
 1

Visual Basic - Introduction
Introduction

Visual Basic for Applications (VBA) is the programming language used in Excel.
With it you can automate tasks, add custom features and functions, and even create
complete applications (-this is too advanced for this introductory course).

In Excel tasks are automated by macros – a sequence of instructions written in VB
that tell Excel what to do. To facilitate their creation Excel provides a feature called
the macro recorder - which writes macros for you! It stores the keyboard actions and
commands you use. Later you can play back, or run, the macro to repeat automatically
the actions. This is probably the easiest way to get into VB and macro programming.
You’ll soon discover how useful macros can be and want to modify the recorded code
so as to improve it or to use it in a slightly different situation.

The more you know about Excel, the better prepared you will be for macros and VB.
Most macros perform a sequence of actions in Excel. Most macro instructions are
equivalent to commands or actions in Excel. Those that are not are, however, among
the most useful! Nevertheless the statements and functions used to write instructions
are easier to understand if you know the features they represent in Excel.

VB can seem overwhelming especially if you have no experience with a programming
language. To overcome this we can use the Excel macro recorder facility to see how
Excel actions translate to VB instructions and vice versa. One tactic is to write part of
your macro by directly typing VB statements into the macro, then record part of it
using the macro recorder (often because you don’t know how to write that part in
VB!) and merge the parts. Recording part of the macro is often faster and easier than
writing out the VB statements. In a VB module you can type a keyword and, with the
insertion point somewhere in the word, press F1 to display help on that keyword. For
many keywords there is given an example of its use which you can copy and paste
into your own macro.

Programming style

It is essential that there should be lots of comments in a macro explaining what the
various sections of the code are doing. These comments greatly help debugging the
code. You don’t want to have to work out each time what it is doing. If after a long
time you return to code without comments you are unlikely to remember what the
macro does in detail, if at all. An apostrophe (‘) introduces comments into the code.
Statements to the right of the ‘ on the same line are not executed.

It is useful to adopt a programming style for ease of reading of the code. We shall
capitalise names of macros and user-defined functions. Macro names and functions
cannot include spaces so if a name consists of more than one word the other words
have their initial letters capitalised, e.g. TaxReturns, CourseWork.

 2

Arguments and variable names appear with initial letters in lowercase – to distinguish
them from macros, functions, properties, methods and object names.
Keywords appear with the initial lette r capitalised.
Built-in constants appear with lowercase “xl” or “vb”.
Control blocks and statements in Sub and Function procedures are indented within
the code.
The line continuation character, the underscore, (_), indicates that the code continued
from one line to the next is part of the same logical statement.

 Function Discount(quantity, price)
 ‘ calculates discount
 ‘ discount is only given for orders of more than
 ‘ 100 widgets
 If quantity >= 100 Then
 Discount = quantity * _

 price * 0.1
 Else
 Discount = 0
 End If
 Discount = Application.Round(Discount,2)
 End Function

Modules and procedures
These are the basic structures of a VB programme. We need to break complex tasks
into simple procedures, to invoke one procedure from within another procedure and to
pass data between them.
A programme made from small (reliable) components has many advantages over one
built on a single structure. A well structured modular programme is
§ easy to write because complex problems are broken down into a series of

discrete, easy-to-understand units,
§ easy to debug as each task is completed in one procedure and so it’s easy to

isolate the source of the error,
§ efficient and easy to modify as code that accomplishes a common task appears

in only one procedure that’s called many times, rather than being duplicated
many times throughout a single structure.

