
Projectile problem 
 
A particle of mass m is fired with an initial speed 0v  at an initial angle θ  to the 
horizontal Earth’s surface.  Neglecting any drag forces the equations of motion are 
well known:  
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where x, y are the horizontal and vertical positions relative to the origin at time t.  
These differential equations have solutions for x and y as functions of t as  
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The present task is to simulate this motion in a spreadsheet.  To make it a little more 
like the “real world” you will include in the simulation a drag force (-γmv) that is 
proportional to the instantaneous speed v.  The equations of motion then become  
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where γ is a drag coefficient per unit mass.  
  
The earlier exercise on derivatives showed how to get a numerical approximation to 
the first derivative.  For y tabulated at intervals of δt we have   
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The second form was found to converge more quickly so we will use it here.   
The second derivative can be approximated by  
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Thus the equations of motion may be approximated by  
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Thus we obtain  
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These equations can be used to generate the positions ( )1 1,n nx y+ + from ( ),n nx y  

and ( )1 1,n nx y− − .  Thus we can obtain positions ( )2 2,x y and onwards.  However 

( )1 1,x y cannot be obtained this way as it requires a position ( )1 1,x y− − before the start!  

The effective initial accelerations in the x and y directions are ( )0xvγ− and 

( )0yg vγ− − .  Thus using the equation “ 21
2

s ut ft= + ” we can approximate  
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where ( )0xv  and ( )0yv  are the initial components of velocity along the −x axis and  

−y axis respectively.  
 
The task is to model the motion of the particle and to investigate some properties of it 
for some choice of the drag coefficient.  

• Construct a spreadsheet which contains labelled cells for the quantities 

0 , , ,v gθ γ and δt. You may find it convenient to calculate the subsidiary 

quantities ( ) ( )0 , 0 ,x yv v ( ) ( ) ( )2
, 1 / 2 , 1 / 2t t tδ γδ γδ+ − to avoid repeated 

calculation of these quantities for each position.  If these are positioned near 
the top- left of the spreadsheet, then below them under headings n, t, x and y 
compute the position of the particle for integer values of n from 0 to 1500.  
Take an initial speed 0 100v =  ms-1, δt = 0.01 s and initially set γ = 0 s-1, i.e. no 
drag.  For simplicity take g = 10 ms-2.   

• Plot y against x.   
• The range (when y = 0) and the time of flight (= 2T, for this range) should 

agree with the values calculable from the formulae above.  Do they?  If not try 
and find the source of your error.  Does the plot look like a parabola?    

• If all is correct then set γ = 0.4 s-1 and see how the plot of the trajectory 
changes.   

• For this value of  γ construct a table of range R against the angle of firing θ.   
• Plot these ranges against θ and determine the angle to achieve maximum 

range.  (It is unlikely that you will have a data point at the maximum, so try 



fitting a polynomial trend line to the data points and deduce the maximum 
from the equation of this line).   

Save your spreadsheet as username-projectile.xls.  


