of the various New-

TCP algorithms from CERN to Stanford, California, U.S.. It clearly shows

the consistent inability of Standard TCP to achieve reasonable goodput over

such long distance paths.

For the other New-TCP algorithms, the results show a large range of

measured goodput performances with symmetric distribution of goodputs.

Most notably all algorithms have a minimum which is near zero, suggesting

that that the network load can be high, thus preventing high performance

network transfers.

Whilst it is clear that FAST is able to achieve the highest median goodput

performance, it also has the widest distribution. The high maximum also
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Figure 9.28: Stability from CERN to Stanford.

suggests that FAST is very capable of reaching higher speeds.

Out of all the New-TCP algorithms, HSTCP has the lowest median

goodput, and generally was unable to achieve goodputs much greater than

200Mbit/sec, with typical results around 100Mbit/sec (which is still about

twice that of Standard TCP).

ScalableTCP and BicTCP, although they performed very well in artifi-

cial tests, do not achieve as high goodputs across this real-life environment.

They both provide a similar distribution, with ScalableTCP having a slightly

higher deviation towards higher goodputs.

H-TCP exhibited goodput performance higher than ScalableTCP, but not

much more in terms of absolute maximum range.

Stability

Figure 9.28 shows the stability (See Section 7.1.2) distributions of the various

New-TCP algorithms to Stanford for the goodput performance results shown

in Figure 9.27.

The large number of outlier points suggests that all New-TCP algorithms

have problems maintaining a low variance and high goodput. Most notably,
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Figure 9.29: Overhead from CERN to Stanford.

H-TCP and BicTCP have a high number of outliers which cause very unsta-

ble results. However, BicTCP has a lower median and inter-quartile range,

suggesting generally better stability when compared to H-TCP.

Whilst ScalableTCP does not have the large number of outliers, it has

the largest inter-quartile range of results. FAST also maintains a large range

of values, but has a very narrow inter-quartile range; making it the most

consistent TCP protocol, bar Standard TCP.

Standard TCP demonstrates low coefficient of variance due to the slow

growth of cwnd which over this long latency path is unable to frequently

induce packet loss and hence multiplicative decrease.

Overhead

The overhead inefficiency is shown in Figure 9.29. It shows that all New-

TCP algorithms perform similarly (although note the log scale), with ap-

proximately a magnitude greater overhead compared to Standard TCP. It is

arguable that ScalableTCP has the highest overhead. However, BicTCP also

maintains many outlying points, with as much range as that of ScalableTCP.
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Figure 9.30: Goodput from CERN to Dublin.

9.3.3 Results: CERN to Dublin

Goodput

Figure 9.30 shows the transfer results from CERN to Dublin. All algorithms,

including Standard TCP, are able to transfer at high rates due to the rela-

tively low latencies of the network path.

Unlike previous results with Stanford which show a few outliers above the

median goodput, the Dublin link shows that there are a few occasions where

the measured goodput of the New-TCP algorithms were lower. Whist the

number of these points are small, they suggest rare instances of competing

traffic on this network path which reduces the goodput performance.

Out of the protocols, BicTCP appear to have the highest goodput, with

also the smallest inter-quartile range. However, FAST maintains similar

median goodput values to that of BicTCP, but shows a larger inter-quartile

and normal range of values. ScalableTCP maintains a very narrow goodput

range, however, maintains a slightly lower goodput when compared to FAST

and BicTCP.

HSTCP, even with its gently aggressive deviation from standard AIMD

at low cwnd values, demonstrates higher goodput performance with larger
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Figure 9.31: Stability from CERN to Dublin.

cwnd values. It also shows a similar range of values to that of FAST - but

with an even lower median value.

Unlike the test to Stanford, H-TCP has the worse goodput of all of the

New-TCP algorithms, with both a low median value and a large range of

goodput measurements. However, the measured quartiles of H-TCP’s results

suggest that it has better goodput performance than Standard TCP.

Stability

The stability of the New-TCP algorithms is shown in Figure 9.31. As demon-

strated with the goodput results, even with these relatively low latencies, the

cwnd values are sufficiently large enough to demonstrate the increased sta-

bilities of these New-TCP algorithms with their smaller decreases in cwnd

upon loss detection.

The results show that FAST has the lowest coefficient of variance per mea-

surement, followed by BicTCP. HSTCP, ScalableTCP and H-TCP perform

similarly, with H-TCP being the most variable with the largest inter-quartile

and normal range.

As FAST utilises the standard multiplicative decrease of 50% upon loss,
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Figure 9.32: Overhead from CERN to Dublin.

the increased stability of FAST suggest that the delayed based congestion

control algorithm of FAST is functioning well. Similarly, the large coefficient

of variation of Standard TCP is consistent with its large decrease values of

cwnd upon loss.

Overhead

FAST has the clear advantage in terms of lowering the overhead as shown

in Figure 9.32. This correlates well with previous results suggesting that the

inability of FAST to stabilise will result in large overheads.

Even though FAST has the largest inter-quartile range of overhead of all

the New-TCP algorithms, it is consistently below that of the other New-TCP

algorithms which show very similar results.

9.3.4 Results: CERN to LBL

Goodput

Figure 9.33 shows the goodput results to LBL. The performance boost by

the New-TCP protocols is clearly visible, with FAST having the highest

median goodput - with about a 10 times improvement over that of Standard
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Figure 9.33: Goodput from CERN to LBL.

TCP. FAST also has the largest inter-quartile and normal range of all the

algorithms which gives it the least consistent goodput performance. However,

its inter-quartile range suggest that it consistently gains greater goodput than

the other New-TCP algorithms.

BicTCP and H-TCP have similar goodput performances. However, H-

TCP has the larger ranges of values - with a significantly larger goodput

range. Both algorithms also show that the minimum goodput is likely to be

higher than that of FAST’s, although BicTCP does have a significant number

of outlying points.

HSTCP and ScalableTCP both have relatively lower goodputs than that

of the other New-TCP algorithms with comparable performance. This was

found to be due to the slow growth of cwnd from the small cwnd values due

to the absence of slow start. Figure 9.34 shows that in the 5 minute tests,

HSTCP and ScalableTCP actually spends half of the time to grow cwnd to

sufficiently large enough values in order to fill the available bandwidth of the

path. Notable, however, is that the worst performing New-TCP algorithm

(HSTCP) under this network path still achieves approximately five times

higher goodput than that of Standard TCP.
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Figure 9.34: Slow Convergence of HSTCP and ScalableTCP over long distance
high capacity Internet links.
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Figure 9.35: Stability from CERN to LBL.

Stability

Figure 9.36 shows that FAST, H-TCP and BicTCP have similar median

stabilities, with FAST showing a wider range of stability values.

The other New-TCP algorithms show similar stability profiles, mostly

because of the lack of congestion epochs as shown in Figure 9.34.

Overhead

HSTCP has the lowest transfer overhead as shown in Figure 9.36. However,

these results have to be taken with care due to the lack of congestion epochs
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Figure 9.36: Overhead from CERN to LBL.
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Figure 9.37: Goodput from CERN to RAL.

of the HSTCP and ScalableTCP flows.

BicTCP has the lowest inter-quartile range of all the algorithms and shows

that it is able to achieve the least overhead of all of the New-TCP algorithms.

FAST, unlike the tests to Dublin, exhibited the highest overhead with

the greatest fraction of bytes retransmitted per unit goodput. However, the

results are comparable to that of H-TCP.

9.3.5 Results: CERN to RAL

Goodput

The goodput performance to RAL is show in Figure 9.37. Even though the

machines and networks are capable of 1Gb/sec, it demonstrates that the
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achieved goodput is much below this maximum. This is likely to be due

to the the large amounts of traffic that RAL receives and sends due to its

pivotal role as a scientific data centre in the UK.

BicTCP is able to achieve the highest median value, with also the largest

number of low goodput outlier points. It was also able to achieve a very

high value of over 160Mbit/sec demonstrating the capability of the RAL site

under extra-ordinary conditions.

FAST is also able to maintain a high goodput, with a lower quartile which

is almost greater than the upper quartiles of H-TCP and HSTCP. FAST also

has a high minimum range suggesting that the goodput performance would

be greatest with these algorithms.

HSTCP and H-TCP perform very similarly, with HSTCP having a slight

tendency for lower goodputs.

Surprisingly, the goodput of ScalableTCP under this very busy environ-

ment is actually less than that of Standard TCP, although it does have a

slightly higher minimum goodput than that of both HSTCP and Standard

TCP.

Stability

Similarly to the goodput results, Figure 9.38 shows that the stabilities be-

tween all of the TCP algorithms (Standard TCP included) have similar char-

acteristics.

FAST has the smallest inter-quartile range, suggesting the most pre-

dictable stability performance. However, it also has the highest median value

- suggesting that this predictability is not beneficial. It also maintains the

largest number of outlier points.
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Figure 9.38: Stability from CERN to RAL.
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Figure 9.39: Overhead from CERN to RAL.

Overhead

In terms of overhead, all of the New-TCP flows show similar distributions to

that of Standard TCP - except for FAST which again maintains a narrow

distribution with the highest overhead. This is shown in Figure 9.39. One

could argue that H-TCP has the best (i.e. lowest) overhead. However, the

notches indicate that the large 95 percentile range between all algorithms

overlap.

9.3.6 Summary

Whilst the included network paths are in no way indicative of the typical

network topology and network load, they offer an indication of the expected
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performance of single flow New-TCP performance over the Internet.

Unsurprisingly, all of the New-TCP algorithms are able to achieve higher

goodputs than that of Standard TCP. In certain circumstances substantially

higher goodput was achieved.

FAST is consistently able to achieve high goodput performance across all

network paths investigated, followed by BicTCP and H-TCP (although the

differences between the latter two are negligible).

Under the lower latency destinations investigated, the performance dif-

ference between the New-TCP algorithms and Standard TCP are not that

great. This is expected due to the TCP algorithm design requirement to

be comparable to Standard TCP under low latency, low bandwidth environ-

ments.

The slow growth of cwnd by HSTCP and ScalableTCP with small ini-

tial cwnd values are apparent under the CERN to LBL tests, and serves

to demonstrate that under highly variable network conditions where sudden

flash traffic may occur, they will be incapable of quickly utilising available

bandwidth.

In general, the stability and overhead of all of the algorithms are compara-

ble, with mixed results from network to network and are influenced primarily

by the number of congestion events experienced.

9.4 Summary

The investigation on real life networks initially began with the analysis of

these New-TCP algorithms on the dedicated wide-area test networks of MB-

NG and DataTAG.

The experiments demonstrated that there are serious implementation
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problems in being able to run these congestion control algorithms effectively

as single high bandwidth flows. The problems arise primarily through the

limited resources of hardware and implementation issues with software.

The problems in particular are related to the large number of packets

that need to be processed by both the sender and receiving TCP hosts. In

particular, it was identified that the TCP receiver was not always sending

acknowledgments for at least every other data packet. This results in ack

stretching which increases the likelihood of buffer overflows due to larger

bursts of data packets on the forward path. More evident, however, was that

it causes Linux specific performance penalties due to the way in which cwnd

and the number of packets in flight are calculated.

A more serious problem, especially for larger values of cwnd required for

higher speed, long distance networks, is that the processing of SACK packets

was demonstrated to also be a bottleneck upon TCP transfer rates.

As demonstrated, the former problem can be rectified with modifications

to the Linux kernel. The latter problem can also be resolved with newer

and faster hardware; however, a network-based solution was implemented to

smooth the loss pattern and hence reduce the processing burden required.

A limited study was conducted to show the interaction of multiple flows

of New-TCP traffic. The results demonstrate and corroborate prior results

(in Chapter 8) that ScalableTCP has problems with fair and equal sharing of

network resources. It was also demonstrated that these New-TCP algorithms

can have a serious negative impact upon existing network traffic flows, re-

ducing the amount of traffic utilised by bulk Standard TCP flows by several

orders of magnitude. However, as a direct consequence of the implementa-

tion problems aforementioned, this impact was reduced due to the inability

for the New-TCP flows to be able to achieve high goodputs.
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Nevertheless, a DiffServ demonstration was devised to show that with

appropriate design and allocation of Best Effort and Assured Forwarding

Per Hop Behaviours, the network bottleneck utilisation can be optimised to

both provide high performance for the New-TCP flow, whilst protecting the

traditional ‘existing’ traffic from the impact of sharing the bottleneck link.

A separate study to inspect the performance of these New-TCP algo-

rithms over the Internet was also conducted. It showed that for single flow

experiments, FAST performed the best in terms of high goodput performance

with high stability. BicTCP and H-TCP also performed well. Meanwhile,

HSTCP and ScalableTCP were found to offer lower goodput (but still con-

siderably higher than that of Standard TCP) due to the slow rate at which

they grow cwnd when cwnd is small.



Chapter 10

Conclusion

This chapter gives a summary of the work conducted and the conclusions

that can be drawn from this dissertation. It also provides a discussion of the

areas of further research.

10.1 Summary

This dissertation focused on the performance bottlenecks that are associated

with reliable large scale unicast data replication over the Internet.

Appendix A gives a broad overview of the performance of various compo-

nents required for data replication. In terms of data storage, read and write

performance can be improved with the combination of hardware multiplex-

ing with RAID solutions and tuning of kernel parameters. For the transport

of data between disparate computers, Network interface Cards at speeds of

10Gb/sec are investigated. However, PCI-X and computational processing

are discovered to be the primary bottlenecks at such speeds on server class

246
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PCs. But at 1Gb/sec speeds, tests showed almost flawless performances with

CBR UDP traffic.

Chapters 3 through 5 showed that TCP, the primary transport proto-

col in use on today’s networks, is incapable of achieving high throughput

transport across high latency, high capacity network environments due to

the standard AIMD congestion control algorithm. Also Chapter 9 showed

that performance limits exist in the TCP protocol due to the processing of

ack and SACK packets.

Several New-TCP congestion control algorithms (Chapter 6) were tested

under various networks and network conditions (Chapters 8 and 9) using a

framework outlined in Chapter 7 which provides a means to comparatively

analyse the advantages and disadvantages of each. Tests specifically inves-

tigated the raw throughput performance achievable and the interaction of

these algorithms both amongst themselves and with legacy Standard TCP.

Even with these New-TCP algorithms, the aforementioned performance

bottlenecks due to hardware and protocol design were apparent and it was

found that the memory to memory transport of data across long distance

high capacity networks is limited to a few hundreds megabits a second under

realistic conditions.

The New-TCP algorithm tests showed that:

• All algorithms are capable of achieving greater raw goodput perfor-

mance than that of Standard TCP.

• The interaction between New-TCP flows of various latencies may cause

serious problems in terms of fair sharing of network resources that is

much greater than that of Standard TCP. H-TCP - with its RTT Scal-

ing, and FAST - with sufficient network buffer are the only exceptions
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to this.

• The slow convergence due to aggressive α and β parameters will lead

to long periods of transient unfairness between competing flows. This

was especially evident with ScalableTCP.

• The delay based congestion control approach of FAST has several ben-

efits, most notably very good friendliness and high performance. How-

ever, it also suffers from the need for network queue provisions to be

suitably high for efficient performance.

• Under the assumption that all traffic flows are long lived bulk trans-

port, all New-TCP algorithms impose a specific cost to existing network

traffic which can be lowered with network aid such as Quality of Service

using DiffServ or Dedicated Circuits. Also the goodput performance of

New-TCP flows can be enhanced by offering higher levels of protection

against network congestion.

10.2 New-TCP Suitability Study

Table 2.2 in Chapter 2 shows four different application areas for the role of

transport on the LHC. In this section, each application area will be discussed

in turn with regards to the metrics and performance analysis from Chapter 8

and Chapter 9.

10.2.1 Area 1

The requirement for transport over the Internet requires backwards compati-

bility with existing Internet traffic flows. However, due to the necessity to get
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data from the Tier-0 site to the Tier-1 sites very quickly, the raw throughput

is also an important issue.

For a small number of flows (or such that the sum of the number of flows’s

γ value does not exceed the bottleneck queue size), FAST is able to both

sustain high throughput, and maintain good friendliness with StandardTCP.

However, this requirement for ‘large’ queue sizes seriously affects FAST’s

performance profile. As the infrastructure of the Internet cannot be centrally

managed, tuning of such buffers is problematic.

Other New-TCP algorithms capable of high throughput, such as Scal-

ableTCP, maintains very bad RTT fairness between flows. This may also

become an issue as different destinations may share the same network bot-

tleneck - therefore TCP algorithms such as ScalableTCP is not advised for

deployment under this scenario. BicTCP and HSTCP maintains similar RTT

unfairness, however, it is much greater than that of StandardTCP. H-TCP,

however, is able to maintain relatively high throughput with very good RTT

fairness. Similarly, FAST - given sufficient buffering on the network path,

also maintains good RTT fairness.

As superfluous retransmissions may cause Internet collapse, maintaining

a low overhead is also important. H-TCP has a noticeable number of retrans-

missions with longer latency paths when compared to the other algorithm;

whilst FAST is able to maintain significantly lower overhead by 2 orders of

magnitude.

10.2.2 Area 2

Area 2 has a requirement similar to Area 1, however, poses a greater risk of

the TCP transport needing to be shared with potentially high amounts of
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local site traffic. As such, the overhead and friendliness becomes much more

important under such scenarios.

As the logical latencies between Tier-1 to Tier-2 and Tier-2 to Tier-3/4

are likely to be small due the region design of the MONARC system, the

issues of H-TCP having higher overheads at very long latencies becomes less

of an issue.

However, there is a higher chance of insufficient network buffering due to

the traversal through many autonomous systems and the requirement for the

LHC traffic to share with normal site traffic. Also should many LHC flows

be sharing the infra-structural links, the requirement for FAST to maintain

a queue size proportional to the number of connections makes provision of

such buffers difficult.

Due to the unfriendliness and RTT unfairness constraints of ScalableTCP,

BicTCP and HSTCP, it is not recommended for use in this application area.

10.2.3 Area 3

Dedicated circuit usage in this application area only requires that the single

New-TCP flow maintains high throughput. Under such scenario’s, BicTCP,

ScalableTCP and FAST are able to achieve very high utilisation of the net-

work pipes.

Due to the loss-based nature of BicTCP and ScalableTCP, FAST is able

to maintain a lower overhead, which may give it the advantage in being able

to sustain higher throughputs. However, this is only the case when there are

sufficiently sized buffers available on the network path. Depending on the

type of dedicated circuit (e.g. and entire SONET link, or DiffServ/MPLS

provisioned) and more importantly who it is leased from, it may or may not



10.2. New-TCP Suitability Study 251

be possible to manually set the intermittent devices queuesize to facilitate

FAST TCP usage.

The ability for the TCP flows to quickly ‘grab’ available throughput on

such empty pipes is also important. Section 9.3 demonstrates that FAST, H-

TCP and BicTCP are able to maintain high throughput by virtue of having

aggressive throughput gradients on the Internet - which is also applicable on

dedicated circuits. ScalableTCP, on the other hand, has a very slow growth

rate when throughputs are relatively small - as demonstrated in Figure 9.34.

H-TCP also implements an adaptive backoff algorithm whereby the mea-

sured latency can be used to provide maximal utilisation of the network

path.

10.2.4 Area 4

In this application area, the sharing dedicated circuits will require that New-

TCP algorithms are both fair and have quick convergence times to maximise

utilisation.

Both FAST and H-TCP is able to quickly converge to fairness between

competing flows, whilst ScalableTCP has undesirable properties of very long

convergence times and hence is also transiently unfair. The issue of RTT

unfairness will also seriously limit the rate at which sites further away from

their parent Tiers can transfer data. It is therefore preferable for each site

to sustain equal goodput; irrelevant of the geographical distance. As such,

ScalableTCP, BicTCP and HSTCP are not recommended.

Similar to the arguments for Area 3, as long as there is sufficient buffering

for the FAST flows, FAST is able to maintain very good properties for high

thoughput and fairness. Under insufficient buffering, the loss-based nature of
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Internet Dedicated
(sole)

Dedicated
(shared)

Tier-0 to 
Tier-1

Tier-1 to 
Tier-2

Tier-2 to 
Tier-3/4

H-TCP
FAST

BicTCP
FAST
H-TCP

FAST
H-TCP

FAST
H-TCP

Table 10.1: Overview of Recommended New-TCP algorithms for different Tiers
based upon the type of end-to-end connection.

H-TCP will have distinct advantages, whilst with large buffer provisioning,

the RTT fairness of H-TCP becomes better.

10.2.5 Summary

Table 10.1 summarises the recommended New-TCP algorithm for use in each

application area. Generally, FAST and H-TCP are the recommended New-

TCP algorithms for use for the majority of the LHC MONARC design.

However, it should be noted that FAST is only recommended where suf-

ficient network buffering is available. Across multi-domain network paths

such as that of the Internet, such tuning may not be possible; especially

when there are a large number of FAST TCP flows. This also applies to ded-

icated network paths - depending upon who supplies the dedicated circuit

this tuning may not be possible.

BicTCP, whilst maintaining very unfriendly and relatively long (and hence

undesirable) convergence times, does provide high throughput with relatively
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low overhead rates and is therefore recommended for dedicated circuits when

there is no other traffic.

FAST and H-TCP are recommended for use on dedicated circuits for re-

gardless of whether it is a shared circuit or solely dedicated. Their advantage

lies in the ability to maintain high throughput, yet being fair and facilitating

fast convergence times between competing flows.

10.3 Future Directions

It is expected that many new TCP congestion control algorithms will come

to light both from the natural evolution of the existing New-TCP algorithms

and from future designs and ideas. A natural question arises from this: would

future networks impose a homogenous or heterogeneous mix of these algo-

rithms? Whilst it is not within the scope of this dissertation to answer this

question, it is worth noting that the work in Chapter 7 sets a foundation from

which comparative testing has been identified as important in being able to

understand and evolve congestion control algorithms. It should therefore be

important to be able to expand upon these ideas in to a consistent framework

from which disparate research groups can effectively contribute to a common

shared goal. More importantly it will enable the focus of effort in order to

evolve the more promising algorithms.

The expansion of this work is summarised in the following sections.

10.3.1 New-TCP Algorithms

The research conducted in this dissertation suggests that the algorithmic

implementation of H-TCP has certain advantages; in particular the polyno-
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mial increase of cwnd facilitates fast utilisation of network resources, whilst

the adaptive backoff and resetting of β to half upon consecutive drops in

throughput due to competing traffic greatly aids fast convergence and fair-

ness. However, the polynomial increases also results in a large overhead -

especially at long latencies (unsurprising as the polynomial increase is time

based). As such, some tuning of this parameter and matching to real net-

works will be beneficial.

The delayed-based FAST algorithm also demonstrates similar attributes

to H-TCP. However, the major disadvantage of such delayed-based algo-

rithms is the requirement of network buffering to be proportional to the num-

ber of FAST flows sharing the bottleneck link. As demonstrated throughput

Chapter 8, when the network buffers are small, FAST has some very undesir-

able throughput, fairness and friendliness performances. Therefore, further

research into the choice of γ is required. Also a mechanism whereby FAST

does not cause these large fluctuations in goodput when there is insufficient

buffering should be developed.

Several other TCP congestion control algorithms have been proposed but

were chosen to either not be within the scope of the research or were not

incorporated due to time constraints.

• TCP Limited Slow-Start [Flo04] is an adaptation of the slow start al-

gorithm to prevent large numbers of retransmits due to the exponential

growth of cwnd by switching to an aggressive linear increase of cwnd

when cwnd is larger than a threshold value.

• TCP Westwood [CGM+02, GM, WVS+02] utilises RTT to determine

the appropriate bandwidth delay product in order to determine the

appropriate cwnd size for the TCP flow. Unlike FAST, it still incor-
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porates standard additive increase of 1 packet, and will back-off cwnd

upon loss to the determined bandwidth delay product value. It also

utilises a filter on the RTT to enable the detection of losses due to

BER rather than real network congestion.

• TCP AFRICA [KRB05] was devised to incorporate the benefits of

HSTCP with that of delayed based congestion control such that the

flow is more stable and fair against competing flows.

• XCP [KHR] is an extension of the ECN methodology whereby the state

of network congestion is determined not by end-hosts but from infor-

mation gathered directly through intermittent routers. The basic idea

is that each XCP enabled router determines the appropriate window

sizes that each host-pair should use based on internal calculations. This

enables the adaptation of sending rates to optimal fair-share allocations

in the order of one RTT. Whilst offering potentially the most efficient

form of global congestion control, it also requires much infrastructure

in the form of XCP capable routers, and XCP capable hosts in order

to fully appreciate its benefits.

10.3.2 AQM/RED

Whilst the deployment of AQM solutions is currently limited, it is suggested

that AQM should [BCC98, FJ93] be implemented to aid fair sharing of net-

work resources.

This dissertation only focused upon the use of drop tail queuing disciplines

to study the effects of New-TCP algorithms, and only touched upon a WRED

solution to optimise SACK processing. There is therefore a large area of



10.3. Future Directions 256

research, especially within the framework of fairness implications, in using

AQM solutions.

10.3.3 Implementation of New-TCP Algorithms

Experimental results in Chapter 9 were hampered by the implementation

difficulties related to software and hardware limits of dealing with the flux

of incoming and outgoing packets.

An obvious avenue to pursue is the optimisation of SACK processing

code, and the investigation of the other performance bottlenecks that may

exist within the Linux (and other operating systems) kernels.

An orthogonal approach is to mitigate these problems into dedicated

hardware subsystems as with TCP Offload Engines [Gwe01, SUV03] in or-

der to lower the burden of dealing with network activity in a similar way to

RAID subsystems for disk activity.

10.3.4 Other Forms of Transport

Due to the various constraints outlined in this dissertation with TCP, several

research groups have investigated into non-TCP (unicast) based transport.

Specifically, due to the constraints of requiring congestion control, most

implementations offer alternative congestion control strategies, but more im-

portantly offer the solution of using negative acks in order to reduce the

reverse traffic burden by signaling losses rather than successful data receipt.

Such research offers insight as to whether it may be beneficial to com-

pletely replace TCP with an alternative protocol for data replication. How-

ever, as most Internet software relies upon TCP for communication, much

work will need to be done in terms of updating such software.
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A more immediate problems to the deployment of non-TCP based trans-

port are those associated with firewalls due to usage caps on UDP traffic and

non-regular port numbers.

10.3.5 Further Tests

Web Traffic

To make the tests more realistic, and as defined in Chapter 7, the systematic

series of tests presented in Chapter 8 should be extended to incorporate

varying levels of web traffic. The effect of this would be that the changes of

the bottleneck queue size may affect the dynamic between New-TCP flows.

One specific example would be how FAST TCP will scale under such

scenario’s and whether the ‘noise’ imposed by the queue dynamics will have

an adverse effect on the delayed-based portion of the algorithm. The ef-

fect upon the other algorithms should be less noticeable; however, algorithm

problems involving large bursts of packet due to large α values may become

more apparent due to the queuing dynamics imposed with web traffic.

Impact of Reverse Path Topologies

With the increased aggressiveness of New-TCP algorithms in order to at-

tain large cwnd values required for high speed transport, it is important to

understand the effects and causes of packet bursts in order to better design

new transport algorithms [BA02, BPS99]. This is also important in the pro-

visioning of network router queues and the designation of AQM parameters.

A direct area of interest related to packet bursts is the use of packet

pacing whereby the sending of packets is spread over the period of a single

RTT in order to prevent clustering of data packets, and thus also improve
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ack clocking. Whilst simulations studies in [ASA00] suggest that there may

be negative global consequences under Standard TCP, the consequences of

large packet bursts as a result of large α parameters may be mitigated.

Large Scale Simulations

Whilst this dissertation focuses on a small number of flows, a more difficult

and pressing question is the large scale effect of the phased deployment of

these New-TCP algorithms.

As covered by the impact factors, it is important that the implementation

of these New-TCP algorithms do not adversely affect existing network traffic

dramatically. Meanwhile, it is also vital to trust that complete deployment

(100% usage) of such algorithms is globally stable and fair.

A specific area of research is that of the interaction between short lived

and long lived flows [BC02] as bulk transport flows do not constitute all of

the Internet’s traffic.

10.4 Conclusion

There is much work that needs to be done in order to keep the growth and

expansion of the Internet at its current rate. This is important in order to

effectively collaborate and share ideas on a truly world wide scale.

A realisation of this is through the collaboration of world wide science

projects of which a major component is the technology and middleware re-

quired for the operation of future data and compute grids. An integral part

of information retrieval is the rate at which data can physically be transferred

from one place to another.
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This dissertation investigated the performance bottlenecks, tuning and

modifications of hardware and software components to maximise this metric.

More specifically, this dissertation studied the performance bottlenecks

of TCP and congestion control algorithms. It investigated new congestion

control algorithms in a series of systematic tests and discovered potentially

serious implications upon fairness and impact upon competing traffic. As

such, a Quality of Service solution using DiffServ was investigated which

mitigated these effects and demonstrated significant performance improve-

ments due to the protection of the flow.

In conclusion, whilst the short term goal of achieving faster achievable

goodputs is possible, the long term issues of Internet stability and fairness

are still unclear.



Appendix A

Hardware Performance Tests

A.1 Data Storage

With the growth of Data Grids becoming important to enable processing of

large sets of data across the world, a fundamental question is where and how

the data is stored. In its simplest form, data may be stored on Desktop PC’s

which act as temporary scratch space for local processing. On the other hand,

regional centres and the like may have multiple storage options depending

on the importance of the data in question. As such, archived data may be

stored on cheap tape based systems, whilst more immediately required data

may be stored on large storage clusters such as RAID farms.

This section gives an overview of RAID technologies and gives examples

of existing performance limitations on such systems.

While it may be possible to make fast transfers across high bandwidth

networks, transfers of real data are limited by the rate at which end hosts

can read and write data to and from disk. This section demonstrates that

260
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with the choice of appropriate hardware with optimised kernel and hardware

settings the effect of this bottleneck can be significantly reduced.

A.1.1 Overview

RAID stands for ‘Redundant Array of Independent Disks’ and is a method of

distributing the storage and retrieval of data across many, usually identical

hard disks. Depending on the configuration of the RAID, one may achieve

increased performance in terms of data access time and transfer rates, or one

may seek protection against data loss in case of hard drive failure.

The latter is important to ensure constant and continual availability of

storage systems as restoration from backups will often involve taking down

the system. Data stored in data protected RAID systems can also be recov-

ered with minimal hassle.

RAID controller solutions can be hardware or software implemented and

can be configured for different storage needs. As such, the performance of

several types of hardware RAID controllers, mounted on high performance

end systems, and types of RAID configuration are investigated.

Originally developed by D. Patternson [PGK88] in 1988, a series of RAID

configurations were defined which manufacturers have adopted1. Some of the

current RAID standards are outlined below.

• RAID-0: Commonly referred to as striping. It implements a striped

disk array whereby the data is broken down into blocks which are writ-

ten to separate hard drives in parallel. This solution provides no data

redundancy and therefore has very little overhead. It therefore offers

1RAID-0 was not part of the original specifications, but presented later in 1994 in
[CLG+94].
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absolutely no fault tolerance and the failure of just one drive will result

in all data being lost.

• RAID-1: Also known as mirroring. Total redundancy is provided by

writing identical data to multiple disks, and therefore requires at least

two hard drives. As the data is written just once (and mirrored) there

is no improvement in write times over a single hard disk. However, as

the data is distributed over pairs of disks an improvement of two times

the single drive read speed can be achieved. As each pair of disks is

mirrored, there is no performance increase as the number of disks used

increases. However, as there is 100% redundancy of data, no rebuild

is necessary in case of a disk failure and a simple copy of data to the

replacement disk is required.

• RAID-10: Combines striping and mirroring, thus providing high per-

formance read write speeds and total redundancy. It is implemented

as a striped array who segments are RAID-1 arrays. As such it has

the benefits of performance and fault tolerance of both RAID-0 and

RAID-1 systems. However, the use of so many disk drives means that

the cost is high as storage capacity is low. In many ways RAID-10 is an

ideal solution for high speed, fault tolerant data transfer and storage.

• RAID-5: Writes data in stripes similarly to RAID-0, but also check-

sums the data and creates parity blocks in the same rank on writes.

These are distributed across the total number of disks alongside the or-

dinary data stripes. It requires a minimum of three disks to implement.

In the event of a single disk failure the ordinary data can be recovered

using the parity data. This configuration gives high redundancy to-
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gether with high capacity and storage efficiency. Due to the inclusion

of the parity data total write speeds are slower than for RAID-0. Total

read speeds are also slower as the parity stripes must be skipped over

in order to reach the ordinary data stripes.

A.1.2 Test Methodology

A set of tests were performed to compare the read and write speeds of a selec-

tion of RAID controllers. RAID configurations were chosen to compare and

contrast the optimal performance configuration of RAID-0, and an optimum

real life implementation with RAID-5.

Only the transfer of large data-sets is considered where it is assumed that

the data is stored in a roughly linear manner whereby hard disk seek times

may be neglected2.

All tests were performed on ‘server-class’ PC’s as shown in Table A.1

with the associated RAID controller cards as shown in Table A.2. The disks

used in all tests are shown in Table A.3 and were formatted with the ext2

file system that is representative of most Linux based systems which are

prevalent in research communities.

Two separate programs were created to perform the reading and writing

of data to and from user space. They implement the standard read() and

write() Unix calls. Given a predefined file or file size, the read() program

reads data from the RAID partition into a circular buffer in memory. The

write() program writes a defined size of random data from memory onto

disk.

The vm.max-readahead sysctl [Rub97] in Linux affects how early the

2It is also assumed that the presence of file fragmentation is negligible.
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Description

CPU Dual Intel(R) Xeon(TM) CPU 2.40GHz
Memory 512MB

Motherboard Supermicro P4DP8-G2
Front-side bus speed 400Mhz

PCI Word Size 64 bit
PCI Speed 66/100/133Mhz

OS Redhat Linux 7.2

Table A.1: Hardware and software configuration of PCs used for RAID perfor-
mance tests.

Controller

Raid Controller Type PCI Interface Driver Version

ICP GDT8546RZ SATA 64bit 33/66Mhz 2.03

3Ware 7505-8 ATA 64bit 33Mhz 1.02.00.031

3Ware 7506-8 ATA 64bit 66Mhz 1.02.00.031

3Ware 7506-8 SATA 64bit 66Mhz 1.02.00.031

Table A.2: RAID Controllers under investigation.

Controller Spindle

Manufacturer Type Size (Gb) Speed (rpm) Cache Size

Maxtor ATA 160 7500 8MB

Maxtor SATA 160 7500 8MB

Table A.3: Hard disk models used in RAID tests.

Linux VFS (Virtual File System) fetches the next block of a file from mem-

ory. For the retrieval of data stored on disk in a uniform linear fashion

(such as a large file) transfer rates can be increased with larger values of

vm.max-readahead. However, increasing the value of vm.max-readahead

may result in excess and often unnecessary memory usage. Conversely, low-

ering this value will result in a decrease in memory usage at the cost of

reduced performance.
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The virtual memory setting in the Linux kernel vm.max-readahead was

varied to determine if any improvement in read and write speeds could be

achieved. The variable vm.min-readahead which controls the floor of the

vm.max-readahead settings was also investigated but was found to have neg-

ligible effect and the results are therefore are not presented.

The read and write speed tests were performed for a distribution of file

sizes ranging from 100MB to 2GB with increments of 100MB in order to give

a realistic range of useable data file sizes.

Each measurement was repeated five times from which the arithmetic

mean value was calculated. This mean was used as the central value from

which to determine the standard deviation for the five measurements to de-

termine the standard error on the mean [Boa83].

A.1.3 Results

Figures A.1 to A.5 show a series of graphs for read and write speeds versus

file sizes for different settings of the Linux variable vm.max-readahead. Due

to hardware restrictions, only RAID-5 configurations with an array of 4 disks

were investigated.

Figure A.6 summarises the RAID-5 results achieved by the various con-

trollers with vm.max-readahead settings of 1200 and also includes 8-disk

arrays. Figure A.7 is the equivalent summary graph for RAID-0. The results

for 2GB files are also displayed in Table A.4 .

All graphs shown for read and write speeds show similar shapes: write

speeds typically begin at a relatively high value for small file sizes then drop

quite suddenly at around 400MB for all RAID-5 configurations. The graphs

flatten off to a relatively low value - approximately 500 to 600Mbit/sec for
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the ICP cards and about 400Mbit/sec for the 3Ware cards. The trend of

the drop can be partially explained by file caching and also by the extra

overheads introduced by the writing of the parity information required for

RAID-5. The RAID-0 write distributions (Figure A.7) are typically much

flatter as parity information is not created.

The read speeds remain essentially constant for all file sizes, only de-

creasing to lower speeds with file sizes smaller than 200MB. This can be

explained through the overheads of file seek and buffer management. It was

observed that the read 3Ware cards were able to achieve about 50% greater

read performance than that of the ICP cards at optimal vm.max-readahead

settings.

For all configurations, it was observed that an increase in the vm.max-readahead

value also increased disk read performance. As vm.max-readahead continues

to be set to higher and higher values the relative improvement in disk per-

formance diminishes. No significant improvements in disk performance were

achieved for vm.max-readahead values greater than 1200 and hence larger

values are not included. There appears to be no conclusive increase in the

write performance with a change in vm.max-readahead.

Figure A.1 and Figure A.2 show results for the ICP SATA RAID controller

configured as RAID-5 with PCI interface jumper settings of 33MHz and

66MHz respectively. The read speed clearly improves as vm.max-readaheadis

increased. The write speeds remained largely unaffected, although there was

a larger standard deviation of values at small file sizes for a vm.max-readahead

of 31. In both cases, there is no discernible increase in performance until the

vm.max-readahead was set above 127. The use of a 66Mhz PCI bus clearly

leads to an increase in performance in both read and write speeds. How-

ever, it should be noted that a tuned 33Mhz ICP card is able to get the
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Figure A.1: Performance of ICP SATA (RAID 5 with 4 Disks and 33Mhz PCI).
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(b) Write Performance

Figure A.2: Performance for ICP SATA (RAID 5 with 4 Disks and 66Mhz PCI).

same read performance as that of an un-tuned 66Mhz ICP card under these

tests. A slightly higher write speed was achieved with the 66 MHz PCI mode

compared with the 33 MHz mode.

Figure A.3 and Figure A.4 show results for the 3Ware parallel ATA

RAID controllers configured as RAID-5. Figure A.3 refers to the older con-

troller with a 33 MHz PCI bus speed, whilst Figure A.4 refers to the newer

model with a 66 MHz PCI bus speed. The read speeds improve with the

vm.max-readahead setting for both cards, with the newer card with the 66

MHz PCI bus showing greater stability in terms of the variation in speed
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Figure A.3: Performance for 3Ware ATA (RAID 5 with 4 Disks and 33Mhz PCI).

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0  200  400  600  800  1000  1200  1400  1600  1800  2000

R
ea

d 
S

pe
ed

 (
M

bi
t/s

ec
)

File Size (MBytes)

vm.max-readahead 31
vm.max-readahead 63

vm.max-readahead 127
vm.max-readahead 256
vm.max-readahead 512

vm.max-readahead 1200

(a) Read Performance

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0  200  400  600  800  1000  1200  1400  1600  1800  2000

W
rit

e 
S

pe
ed

 (
M

bi
t/s

ec
)

File Size (MBytes)

vm.max-readahead 31
vm.max-readahead 63

vm.max-readahead 127
vm.max-readahead 256
vm.max-readahead 512

vm.max-readahead 1200

(b) Write Performance

Figure A.4: Performance for 3Ware ATA (RAID 5 with 4 Disks and 66Mhz PCI).

for small values of vm.max-readahead. However, there was no observable

increase in the read speed for higher settings of vm.max-readahead.

However the overall read performance for both the 3Ware parallel cards

is over 200Mbit/s faster than for the ICP card. The write speeds for the two

3Ware cards are also very similar with the 66 MHz card having marginally

better performance. On the other hand, the overall write performance of

the 3Ware cards is significantly less than that of the ICP card, being over

200Mbit/s slower.

The particular ICP card under test had a maximum disk array size of 4
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Figure A.5: Performance for 3Ware SATA (RAID 5 with 4 Disks and 66Mhz PCI).

disks. The 3Ware controllers are able to hold up to 8 disks. The read and

write speeds for the 3Ware cards were greatly enhanced when 8 disks were

included in the array as demonstrated in Figure A.6 as well as Table A.4.

An ICP GDT8586RZ 8 channel array could not be obtained, and therefore

equivalent testing was not possible.

Figure A.5 shows results for the 3Ware-SATA RAID controller configured

as RAID-5. This card has a 66 MHz PCI bus; an equivalent 33 MHz version

was not available for testing. The read speeds for this controller were the

fastest of all the cards in these tests, being marginally faster than the 8-disk

array for the 3Ware parallel ATA controllers. Also the 3Ware-SATA read

speeds did not significantly improve when 8 disks were included in its array

as opposed to 4 (See Table A.4). The write speeds achieved are comparable

to the equivalent speeds achieved with the parallel cards, being only slightly

faster with a 4-disk array and slightly slower with an 8-disk array.

Figure A.6 shows a comparison of the maximum (vm.max-readahead

1200) read and write speeds achieved for the various controllers and RAID-5

configurations. Table A.4 shows detailed read and write speeds for 2 GB

transfers. The greatest overall read speeds (approximately 1300Mbit/s) were
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Figure A.6: Performance of Various Controllers in RAID-5 Configuration.

achieved by the 3Ware-SATA card mounted with 8 disks, closely followed by

the 3Ware parallel ATA running at 66 MHz with 8 disks and then the 3Ware

parallel ATA running at 33 MHz. The 3Ware controllers perform less well

when running with only 4 disks, each reading at approximately 1050Mbit/s.

The read performance the ICP cards in RAID-5 were not as high as

expected. When running in 66 MHz mode typical write speeds were approx-

imately 800Mbit/s, whilst the 33 MHz mode only read at around 700Mbit/s.

The greatest overall write speeds were achieved by the 3Ware-ATA 66 MHz

card mounted with 8 disks. The 3Ware-SATA, 3Ware-ATA 33 MHz and ICP

66 MHz controllers performance was approximately equal. However the ICP

cards only ran with 4 disks. Out of all the 4 disk array tests the ICP 66 MHz

controller achieved by far the greatest write speeds.

Figure A.7 shows a comparison of the maximum (vm.max-readahead

1200) read and write speeds achieved for the various controllers and RAID-

0 configurations. Again, the 3Ware cards show better read performance

than that of the ICP cards and are comparable to that of the RAID-5 per-

formances. However the read speeds are approximately 50 to 100Mbit/sec

faster in RAID-0 over RAID-5 configurations. This is expected as the read-
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Figure A.7: Performance of Various Controllers in RAID-0 Configuration.

ing of data under RAID-5 requires the skipping of parity data which would

result in a light performance decrease. The main performance increase in

using RAID-0 over RAID-5 is that the write speeds are significantly higher

as parity data does not need to be generated for each block of data written.

As such, write speeds of approximately twice the rate of that of RAID-5

were observed. The pattern of write speeds is also different; with all cards

showing a drop in write performance at approximately 1GB file sizes. The

ICP card, at 33Mhz, however, shows the worst write performance with larger

file sizes, not showing the stepped performance decrease associated with the

other cards. However, at 66Mhz, the ICP card performs the fastest with

RAID-0 write speeds with large files, and only marginally slower than the

3Ware SATA cards with files less than 1GB in size.

A.1.4 Summary

Table A.4 shows the read and write performances observed using various

RAID cards in both RAID-0 and RAID-5 configurations using optimally

tuned Linux kernel parameters using vm.max-readahead.
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Number RAID-0 (Mbit/sec) RAID-5 (Mbit/sec)
Controller Type of Disks Read Write Read Write

ICP 33 4 751 811 686 490
ICP 66 4 893 1,202 804 538
3W-ATA 33 4 1,299 835 1,065 319
3W-ATA 66 4 1,320 1,092 1,066 335
3W-ATA 33 8 1,344 824 1,280 482
3W-ATA 66 8 1,359 1,085 1,289 541
3W-SATA 66 4 1,343 1,116 1,283 372
3W-SATA 66 8 1,389 1,118 1,310 513

Table A.4: Summary of Read and Write Speeds of 2GB Files for controllers con-
figured as RAID 0 and RAID 5 with vm.max-readahead=1200.

Generally, the performance of both read and write speeds is aided with

the following configurations:

Tuning of Kernel Parameters It was observed that setting vm.max-readahead

to 1200 helped in all cases. The default value of 31 reduced the perfor-

mance of RAID-5 devices by as much as 75% in the case of the 3Ware

SATA tests.

Number of Disks An increase in the number of channels being used in the

RAID helps with the striping of data across hard disks and improves

the read speed as each separate hard disk is able to retrieve a separate

block of the file.

PCI Bus Speed A higher PCI bus speed is recommended, with the great-

est increase in performance achieved with the write performance of the

RAID devices. The performance increase of the 3Ware cards with in-

creased PCI Bus speed was not as noticeable as that of the ICP cards.

File Size Whilst the read performance remains constant for all file sizes
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larger than 100MB, the optimal write file size is less than 400MB under

RAID-5. The decrease in RAID-0 write performance with file size is not

as pronounced, but all cards observe a stepped decrease in performance

with files larger than 1GB.

A major factor that should be considered in the feasibility of these tests

is that the test programs are only single threaded and only read and/or

write a single file at any one time. This type of access to files is unlikely

in real world scenarios - especially as RAID systems are often deployed on

busy server systems which are shared by many users accessing different files

at the same time. The result of this would be a marked decrease in the

performance achieved in ‘real-world’ environments. However, in-depth study

of user access patterns would be required to give a realistic representation of

expected multi-user performance.

However, the tests do serve to demonstrate the optimal performance

achievable by the various RAID systems tested and demonstrates that the

raw performance achievable under RAID-0 is capable of reading and writ-

ing data in the order of a gigabit/sec. However, the requirement of fault

protection and data integrity is often more important than transfer speeds,

and as such it is very unlikely that RAID-0 systems would be deployed in

real-world environments. It was shown that this trade off for file integrity

and protection would result in a decrease in write performance of up-to 50%.

A.2 Network Interface Cards

The need for intercommunication between computer systems is often handled

using Network Interface Cards (NICs). These are defined by Layer 1 and
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Layer 2 of the ISO/OSI model and Layer 1 of the TCP/IP network model.

Typically, most NICs are Ethernet (IEEE 802.3) based [MB76] due to its

low cost. It is also worth noting that the interconnects used to construct

the Layer 1 communications are also cheap - utilising twisted-pair copper

cabling3. The viability of utilising Ethernet as a generic hardware networking

solution is also increasing as computer hardware manufacturers and suppliers

have also been integrating NICs into their products as standard.

As defined in the OSI and TCP/IP models, the NIC provides the base

and hence limiting factor in the communication speeds between networked

devices. It is therefore important to benchmark the performance at which

data can be physically and logically placed into the network.

A.2.1 Test Methodology

As the NIC is the primary subsystem that communicates data into a format

which can be sent over any network, it is important to investigate its perfor-

mance without the intervention of Routing and Switching which may impose

further bottlenecks/performance deterioration.

The performance of a Network Interface Card is defined as follows:

Speed The absolute rate at which data can be transmitted to and from the

NIC. Due to header size constraints and the relation between the packet

sizes used and overhead required per packet, smaller packet sizes are

more likely to cause a performance burden.

Latency The amount of time that it takes for the system to transmit a

packet. More importantly, the change in latency with packet size can

3More expensive fibre optic based Ethernet cards are also available.
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determine how close to theoretical hardware limits data transport is

capable of getting [HJS00].

In general, the the transfer of data between networked computers must

involve the interaction of both hardware and software. In the case of the

hardware requirements, the data must be transferred from memory to the

network interface before the data can be placed onto the network. There-

fore, the interaction and co-operation between the memory subsystem, the

CPU, the bridge to the input-output bus, the input-output bus (in this case

PCI/PCI-X) and finally the NIC are important [HJS00].

In terms of software, the design and implementation of application layer

programs, the network stack, and network drivers is also of importance to be

able to both schedule and regulate data flows into and out of the hardware

subsystems. An overview of some of these major components is presented

below.

TCP/IP Kernel Implementation The translation of data flows from user-

space into transport layer datagrams (with relevant source-destination

and checksum information) are performed here. The encapsulation into

IP packets and then consequently Ethernet frames is also performed

here.

NIC driver The driver provides the translation between the kernel level

data and bit formats which the underlying layer 1 hardware can under-

stand. Scheduling both input and output data are also managed here

by managing interrupts [PJD04].

NIC hardware The chipset of the network interface card actually does the

work of forming/receiving the electrical, photonic or RF signals for



A.2. Network Interface Cards 276

Layer 1 propagation.

Similarly, the transport of data also relies upon the co-ordination of other

hardware components within the PC subsystems.

CPU Speed The rate at which data from Applications can be processed

and the techniques of scheduling and the processing of hardware through

the kernel are determined by the CPU chipset and clock frequencies.

Memory Speed and Bus Speed The copying of data to and from main

memory into and out of the CPU can be crucial factors when a lot of

data is being copied to and from the application.

PCI Word Length and Frequency The number of bits that can be trans-

ferred at once across the PCI subsystems (the Word Length) [Gro00]

and the rate at which data can be placed into the PCI bus (the fre-

quency) imposes a fundamental limit on the rate at which the CPU

and chipset architecture can communicate with NIC hardware.

UDP packets were used to determine the performance characteristics of

a selection of NICs. This is important as the various features of TCP may

impose a performance limit and as such would not give a determination of

the NIC performance, but the performance of the TCP stack itself. The

use of UDP also enables finer control of packet sizes and the rates at which

data is generated and sent to the NIC from userspace without modification

to any underlying systems. As such, the use of UDP packets should give

an indication of the raw performances achievable by suitably programmed

applications.

As such, a series of tests were developed to measure and determine the

performance of the various components that contribute to the performance
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of data transport. For all tests, server-class rack-mount PCs were used as

defined in Table A.5 and Table A.6 using the NICs listed in Table A.7.

Description

CPU Dual Intel(R) Xeon(TM) Presontia 2.20GHz HT4

Memory 1GB
Motherboard Supermicro P4DP6

Chipset Intel E7500 (Plumas)
Front-side bus speed 400Mhz

PCI Word Size 64 bit
PCI Speed 66/100/133Mhz

Kernel Linux 2.4.19

Table A.5: Hardware and Software Configuration of PCs used for NIC performance
testing.

Description

CPU Dual Itanium 2.10GHz (64-bit)
Memory 2GB

Motherboard HP RX2600
Front-side bus speed 800Mhz

PCI Word Size 64 bit
PCI Speed 133Mhz

Kernel Linux 2.5.72

Table A.6: Hardware and Software Configuration of High Performance Itanium
PCs used for NIC performance testing.

NIC Chipset Driver Version

Intel Pro (Onboard) Intel 82546 e1000 4.4.12

Syskonnect SK9843 sk98lin v6.0 04

Intel PRO/10GbE LR - Ixgb 1.0.45

Table A.7: Hardware and Software Configuration of NICs tested.
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A.2.2 Latency

In order to determine the limits of network interface card performance, the

implications of having data transferred through the PCI bus onto the NIC

should also be considered. The rate at which data can be transferred through

the PCI bus is determined by both the word size and the frequency of the

bus. Table A.8 shows the theoretical latencies expected from transferring

data through the PCI bus.

In order to determine the speed at which packets can be processed by

the PCI subsystem and the NIC, a single UDP packet (with relevant en-

capsulation) were sent direct from userspace using the unix send() function

using various sized data packets. This ‘request’ packet solicits the generation

of a ‘response’ packet from the server application on the receiving machine,

which then sends a constant sized UDP packet back to the sender. The time

measured between the initial send and the receipt of the ‘response’ packet is

used to determine the Round-Trip Latency.

It is assumed that the processing of a UDP packet to be sent out requires

the copy of data into memory, and then the consequent transfer (after encap-

sulation etc.) of the data through the PCI subsystem into the NIC hardware.

The rate at which data is to be transferred to the receiving system is then

limited to the rate at which the Layer 1 and Layer 2 hardware and data link

components operate. The receipt of the ‘response’ packet also requires the

traversal of the PCI subsystem followed copying of the data into memory

before being delivered to the application.

The theoretical inverse data rates of the PCI bus and NIC speeds are

given in Table A.8 and A.9 respectively. Table A.10 gives the memory data

rates for the PCs used in the tests. Therefore, define the minimal rate at
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PCI Bus PCI Word Data Rate Inverse Data
Speed (Mhz) Length (bits) (Gbit/sec) Rate (µsec/byte)

33 32 1.056 0.00758
66 32 4.224 0.00379
33 64 2.112 0.00379
66 64 4.356 0.00189
133 64 8.512 0.00094

Table A.8: Theoretical data rates of PCI bus speeds.

NIC Speed Inverse Data Rate
(Mbit/sec) (µsec/byte)

10 0.80000
100 0.08000

1,000 0.00800
10,000 0.00080

Table A.9: Theoretical data rates of various NIC speeds.

Model Processor Front Side Data Rate Inverse Data Rate
Bus (Mhz) (Gbit/sec) (µsec/byte)

Supermicro P4DP8-G2 32-bit 400 12.8 0.000625
HP RX2600 64-bit 800 51.2 0.000156

Table A.10: Theoretical memory data rates of PCs.

which data can be transferred, τ . to be:

1

τ
=

2

tm
+

2

tp
+

1

tn
(A.1)

Where tm is the rate at which data is copy to or from memory, tp is the

rate at which data is transferred over the PCI bus and tn is the rate at which

data is transferred over the network (assuming no losses nor congestion).

By varying the size of the ‘request’ packet, and keeping the ‘response’

packet size constant, the rate at which packets are processed by the various

subsystems can be calculated. Also the actual propagation delay through the
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Model Processor Front Side PCI Word PCI Bus NIC Speed Inverse Data
Bus (Mhz) Length (bits) Speed (Mhz) (Mbit/sec) Rate (µsec/byte)

Supermicro 32-bit 400 64 133 1,000 0.011130
Supermicro 32-bit 400 64 133 10,000 0.003930
HP RX2600 64-bit 800 64 133 10,000 0.002992

Table A.11: Theoretical combined data rates of PCs
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Figure A.8: Ping-pong latency of 1Gb/sec NIC Cards (66Mhz in 64-bit PCI buses).

sum of the hardware components can be calculated by the y-intercept of a

latency/packet-size graph [HJS00]. Table A.11 shows the expected/theoretical

data transfer rates of various hardware combinations.

For each packet size, the request-response was initiated 1,000 times in

a serial fashion and the minimum values are reported. The spread of the

latencies experienced by the 1,000 packets for all packet sizes and testbed

configurations were not found to be significant and therefore is not presented.

Figure A.8 shows the performance of two popular 1Gb/sec Ethernet cards.

The smooth function of the Syskonnect indicates that the driver-NIC man-

agement works well with a low latency suggesting that the driver interrupts

once for every packet received. The recorded slope of 0.177µsec/byte is also

within reasonable agreement with the theoretical value of 0.0111µsec/byte.

The Intel NIC, however, has much higher latency, suggesting that some
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Figure A.9: Ping-pong latency of 10Gb Intel NIC Cards (PCI-X at 133Mhz).

form of interrupt coalescing is occurring whereby the number of software

interrupts by the driver (to notify the kernel of data availability in the NIC) is

decreased by not triggering a software interrupt for every hardware interrupt

or by interrupting once in each period of time.

This has the benefits of lowering CPU utilisation as the number of context

switches required is reduced at the cost of higher latency of data receipt.

The very low gradient of 0.0146µsec/byte observed for the Intel makes good

agreement against theory (0.0111µsec/byte).

Figure A.9 shows the latency performance of the Intel PRO/10GbE LR

Server Adaptor on two different high performance server PCs. The Xeon-

based system (same as that used in the 1Gb/sec NIC tests) very good

agreement between the measured values of 0.0041µsec/byte and the theoret-

ical slope of 0.00393µsec/byte. The Itanium-based system also shows good

correlation between the measured results of 0.0035µsec/byte and theory of

0.00299µsec/byte.

Note in both cases for the 10Gb/sec NIC cards, the least squares fit of

the measured results are not as good as that of the 1Gb/sec NIC tests which

would account for discrepancies in the measured gradients.
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A.2.3 Throughput

Due to the simplicity of the UDP datagram format and stateless nature of

UDP packets, the use of UDP packets to determine throughput can determine

the raw absolute throughput achievable by appropriately designed programs.

The UDPMon [HJ] program was used to transmit a stream of UDP packets

at regular intervals. The rate at which the packets are received can be used

to determine the throughput achieved.

The rate at which data is transferred is determined by two factors:

Packet Size The amount of data in each packet; each packet requires the

necessary overhead of UDP, IP and Ethernet information, each Ether-

net frame must have at least 60B5 for data communication to occur. As

the amount of application data in each packet is increased, the head-

ers require a lower relative overhead and performance improves. In all

tests, the ‘wire rate’ is shown which includes all the necessary header

overheads for comparison against the published Ethernet rates6.

Inter-packet Time By adjusting the time between the injection of packets

into the network, and assuming constant packet size, the rate at which

data is sent into the network can be increased or decreased. Therefore,

a 1
t

relation between the throughput and the inter-packet time, t, is

expected.

Therefore higher throughputs will be achieved with an increase in the

packet size and by increasing the amount of data that is sent per time unit.

5Includes: 8B for the inter-packet gap, 6B for the preamble, 18B for the Ethernet
header and CRC, 20B for the IP header and 8B for the UDP header.

6The actual transfer rates achievable for real data exclude the header overheads.
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Figure A.10: Throughput performance of 1Gb/sec NIC cards (66Mhz in 64-bit
PCI buses).

Figure A.10 shows the throughput achieved by flooding the NIC with

UDP packets with various packet sizes and inter-packet times. As with the

tests involving latency, identical computer systems were connected back-to-

back via their NICs.

Figure A.10 shows the throughput achieved by the same two cards that

were used for the latency tests. They show the 1
t

relation as measured by

the UDPMon [HJ] program.

It was noticed that as small inter-packet wait times were used, a plateau

on the rate at which data is transferred was reached. The length of the

plateau of each curve is defined by the amount of time required to put a

packet on the wire. More specifically, this is defined by packet size divided

by the line rate, i.e. ‘standard’ IP packets of size 1500B would require 1, 500×

8/1, 000, 000, 000 = 12µsec per packet. As the packet processing is First-In-

First-Out (FIFO), the packets are simply queued if a inter-packet wait time

that is less than the physical time required to put the packet on the wire.

Figure A.10 also shows that more stable performance was achieved for

low wait times between packets with the Intel card compared to that of

the Syskonnect. This was found to be due to high CPU utilisation of the
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Figure A.11: Throughput performance of 10Gb/sec Intel NIC cards (PCI-X at
133Mhz).

Syskonnect card and is discussed later.

Figure A.11 shows the performance of the Intel 10GbE LR NIC on the

high-end Xeon and Itanium PCs. In order to reduce CPU overheads and to

increase the data transfer rates, Jumbo frames were used with packets up-to

16,080B7 for these tests8. The following characteristics can be determined

from the comparison:

• The Xeon-based PC is only capable of delivering up-to 2.9Gbit/sec,

whilst the Itanium-based PC observed 5.7Gbit/sec. The former limit

is due to CPU limitations of the Xeon-based PCs, whilst the latter bot-

tleneck was found to be due to the the theoretical maximum capacity

of PCI-X which is 8.5Gb/sec.

• Using a MTU of 2000B cannot achieve anywhere near the optimal per-

formance of larger MTUs.

• The maximal throughput achieved by the maximal MTU does not reach

the claimed 10Gb/sec NIC speed.

716,114B including IP and UDP headers.
8As Jumbo frames are non-standard, hardware re-configuration was required on both

PCs.
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Figure A.12: Effect of Interrupt Coalescing upon packet latency.

A.2.4 Interrupt Coalescing

Depending on the configuration set by the driver, a modern NIC can interrupt

the host for each packet sent or received or it can continue to buffer packets for

a certain period of time. This is known as interrupt coalescing [PJD04] and

the details and options are hardware and NIC driver dependent. The NIC

may generate interrupts after a fixed number of packets have been processed

or after a fixed time from the first packet transferred after the last interrupt.

In some cases, the NIC dynamically changes the interrupt coalescence times

dependent on the packet receive rate [Cor]. Separate parameters are usually

available for the transmit and receive functions of the NIC.

The effect of interrupt coalescing are most apparent upon packet latencies

as shown in Figure A.12. It shows that as the packet size is increased,

a predictable increase in the latency for each interrupt coalesce setting is

achieved. More importantly, higher values of interrupt coalesce result in

proportionate increases in the experienced latency.

The effect of a high value of coalescing often lowers throughput as packets

could be dropped due to the lack of buffer space. When set too low, high

CPU utilisation occurs due to the necessary context switching between kernel

processes to absorb/transmit the packet .



A.2. Network Interface Cards 286

 0

 20

 40

 60

 80

 100

 0  5  10  15  20  25  30  35  40

C
P

U
 K

er
ne

l U
til

is
at

io
n 

(p
er

ce
nt

)

Interpacket Wait-Time (usec)

50 bytes
100 bytes
200 bytes
400 bytes
600 bytes
800 bytes

1000 bytes
1200 bytes
1400 bytes
1472 bytes

(a) Syskonnect

 0

 20

 40

 60

 80

 100

 0  5  10  15  20  25  30  35  40

C
P

U
 K

er
ne

l U
til

is
at

io
n 

(p
er

ce
nt

)

Interpacket Wait-Time (usec)

50 bytes
100 bytes
200 bytes
400 bytes
600 bytes
800 bytes

1000 bytes
1200 bytes
1400 bytes
1472 bytes

(b) Intel

Figure A.13: CPU Kernel utilisation of 1Gb/sec NIC cards (66Mhz in 64-bit PCI
buses).

Therefore, to achieve the same throughput with small packet size more

interrupts per unit time are required unless interrupts are generated as a

function of time. This would explain the decrease in throughput as a result

of using smaller packet sizes.

Figure A.13 shows the CPU utilisation of the kernel (networking) thread

for the 1Gb/sec Syskonnect and Intel cards as tested in Figure A.10. It shows

that the cleaner throughputs achieved by the Intel card also correlate to a

much lower CPU utilisation compared to that of the Syskonnect card. This,

combined with the high latencies experienced suggests that interrupt coa-

lescing is indeed being utilised by the Intel driver, whilst the high utilisation

of the Syskonnect driver affects stable high capacity throughput due to the

lack of CPU cycles to service the packets.

A.2.5 Summary

With suitable hardware, it was shown that Network Interface Cards are ca-

pable of delivering close to the performance expected. Related work [GB02]

also demonstrates the capability of delivering Gigabit rates with suitable
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hardware and software configurations.

An important consideration in the deployment of high speed NICs is the

CPU overheads associated with the increased rate of packets and the associ-

ated rate of hardware interrupts. It was demonstrated that the CPU overhead

can be reduced through the use of interrupt coalescing that is available on

most NIC drivers. However, this comes at the cost of increased latency of

packet receipt (or transfer).

It was also demonstrated that the use of large packet sizes is preferable

as it combines the benefit of reducing the number of interrupts generated per

unit data and also increases the fraction of data being transferred per packet

due to the necessity of encapsulation and the associated protocol headers.



Appendix B

Hardware and Software

Configurations

B.1 Systematic New-TCP Tests

Testbed PC’s Dummynet Router

CPU Intel Xeon CPU 2.80GHz
Memory 256MB

Motherboard Dell PowerEdge 1600SC
NIC Intel 82540EM Gigabit Ethernet Controller

Kernel 2.6.6 altAIMD-0.6 FreeBSD 4.8
NIC Driver Linux e1000 5.2.39-k2 Default

Table B.1: Hardware and Software Configuration of Dummynet Testbed PCs
router.
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DataTAG MB-NG

No. Machines 2 × 6 2 × 3
CPU Intel Xeon CPU 2.2GHz Intel Xeon CPU 2.0Ghz

Motherboard Supermicro P4DP8-G2 Supermicro P4DP6
NIC Syskonnect SK9843 Intel Pro 1000

Kernel 2.4.20 altAIMD-0.3 2.4.20 altAIMD-0.3
NIC Driver Linux sklin 6.18 Linux e1000 4.4.12
TXqueuelen 50,000 2,000

Table B.2: Hardware and Software Configuration of MB-NG and DataTAG
Testbed PCs

B.2 Wide Area Network Tests

B.3 Internet Tests

Description

CPU Intel Xeon CPU 2.80GHz
Memory 256 MB

Motherboard Dell PowerEdge 1600SC
NIC Intel 82540EM Gigabit

Ethernet Controller
Kernel 2.6.5 altAIMD-0.5

NIC Driver Linux e1000 5.2.39-k2

Table B.3: Hardware and Software Configuration of PC used for Internet transfers.



Appendix C

Network Topologies

C.1 Dummynet

Dummynet
Router

TCP1
receiver

TCP2
receiver

TCP1
sender

TCP2
sender

GigE
switch

GigE
switch

Figure C.1: Topology and Experimental set-up of Dummynet network tests.

C.2 MB-NG

MB-NG part of the Janet Research network run by UKERNA. It is de-

fined by three end points forming a triangle connecting ULCC in London, to
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UCL PCs
Manchester PCs

Cisco 7606

Cisco 7606
Cisco 7606

Cisco 12000 Cisco 12000

Manchester
London

2.5Gb/sec
1Gb/sec

Cisco 7606

(a) MB-NG Testbed

Figure C.2: Logical representation of the MB-NG Testbeds.

Manchester Computing Centre in Manchester and Rutherford Apple Labo-

ratory in Warrington. For this investigation, is was sufficient to test along

only the London to Manchester parts of the MB-NG network. The three

end-points are connected via three Cisco 12000 GSR backbone routers. Each

site has two Cisco 7600 in which 3 high-end PCs were directed connected

onto. A physical bottleneck of 1Gb/sec was provided by a single 1Gb/sec

fibre between the two Cisco 7600 co-located at each site.

C.3 DataTAG

DataTAG is composed of a leased fibre connecting CERN in Switzerland to

StarLight in Chicago, United States of America. The infrastructure of the

DataTAG testbed consists of two Juniper T320 which aggregate the traffic

at either sites onto a dedicated STM64 link across the Atlantic Ocean. The

traffic from the testbed PCs are connected through Cisco 7600 series routers

which are connected to the Juniper T320’s at either side of the DataTAG

network. As the testbed PCs are limited by their 1Gb/sec NICs, the testbed

was configured to provide a bottleneck capacity of 1Gb/sec through a virtual
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CERN PCs
StarLight PCs

Juniper M10

Cisco 7609

Cisco 7606Juniper M320 Juniper M320

StarLight, Chicago
USA

CERN
Switzerland

10Gb/sec
1Gb/sec

(a) DataTAG Testbed

Figure C.3: Logical representation of the DataTAG Testbed.

LAN which is diverted through a Juniper M10 router located in StarLight in

Chicago.



Appendix D

Network Paths of Internet

Network Tests

pcgiga.cern.ch:192.91.245.29

cernh4-vlan4:192.91.245.1

cernh7:192.65.185.17

swice2-g3-2.switch.ch:192.65.184.221

switch.ch1.ch.geant.net:62.40.103.17

ch.fr1.fr.geant.net:62.40.96.30

fr.uk1.uk.geant.net:62.40.96.90

janet-gw.uk1.uk.geant.net:62.40.103.150

london-bar4.ja.net:146.97.37.81

po6-0.lond-scr.ja.net:146.97.35.129

po4-0.read-scr.ja.net:146.97.33.74

po2-0.ral-bar.ja.net:146.97.35.158

146.97.40.74:146.97.40.74

192.100.78.2:192.100.78.2

192.100.78.2:192.100.78.2

Figure D.1: Internet path as reported by traceroute between CERN and RAL
during September 2002.
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ham02gva.datatag.org:192.91.239.55

r04chi-v-570.caltech.datatag.org:192.91.239.56

192.84.86.210:192.84.86.210

lax-hpr--caltech.cenic.net:137.164.30.225

svl-hpr--lax-hpr-10ge.cenic.net:137.164.25.13

hpr-stan-ge--svl-hpr.cenic.net:137.164.27.162

rtr-dmz1-vlan401.slac.stanford.edu:192.68.191.85

*

iepm-resp.slac.stanford.edu:134.79.240.36

Figure D.2: Internet path as reported by traceroute between CERN and Stanford
during October-December 2004.

ham02gva.datatag.org:192.91.239.55

r04gva-v-570:192.91.239.62

cernh7-r04.cern.ch:192.65.184.38

switch-bckp.ch1.ch.geant.net:62.40.103.181

ch.fr1.fr.geant.net:62.40.96.30

fr.uk1.uk.geant.net:62.40.96.90

uk.ie1.ie.geant.net:62.40.96.137

heanet-gw.ie1.ie.geant.net:62.40.103.230

hyperion-gige5-2.bh.core.hea.net:193.1.195.130

mantova-gige3-1.bh.access.hea.net:193.1.196.174

portia-po1.bh.access.hea.net:193.1.196.218

ham02dub.may.ie:193.1.31.106

Figure D.3: Internet path as reported by traceroute between CERN and Dublin
during October-December 2004.
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ham02gva.datatag.org:192.91.239.55

r04chi-v-570.caltech.datatag.org:192.91.239.56

192.84.86.210:192.84.86.210

198.32.11.41:198.32.11.41

snvang-losang.abilene.ucaid.edu:198.32.8.95

snvcr1-pos-abilene.es.net:198.129.248.86

lbl-snv-oc48.es.net:134.55.209.6

lbnl-ge-lbl2.es.net:198.129.224.1

ir1000gw.lbl.gov:131.243.128.210

net100.lbl.gov:131.243.2.93

Figure D.4: Internet path as reported by traceroute between CERN and LBL
during October-December 2004.

ham02gva.datatag.org:192.91.239.55

r04gva-v-570:192.91.239.62

cernh7-r04.cern.ch:192.65.184.38

switch-bckp.ch1.ch.geant.net:62.40.103.181

ch.fr1.fr.geant.net:62.40.96.30

fr.uk1.uk.geant.net:62.40.96.90

janet-gw.uk1.uk.geant.net:62.40.103.150

po2-2.lond-scr3.ja.net:146.97.35.137

po0-0.read-scr.ja.net:146.97.33.38

po3-0.warr-scr.ja.net:146.97.33.54

po1-0.manchester-bar.ja.net:146.97.35.166

gw-nnw.core.netnw.net.uk:146.97.40.202

gw-fw.dl.ac.uk:193.63.74.233

alan3.dl.ac.uk:193.63.74.129

rtlin1.dl.ac.uk:193.62.119.20

Figure D.5: Internet path as reported by traceroute between CERN and RAL
during October-December 2004.
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