Random numbers and simulation

Please read all details of the task before beginning the exercise.

In this exercise we shall make use of a random number generator in Excel to simulate a simple process, radioactive decay, using two different methods. Before doing so we shall make a small excursion into statistics by looking at some properties of a random number distribution.
Each of the three exercises A, B and C will be marked separately out of ten.

(A) Random numbers
“Random number generators” like the one in the Data Analysis Toolkit and the Excel function RAND() use a formula and really generate pseudo-random numbers. If the same “seed” is used in the formula, the same sequence of random numbers is obtained.  However, the algorithm used is supposed to produce numbers which satisfy the statistical properties of true random numbers.  These mathematical theorems have the familiar “as 
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” in them.  Time and space limitations of Excel prevent us doing more that demonstrating a few features with samples of a few thousand numbers. 
Open a blank spreadsheet.  Fill column A with 10000 random numbers in the interval -1 to 1.  Use the Tools/Data Analysis/ Random Number Generation dialogue box with   

· Number of variables = 1

· Number of random numbers = 10000

· Distribution = Uniform

· Parameters = between -1 and 1

· Random number seed = any integer value

· Output range = select cell for first random number
Use the AVERAGE and STDEV functions to find the average and standard deviation of this sample.  In the spreadsheet insert the values to be expected on theoretical grounds for these two quantities and their uncertainties (errors).  (See the Data Analysis note 1B40_DA_Lecture-2 if you are not sure of the theoretical answers.) 
The distribution that was generated was a “uniform” one in the range -1 to 1.  This means that there should be equal numbers of numbers in equal-sized intervals.  Since our sample was only 10000 this will only be approximately true.  

Produce a histogram of the number of “random numbers” in the range -1 to 1 in intervals of 0.1.  Use the FREQUENCY function method as in the Normal distribution exercise.  (Note that since the bin values will be -1, -0.9, -0.8. …0.9, 1.0, the way Excel treats these values as the upper value of the intervals, there will be no entries in the bin labelled -1.0  –  there being no numbers in the sample less than or equal to -1.)  Verify that the total number of entries is 10000.  
Central limit theorem

We can use the random numbers that have been generated to illustrate an important theorem in statistics – the central limit theorem – which is the saving grace for many physicists! 
When physicists measure a quantity they often assume that the probability distribution of the quantity is a Gaussian (Normal distribution), even when there is little or no evidence of this fact.  (The number of counts per unit time from a radioactive source follows a Poisson distribution, but even a Poisson distribution approximates to a Gaussian as the number of counts get large.)  With this assumption a standard deviation 
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is determined with the (unsubstantiated) implication that 66.8% of the measurements would lie within 
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 of the mean.  One justification as to why this approach is reasonable comes from the Central Limit Theorem, proved in some statistics books.  If we make repeated measurements of a quantity the distribution of the measurements may have a variety of shapes, many of which are not Gaussian.  The Central limit theorem shows that if we make several measurements and determine their mean, and repeat the process to obtain many estimates of the mean, then the distribution of these means will approximate to a Gaussian as the number of determinations becomes large.  
We can consider the 10000 random numbers generated earlier as representing 100 samples each of 100 measurements of a quantity that has a uniform distribution.  We will look at how the means of these samples are distributed.  According to the Central limit theorem, the means themselves should follow a Gaussian distribution, even though the quantities themselves (the random numbers) are uniformly distributed.  

· Calculate the average value of successive groups of 100 random numbers, i.e. those in cells A1:A100, A101:A200, A201:A300 … A9901:A10000.  

· Plot a histogram of these means in the range -0.2 to 0.2 in intervals of 0.025.  The plot should look “Gaussian” like!
Note: It can be tedious to have to type formulae like “=AVERAGE(A1:A101)”  a 100 times to calculate the average of the 100 samples.  The tedium can be reduced by using a textual formula and indirect addressing.  This is illustrated by the table below.  
	Column B
	C
	D
	E
	F

	Row 33
	1
	100
	="A"&C33&":A"&D33
	=AVERAGE(INDIRECT(E33))

	Row 34
	101
	200
	="A"&C34&":A"&D34
	=AVERAGE(INDIRECT(E34))

	…
	…
	…
	…
	…

	Row 132
	9901
	10000
	="A"&C132&":A"&D132
	=AVERAGE(INDIRECT(E132))


· In rows 33 and 34 of column C type the numbers 1, 101 respectively.  Extend these to cover the range 1, 101, 201 … 9901.  By a similar method establish the numbers 100, 200, 300 … 10000 in the adjacent column.  In the first row of the next column of this block enter the textual formula ="A"&C33&":A"&D33.   In the next column enter the formula =AVERAGE(INDIRECT(E33)).  
· Copy these formulae through all 100 rows to get the averages. 

The spreadsheet should look similar to the table above, unless you have used different rows and columns of your spreadsheet. 

Or you can do it the hard way!
Exponential decay: radioactivity
(B) Method 1
In studies of radioactive decay of atomic nuclei it was found that the activity, i.e. the number of decays per unit time, 
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, is proportional to the number of nuclei that have not yet decayed, 
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. Mathematically this is expressed as 
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which on integration leads to 
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, where λ is called the decay constant and 
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 is the number of nuclei at time 
[image: image9.wmf]0

=

t

.
Another way to view this is to note that the probability a nucleus lives a time 
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This probability distribution occurs for any unstable system if the probability of a transition (in this case a decay) per unit time is constant.  The probability that the system has not decayed after a time
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 is equal to the product of the probability that it has survived a time 
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, and the probability it does not decay in the time interval 
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, i.e. 
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In the limit 
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leading to 
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In this exercise we simulate the decay process by considering if a nucleus has decayed in a small interval of time
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.  If not it passes onto the next time interval when the same question is asked.  This is repeated till the particle has decayed.  We then sum all the time intervals to find its lifetime.  This then has to be repeated for many nuclei.  
Successive rows in the spreadsheet can be considered to represent successive time-intervals, each of length
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.  In each cell in one column we can enter a uniform random number in the range 0 – 1. If this value is greater than or equal to 
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the nucleus does not decay and so survives to the next interval. The process is repeated in successive cells until the random number is less than the value of 
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and the nucleus decays. Then we move on to look at another nucleus. The sum of time-intervals each nucleus passes through before decaying gives its total lifetime.  This whole process is repeated for a large number of nuclei and histograms and plots made.
Open a new workbook.  Use some cells to enter values for 
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, and their product 
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.  In column A enter the numbers 1, 2,  … 10000.  These will be considered to represent 10000 time-intervals.  In the adjacent column put 10000 random numbers from a uniform distribution between 0 and 1. (Use the random number generator in the Data Analysis Toolkit.)  In the next two columns enter formulae to work out whether the current nucleus decays in each interval and when to move on to the next nucleus, as in this example:

	Row/Col
	A
	B
	C
	D

	1
	δt   [s]
	0.1
	
	

	2
	λ    [s-1]
	0.5
	
	

	3
	λδt
	0.05
	
	

	4
	
	
	
	

	5
	Time interval
	Random number
	Decay?
	Nucleus

	6
	1
	0.180822
	=IF($B6<$B$3,"Y","N")
	1

	7
	2
	0.453291
	=IF($B7<$B$3,"Y","N")
	=IF(C6="N",D6,D6+1)

	8
	3
	0.028535
	=IF($B8<$B$3,"Y","N")
	=IF(C7="N",D7,D7+1)

	9
	4
	0.921415
	=IF($B9<$B$3,"Y","N")
	=IF(C8="N",D8,D8+1)


The “Nucleus” column will show a succession of 1s, followed by 2s, 3s etc.  These correspond to nuclei 1, 2, 3 … and the number of successive cells containing the same nucleus number gives the total number of time intervals through which the nucleus has passed.  Construct a table of the lifetime of each nucleus. [Should the lifetime be computed from (number of intervals
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[image: image28.wmf]t

d

´

)?]  For example: 
	Nucleus
	Intervals
	Lifetime [s]

	1
	3
	0.2500

	2
	39
	3.8500

	3
	27
	2.6500

	4
	7
	0.6500


The maximum number of nuclei whose decay may be simulated in this example (10000 random numbers) depends on the choice of values for 
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 there are ~500 nuclei.
Use the Excel frequency function to plot a histogram of the number of nuclei decaying in some chosen time intervals. This should look like an exponentially decreasing distribution, 
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.  Display an exponential trend line on the histogram.  Also plot 
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.  This should be a straight line of slope
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The statistical uncertainty on the number of entries per bin
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 so error bars should be added to both your histogram and plot. 
(C) Method 2
The step-by-step approach of the previous method can be used to simulate many complex processes, even when the underlying physical laws may be unknown.  However it can be expensive of computing time if very large numbers of steps are required, each step requiring a lot of computation.  Sometimes if the probability distributions for parts of the complex process are known these may be used to shorten the computation time.  The previous example may be treated more efficiently in this way.   It involves mapping the uniform random number distribution onto the probability distribution of the process.  

In the radioactive decay process, the probability that a nucleus lives for a time t and then decays in the next time interval dt is 
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We need to find a function that transforms numbers from a uniform distribution between 0 and 1 to times from the above distribution. We require
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where z is a number generated from a uniform distribution between 0 and 1.  
We have 


[image: image41.wmf](

)

(

)

.

1

ln

1

1

ln

1

d

dz

0

0

n

t

t

n

e

n

t

e

t

t

t

n

-

-

=

-

=

-

-

=

=

-

-

ò

ò

l

l

l

l

l


If n is a RN distributed uniformly between 0 and 1 then so is 1 – n, so we can write 
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where 
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 is the mean lifetime.  

Use a second sheet in the workbook. 

· Generate in some column 5000 decay times t according to the above formula.   In Excel use “=-meanlife*LN(RAND())” where meanlife is the name of some cell in the spreadsheet.  Choose a value for meanlife of about 4.

· The RAND function will generate new random numbers every time the worksheet is recalculated, which may slow down your work.  To avoid this, you can switch off automatic recalculation in the Tools/Options/Calculation menu.  If you do this, you need to press F9 when you want to recalculate the formulas in the spreadsheet.

· Using the frequency function obtain the number of decay times in the time range 0 – 20 in intervals of 0.2 time units.  

· Produce X-Y plots of 

· the number of decays 

· the natural logarithm of the number of decays 

as a function of time.  

· Determine a value for the decay constant from these graphs

· Estimate from your graph or table the half-life - the time for the number of nuclei to fall to half its initial value - of the radioactive nuclei.
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