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1B40 Practical Skills 
 
(‘The result of this experiment was inconclusive, so we had to use 
statistics’ – overheard at an international conference) 
 
In this section we shall look at a few statistical ideas.  However, to quote L.Hogben, “the 
experimental scientist does not regard statistics as an excuse for doing bad experiments”.   

The Frequency Distribution 
If a large number of measurements e.g. n = 500, are taken and a histogram plotted of their 
frequency of occurrence in small intervals we may get a distribution as in Fig 1.    
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Figure 1. Frequency histogram of measurements 
 
In order to provide some sort of description of this distribution we need measures of the x-value 
at which it is centred and how wide it is, i.e. some measure of the scatter or dispersion about 
this mean.  The mean µ and mean square deviation 2s  (also called the variance) serve this 
purpose.   
For a set of n measurements the mean and variance are defined, respectively, by  
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where we use the symbol µ to denote the true mean of the infinite sample.  
 
The histogram above is a close approximation to, what is called, a continuous frequency 
distribution ( )f x  which would have been obtained for an infinite number of measurements.  The 

quantity ( )f x dx  is the probability of obtaining a measurement of x lying between x and 

x dx+ .  The sum over all probabilities must be unity so the probability distribution must satisfy 
the integral relation  

 ( ) 1.f x dx
∞

−∞
=∫  

The mean x〈 〉  of the distribution is given by 

 ( ) .x x f x dx
∞

−∞
= ∫  

Since the number of measurements in the distribution is large and is (assumed to be) free of 
systematic error x  may be taken as equal to the true value of x. The variance is  

 ( ) ( )
2

2 .x f x dxσ µ
∞

−∞
= −∫  

 
The Normal (Gaussian) distribution 
The frequency distribution may take many forms.  One very common one is the Normal or 
Gaussian distribution.  This follows the functional form  

 ( ) ( )2
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where µ is the (unknown) true value of x that is being measured, and σ is the standard 
deviation and defines the width of the curve.  Figure 2 shows a normal distribution with mean 
value 20, standard deviation 5.  
 
The Gaussian function is relevant to many but not all random processes.  The counting of the 
arrival rate of particles in atomic and nuclear physics is better described by the Poisson 
distribution.  (There is a fuller discussion of these distributions in the lectures accompanying the 
second-year laboratory course).   
 
Note for the Gaussian distribution µ is also  

• the mode -- the most probable value of x i.e. where f(x) is a maximum,  
• the median -- that x such that the area under the curve for x > µ is equal to that for x < 

µ, i.e. there is equal probability that a measurement will be greater or less than µ.   
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Figure 2. Normal distribution with µ = 20 and σ = 5. 

 
 

Best estimate of the true value and the precision for a finite 
sample 
For a set of n measurements the mean and variance are defined earlier by  
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where we use µ to denote the true mean of the infinite sample.   
Since, in general, the true mean is not known we estimate it by x and so write the variance as   

 ( )22 2
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where the residual, id , is the departure of each measurement from the mean, 

 .i id x x= −  

It seems plausible, and can be proved, that given a finite set of n measurements each of equal 
quality, the larger we make n the nearer the mean x  approaches µ.   
 
The best estimate that can be made for σ, the (unknown) standard deviation of the infinite 
population, would be expected to be given by the standard deviation ns of the n readings: 
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with the expectation that ns approached σ as n becomes large.  (This quantity is calculated by 
the Excel function STDEVP – the standard deviation of the population.)   However if only one 
measurement is made then this leads to ns  being zero which is unreasonable. The better estimate 
of the standard deviation of the unknown parent distribution from which the sample of n values 
of x i are drawn is given by 
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For n = 1 this gives 0/0 which is acceptably indeterminate as we have no knowledge of σ from 
one measurement, 1x , alone.  Thus one measurement does not allow an estimate of the spread in 
values if the true value is not known.  The expression for the variance above is calculated by the 
Excel function STDEV- the standard deviation of a sample.   
 
It is worth noting for computational purposes that the variance formula may be written as  
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where 2x〈 〉  is defined by  
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So it is not necessary to loop over the data twice, first to calculate x  then to obtain 2s , but 

x  and 2x〈 〉  can be calculated in the same loop.   

 
It is important to realise that ns  is a measure of how spread out the distribution is.  It is not the 
accuracy to which the mean value is known.  This is known to an accuracy improved by a 
factor √n as will be shown later, thus the more observations that are taken the better.    

The Standard Deviation σ and the Standard Error on the Mean 
σm. 
The best estimate for the standard deviation, ,nσ  of  the Gaussian distribution from which a 
sample of n measurements is drawn is not the quantity we need to convey the uncertainty in an 
experiment, as it does not tell us how well the mean value is known.  This Gaussian distribution 
is the distribution of single measurements of the quantity.  As n → ∞  then nσ σ→ , the width 
of the distribution obtained for an infinite number of measurements, and x µ→ , but σ does not 
represent the uncertainty on the result of the experiment as expressed by the mean of the 
readings.   
 
What we need to know is how the mean of our sample, comprised of n measurements of the 
quantity x, would vary if we were to repeat the experiment a large number of times, taking n 
readings each time and calculating the mean each time.  The results for the mean value would be 
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slightly different.  We could construct a frequency distribution of the mean values – not that of 
the individual measurements which nσ  measures – and determine the standard deviation of this 
distribution.  This quantity is σm – the standard error on the mean.  The derivation in the 
appendix shows that  

 .m
n

σ
σ =  

The standard uncertainty on the mean, σm, reduces as the square root of the number of 
measurements.  Hence an increase in the number of readings lowers the uncertainty on the 
mean!   
 
Strictly speaking we don’t know the value of σ for the infinite sample.  But we can make a 
reasonable estimate for σ using  
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Uncertainty on the standard deviation 
The standard deviation has itself been estimated from a finite number of measurements, n and so 
is subject to an uncertainty.  It may be shown by considering the Gaussian distribution of the 
standard deviations that the standard error on the standard deviation is ( )/ 2 1nσ − .  Thus 

if 10,n =  / 0.24δσ σ ;  and this implies that the estimate we can make of the errors is itself 
only known to 1 part in 4.  Even with 40n = , the estimate is still only known to 1 part in 10.  
Hence it is almost never valid to quote more than one significant figure when stating 
uncertainties.   
 

Summary 
If in an experiment we taken n measurements of a quantity x whose unknown 
value is µ ,  
1. the best estimate of µ is the mean  
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2. the standard deviation, ns , of this (large) sample of n measurements is  
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where the residual, i id x x= − , is the departure of each measurement from 
the mean.   
3. when n is small a better estimate for the standard deviation of the 
sample is  



 6 

( )

2

1 .
1 1

n

i
i

n n

d
n

s
n n

σ == =
− −

∑
 

4. the standard error on the mean, mσ  is given by  

 
( )

2

1 .
1

n

i
i

m

d

n nn
σ

σ ==
−

∑
;  

To use these results in practice find  
• the mean of your readings as in step 1,   
• the standard deviation of the residuals (step 2 or 3) provided you have 

enough readings to make this sensible, say 8 or more.  (Otherwise 
estimate the uncertainty from the precision of the instrument), 

• the standard error on the mean from step 4.    
•  

Estimating the Errors in your Measurements 
The standard error on the mean is a simple function of the standard deviation s.  However, what 
are we to do if we have too few measurements to make a significant estimate of s?  The best 
that can be done is to estimate the standard deviation from some identifiable intrinsic limit of 
uncertainty of the equipment.  For example, suppose you measure a length of 10 mm with a rule 
graduated in millimetres with no further subdivisions. You would quote the length as 10 ± 1 mm, 
assuming that you would get a standard deviations on a single measurement of 1mm were you to 
repeat the measurement a large number of times.  (Note that if only a single measurement is 
made any estimate of the error may be widely wrong).   
Thus,   

• for a small number of measurements, say 1 to 3, estimation of the error will be given by 
the precision of the apparatus,   

• if you make a significant number of measurements of the same variable you should 
quote: 

  variable = average value ±  standard error on the mean (σm).   
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Appendix 

Estimating σ and σm from finite samples 
The derivation below is given for completeness.  Its reading may be omitted if desired! 
If we take n measurements yielding 1 2,, nx x x…  (a random sample of the distribution) the error, 

E, on the mean x (of this set of results) from the (unknown) true value µ is given by 
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where i ie x µ= − are the individual errors.   
The value of E2 is given by 
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If the n measurements are repeated a large number of times N  the ie  would be different for 

each sample and we would obtain a different value for 2E  from each set of n measurements.  
The average value of E2 for the N data sets would be the standard deviation on the mean, mσ , - 
the quantity we seek.  It is given by 
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where eik is the error in reading i from the true value µ. for set k from the set N.   The average 
of the eik ejk terms will be zero as they are just as likely to be positive or negative, this yields 
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This is wholly equivalent to a sum of n data sets with (large) N readings (each measurement is a 
random sample of the distribution).  The quantity  
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can be used to measure the standard deviation of the sample and we have n of these so 
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Now 2 2
mE σ=  and hence we have finally that  
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The best estimate for σ, which is not known, is the standard deviation of the subset of results 
we have for our n measurements: 
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though where µ is not known.  However instead of the errors ei from the unknown true mean 
µ ,we have the deviations (residuals id ) of each x i from the mean of the sample, 
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The error, E on the mean is given by  
 .E x x Eµ µ= − ⇒ = +  
Combining these we have  
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Now sn the standard deviation of the sample is given by 
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Since  

 ( )1 1
.i i

i i

e x x
n n

µ µ= − = −∑ ∑  

we then have  
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This is the standard deviation for one set of n measurements.  As before we take the average of 
this over a large number N of sets in the distribution and get 
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giving              
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Strictly the quantity 2
ns  obtained by averaging over a large number of sets of data is unknown. 

The best estimate for this is sn
2. Substituting this we obtain the following approximate relations  

1 1
2 21

and .
1 1n m n

n
s s

n n
σ σ   ≈ ≈   − −   

 



 9 

We now have expressions for σ and σm in terms of an experimentally measurable quantity. 
Note that σm may be reduced by taking more precise measurements or more readings 
- OR BOTH. 
 
 
 
 


