Projectile problem

A particle of mass *m* is fired with an initial speed v_0 at an initial angle θ to the horizontal Earth's surface. Neglecting any drag forces the equations of motion are well known:

$$m\frac{d^2x}{dt^2} = 0; \qquad m\frac{d^2y}{dt^2} = -mg,$$

where x, y are the horizontal and vertical positions relative to the origin at time t. These differential equations have solutions for x and y as functions of t as

$$x(t) = v_0 t \cos q;$$
 $y(t) = v_0 t \sin q - \frac{1}{2}gt^2$

giving a trajectory

$$y(x) = x \tan \boldsymbol{q} - \frac{gx^2}{2v_0^2 \cos^2 \boldsymbol{q}}.$$

The range *R* is given by $R = \frac{2v_0^2 \sin q \cos q}{g} = \frac{v_0^2 \sin 2q}{g}$ and the time, *T*, to the highest

point is $T = \frac{v_0 \sin \boldsymbol{q}}{g}$.

The present task is to simulate this motion in a spreadsheet. To make it a little more like the "real world" you will include in the simulation a drag force $(-\gamma mv)$ that is proportional to the instantaneous speed *v*. The equations of motion then become

$$m\frac{d^{2}x}{dt^{2}} = -m\mathbf{g}v\cos\mathbf{q} = -m\mathbf{g}\frac{dx}{dt},$$
$$m\frac{d^{2}y}{dt^{2}} = -mg - m\mathbf{g}v\sin\mathbf{q} = -mg - m\mathbf{g}\frac{dy}{dt},$$

where γ is a drag coefficient per unit mass.

The earlier exercise on derivatives showed how to get a numerical approximation to the first derivative. For y tabulated at intervals of δt we have

$$\left(\frac{dy}{dt}\right) \approx \frac{y_{n+1} - y_n}{\mathbf{d}t}$$
 or $\left(\frac{dy}{dt}\right) \approx \frac{y_{n+1} - y_{n-1}}{2\mathbf{d}t}.$

The second form was found to converge more quickly so we will use it here. The second derivative can be approximated by

$$\frac{d^2 y}{dt^2} \approx \frac{\left(\frac{dy}{dt}\right)_n - \left(\frac{dy}{dt}\right)_{n-1}}{dt}$$
$$\frac{d^2 y}{dt^2} \approx \frac{\left(\frac{y_{n+1} - y_n}{dt}\right) - \left(\frac{y_n - y_{n-1}}{dt}\right)}{dt} = \frac{y_{n+1} - 2y_n + y_{n-1}}{\left(\frac{dt}{dt}\right)^2}.$$

Thus the equations of motion may be approximated by

$$\frac{x_{n+1} - 2x_n + x_{n-1}}{(dt)^2} = -g\left(\frac{x_{n+1} - x_{n-1}}{2dt}\right),$$
$$\frac{y_{n+1} - 2y_n + y_{n-1}}{(dt)^2} = -g - g\left(\frac{y_{n+1} - y_{n-1}}{2dt}\right).$$

Thus we obtain

$$x_{n+1} = \frac{2x_n - x_{n-1}(1 - gdt/2)}{(1 + gdt/2)},$$

$$y_{n+1} = \frac{2y_n - y_{n-1}(1 - gdt/2) - g(dt)^2}{(1 + gdt/2)}.$$

These equations can be used to generate the positions (x_{n+1}, y_{n+1}) from (x_n, y_n) and (x_{n-1}, y_{n-1}) . Thus we can obtain positions (x_2, y_2) and onwards. However (x_1, y_1) cannot be obtained this way as it requires a position (x_{-1}, y_{-1}) before the start! The effective initial accelerations in the *x* and *y* directions are $-\mathbf{g}v_x(0)$ and

 $-g - \mathbf{g}v_{y}(0)$. Thus using the equation " $s = ut + \frac{1}{2}ft^{2}$ " we can approximate $x_{1} = x_{0} + v_{x}(0)\mathbf{d}t - \left(\frac{1}{2}\mathbf{g}v_{x}(0)\right)(\mathbf{d}t)^{2},$ $y_{1} = y_{0} + v_{y}(0)\mathbf{d}t - \frac{1}{2}(g + \mathbf{g}v_{y}(0))(\mathbf{d}t)^{2}.$

where $v_x(0)$ and $v_y(0)$ are the initial components of velocity along the x-axis and y-axis respectively.

The task is to model the motion of the particle and to investigate some properties of it for some choice of the drag coefficient.

Construct a spreadsheet which contains labelled cells for the quantities v₀, q, g, g and δt. You may find it convenient to calculate the subsidiary

quantities $v_x(0)$, $v_y(0)$, $(dt)^2$, (1+gdt/2), (1-gdt/2) to avoid repeated calculation of these quantities for each position. If these are positioned near the top-left of the spreadsheet, then below them under headings *n*, *t*, *x* and *y* compute the position of the particle for integer values of *n* from 0 to 1500. Take an initial speed $v_0 = 100 \text{ ms}^{-1}$, $\delta t = 0.01 \text{ s}$ and initially set $\gamma = 0 \text{ s}^{-1}$, i.e. no drag. For simplicity take $g = 10 \text{ ms}^{-2}$.

- Plot *y* against *x*.
- The range (when y = 0) and the time of flight (= 2*T*, for this range) should agree with the values calculable from the formulae above. Do they? If not try and find the source of your error. Does the plot look like a parabola?
- If all is correct then set $\gamma = 0.4 \text{ s}^{-1}$ and see how the plot of the trajectory changes.
- For this value of γ construct a table of range *R* against the angle of firing θ .
- Plot these ranges against θ and determine the angle to achieve maximum range. (It is unlikely that you will have a data point at the maximum, so try

fitting a polynomial trend line to the data points and deduce the maximum from the equation of this line). Save your spreadsheet as *username-projectile.xls*.