Lecture 2

Monika Wielers
Rutherford Appleton Laboratory

- Trigger and Data Acquisition requirements for LHC
- Example: Data flow in ATLAS (transport of event information from collision to mass storage)
What are the challenges at LHC for DAQ?

- **Challenge 1**
 - Physics – Rejection power
 - Requirements for TDAQ driven by rejection power required for the search of rare events

- **Challenge 2**
 - Accelerator – Bunch crossing frequency
 - Highest energy and luminosity needed for the production of rare events in wide mass range

- **Challenge 3**
 - Detector – Size and data volume
 - Unprecedented data volumes from a huge and complex detectors
Challenge 1: Physics

- Cross sections for most processes at the LHC span \(~10\) orders of magnitude.
- LHC is a factory for almost everything: t, b, W, Z…
- But: some important signatures have small branching ratios (e.g. $H \rightarrow \gamma \gamma$, BR \(~10^{-3}\))

<table>
<thead>
<tr>
<th>Process</th>
<th>Production Rate $10^{34} \text{ cm}^{-2} \text{s}^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>inelastic</td>
<td>(~1) GHz</td>
</tr>
<tr>
<td>bbbar</td>
<td>5 MHz</td>
</tr>
<tr>
<td>$W \rightarrow l\nu$</td>
<td>150 Hz</td>
</tr>
<tr>
<td>$Z \rightarrow l\nu$</td>
<td>15 Hz</td>
</tr>
<tr>
<td>ttbar</td>
<td>10 Hz</td>
</tr>
<tr>
<td>Z'</td>
<td>0.5 Hz</td>
</tr>
<tr>
<td>H(120) SM</td>
<td>0.4 Hz</td>
</tr>
</tbody>
</table>
Challenge 1: Physics

- Requirements for TDAQ driven by the search for rare events within the overwhelming amount of “uninteresting” collisions
- Besides the Higgs searches one of the motivations for the LHC are new particles outside the SM
 - Susy, extra-dimensions, new gauge bosons, compositeness, black holes etc.
- Be prepared for the ‘new unknown’, thus ensure you don’t reject what is out there by your trigger
- Selection criteria need to be flexible and scalable
 - Large luminosity range over lifetime of the experiments
 - ”Tunable” for new physics seen
- All of this must fit in around 300-1000 Hz of data writing to mass storage for physics analyses
Challenge 2: Accelerator

- Unlike e^+e^- colliders, proton colliders are more ‘messy’ due to proton remnants.
- Bunch crossing frequency now is 20 MHz, will be 40 MHz at design lumi.
- LHC already produces now up to 30 overlapping p-p interactions on top of each collision (pile-up) ➔ >1000 particles seen in the detector!
Challenge 3: Detector

- Besides being huge: number of channels are $O(10^8)$ in ATLAS, $O(10^7)$ in CMS, event size ~ 1.5 mB
 - need huge number of connections
- Some detectors need > 25ns to readout their channels and integrate more than one bunch crossing's worth of information (e.g. LArg readout takes ~ 400ns)
 - need to identify bunch crossing...
- It's On-Line (cannot go back and recover events)
 - need to monitor selection - need very good control over all conditions

For comparison

- Length: ~ 46 m
- Radius: ~ 12 m
- Weight: ~ 7000 t
- Cables: ~ 3000 km
Let’s build a Trigger and DAQ for this

What do we need?
Let’s build a Trigger and DAQ for this

What do we need?

- Electronic readout of the sensors of the detectors ("front-end electronics")
- A system to collect the selected data ("DAQ")
Let’s build a Trigger and DAQ for this

- **What do we need?**
 - Electronic readout of the sensors of the detectors ("front-end electronics")
 - A system to collect the selected data ("DAQ")
 - A system to keep all those things in sync ("clock")
Timing

- An event is a snapshot of the values of all detector front-end readout units caused by the same collision.
- A common clock signal must be provided to all detector elements since clock is a constant.
- Detectors large and electronics fast, the detector elements must be carefully time-aligned.
- Common system for all LHC experiments: TTC (Trigger, Timing and Control) based on radiation-hard opto-electronics.
Let’s build a Trigger and DAQ for this

What do we need?

- Electronic readout of the sensors of the detectors (“front-end electronics”)
- A system to collect the selected data (“DAQ”)
- A system to keep all those things in sync (“clock”)
- A trigger – multi-level due to complexity
What I need: Level-1 trigger

- No (affordable) DAQ system could read out \(O(10^7 - 10^8)\) channels at 40 MHz → 400 TBit/s to read out!

- What’s worse: most of these millions of events per second are totally uninteresting
 - Only keep one out of several hundred collisions

- A filter or first level trigger (L1) must reject extremely fast the least interesting collisions and retain the more interesting ones for further analysis

- More time available to reject/accept events in the HLT
Let’s build a Trigger and DAQ for this

- What do we need?
 - Electronic readout of the sensors of the detectors ("front-end electronics")
 - A system to collect the selected data ("DAQ")
 - A system to keep all those things in sync ("clock")
 - A trigger – multi-level due to complexity
 - A Control System to configure, control and monitor the entire DAQ
Typical DAQ dataflow

Our “Standard Model” of Data Flow
ATLAS Trigger / DAQ Data Flow

3-level trigger hierarchy: L1 – L2 – EF (Event Filter)

6 steps:
- L1 trigger
- L1 decision
- Event fragments in readout buffer
- L2 Trigger
- Event Builder
- EF trigger
- Final storage

L1 trigger:
- Front end pipeline
 - 20 MHz
- Readout link
 - <75 kHz
 - Readout buffer
 - <2.5 µs

Event fragments in readout buffer:
- 5 kHz

L2 trigger:
- Event builder
- HLT farm
- 300 Hz – 1kHz
ATLAS Architecture: L1 Trigger

Trigger

20 MHz

L1

2.5 µs

Calo
MuTrCh

Other detectors

daq

FE Pipelines

L1 Trigger

- Calorimeter and muons only
- Simple algorithms on reduced data granularity
- Hardware trigger in
 - FPGA (Field-programmable gate array) and ASIC (Application Specific Integrated Circuit)
 - Programmable thresholds
 - Selection based on particle type, multiplicities and thresholds
- Reject the bulk of uninteresting collisions
- Trigger latency: 2.5 µs
Level-1 trigger latency

- Interactions every 25 ns ...
 - In 25 ns particles travel 7.5 m

- Cable length ~100 meters ...
 - In 25 ns signals travel 5 m

Total L1 trigger latency = \((\text{TOF} + \text{cables} + \text{processing} + \text{distribution})\) = 2.5 \(\mu\)s

For 2.5 \(\mu\)s, all signals must be stored in electronics pipelines
While L1 is doing its job…

- During L1 processing data for all bunch crossings buffered
- Use pipeline in data path for holding data
 - many variations (analog/digital, on/off detector)
- Use pipelined front-ends
- Length of pipeline determines maximum L1 latency
ATLAS Central Trigger Processor (CTP)

- It’s here where all information from the muon and calorimeter triggers are collected (via a bus)
- Can combine info e.g. e+jet, decide if you want to keep your event
 - Can also do prescaling e.g. accept only 1 out of 100 events of given type
 - Only keep one out of several hundred collisions
- If something interesting was found it generates the Level-1 Accept (L1A)
 - The L1A is distributed via the TTC system to the detector front-ends
Upon L1A signal, detector front-ends start sending data of the accepted event to the detector ROD’s (Read-Out Drivers).

- Detector ROD’s receive data, process and reformat it (as needed) and send it via fibre links (Read-out Links (ROL)) to Read-out system (ROS).
- Holds data up to L2 accept/reject.
ATLAS Architecture: Region of Interest Builder

Trigger

- **LV**
- **L1**

Region of Interest

DAQ

- **Calo**
- **MuTrCh**
- **Other detectors**

FE Pipelines

Read-Out Drivers

Read-Out Links

Read-Out Buffers

- **ROD**
- **ROB**

Event data: 150 GB/s

Lvl1 acc = 100 kHz

40 MHz

2.5 ms

DAQ Dataflow, Nov 12, 2012
Region of Interest (RoI)

- L1 result contains the (η,ϕ) coordinates of regions containing high-p_T L1 trigger objects
- There is a simple correspondence $\eta-\phi$ region \leftrightarrow ROB number(s) (data fragments containing a certain number of readout units)
 - Identify for each RoI the list of ROBs with the corresponding data from each detector (quick procedure)
- RoIB are VME boards with FPGAs
 - L2 (on average) has to process only 1-4% of the data volume; save on
 - Processing time
 - Bandwidth
- Note: RoI approach only used by ATLAS at LHC

Examples for RoI-based triggers:
- Muons
- Electrons/Photons
- Jets
- Taus
ATLAS Architecture: Level-2 Trigger

Triggier

DAQ

Lvl1 acc = 100 kHz

2.5 ms

L1

LV

L2P

ROIB

L2SV

L2N

L2SV

ROIB

L2P

Lvl2

40 MHz

Rol

Rol data

Rol requests

150 GB/s

ROB

ROD

ROD

ROB

ROD

ROD

ROS

DET

RO

ROD

ROB

ROD

ROB

ROD

Other detectors

MuTrCh

Calo

FE Pipelines

Read-Out Drivers

Read-Out Links

Read-Out Buffers

Read-Out Sub-systems

L2 Supervisor

L2 Network

L2 Proc Unit

RoI Builder

RoI data

RoI requests

Lvl1 acc = 100 kHz

DAQ Dataflow, Nov 12, 2012

24
L2 Trigger

- Software trigger running on a farm of PCs

Aim

- Overall time budget in L2: 75 ms average
- Rejection factor: x 30

Processing scheme

- Full readout granularity available
- Fast selection algorithms depending on input object
- Identify objects using “simple” criteria
- Can combine info e.g. e+jet, decide if you want to keep your event
L2 Trigger

1) Region of Interest Builder (RoIB) passes formatted information to one of the L2 supervisors (L2SV).
2) L2 supervisor selects one of the processors in the L2 farm to process RoI.
3) L2 processor (L2PU) requests data from the ROSs.
4) L2PU runs selections, produces an accept or reject and informs the L2 supervisor.
5) For an accept result is stored in L2 ResultHandler (L2RH).
6) L2 supervisor passes decision to the DataFlow Manager (controls Event Building).
ATLAS Architecture: Event Builder

Trigger

- **LV L1**
- **LVL2**
 - **ROIB**
 - **L2SV**
 - **L2P**
 - **L2N**

DAQ

- Calo MuTrCh
- Other detectors
- **RO**
 - **ROD**
 - **ROB**
 - **ROS**
 - **DFM**
 - **EBN**
 - **EB**
 - **EFN**
 - **SFI**

Event Builder

- **Event Filter Network (EFN)**
- **Dataflow Manager (DFM)**
- **Event Building Network (EBN)**
- **Event Building (EB)**

- **Event Builder (EB)**

Event Filter Network (EFN)

- **Lvl1 acc = 100 kHz**
- **Lvl2 acc = 3-4 kHz**

Read-Out Drivers (ROD)

- **Read-Out Buffers (ROB)**
- **Read-Out Links (ROD)**

Dataflow Manager (DFM)

- **Event Building Network (EBN)**
- **Event Building (EB)**

- **LVL2**

- **2.5 ms**

- **Trigger**
 - **40 MHz**
 - **Rol data**
 - **Rol requests**
 - **Rol Builder**

Other detectors

- **40 MHz**
- **150 GB/s**

Event Builder

- **Lvl1 acc = 100 kHz**
- **Lvl2 acc = 3-4 kHz**

Read-Out Sub-systems

- **FE Pipelines**
- **Read-Out Links**
- **Read-Out Buffers**

Event Filter Network

- **Event Building Network**
- **Event Building**
1) L2 Supervisor informs DataFlow Manager (DFM) of event accepted by L2

2) DFM selects a Sub-Farm Input (SFI) and sends to SFI the request to build the complete Event

3) SFI requests ROS’ s to send event data (L2 pulls event)

4) When done SFI informs DFM.

5) For rejected events and for events for which event Building has completed DFM sends "clears" to the ROSs (for 100 - 300 events together).

Network traffic for Event Building is ~5 GB/s
Event Filter

- Final selection in software triggers using large commercial PC farms
 - Latency ~ 4s
 - Access to full granularity and offline like reconstruction algorithms, improved ability to reject events

- Note, there is a flexible boundary between L2 and EF farm
ATLAS Architecture: Storage

Trigger

LVL2

40 MHz

Lvl1 acc = 100 kHz

RoI data = 1-2%

Lvl2 acc = 3-4 kHz

Event Filter Processors

EF acc = ~0.2 kHz

few sec

~ 40 ms

L2P

L2SV

L2N

EF

FE Pipelines

Read-Out Drivers

Read-Out Links

Read-Out Buffers

Read-Out Sub-systems

Dataflow Manager

Event Building N/work

Event Builder

Event Filter Network

Sub-Farm Output

10's PB/s

150 GB/s

10 GB/s PB/s

10 GB/s PB/s

EF acc = ~0.2 kHz

EF acc = ~0.2 kHz

EF acc = ~0.2 kHz

~5 GB/s

~5 GB/s

~5 GB/s

~5 GB/s

~5 GB/s

EF acc = ~0.2 kHz

EF acc = ~0.2 kHz

EF acc = ~0.2 kHz

~5 GB/s

~5 GB/s
Data Logger

- **Sub-farm output (SFO)**
 - Receive events and write them into files on local disks
 - Dedicated nodes with high performance RAID disks
- **Events**
 - Subdivided into periods of a ~ minute called a luminosity block.
 - Beams, luminosity, blocks.
 - Can also exclude any blocks where there is a known problem.
- **Files**
 - Closed when they reach 2 GB or at end of a luminosity block.
 - Finally transmitted via GbE to the CERN offline reconstruction farm, subsequently erase from local SFO disk.
Summary

- Challenge to design efficient trigger/DAQ for LHC
 - Very large collision rates (up to 40 MHz)
 - Very large data volumes (tens of MBytes per collision)
 - Very large rejection factors needed (>10^5)
- Used ATLAS event DataFlow as an example of a large TDAQ system
 - Showed the complexity of operations to handle the complex system
 - Fear it was at times very technical but hopefully has given you an idea what going on ‘behind the scene’

- We’ll look in detail at the trigger aspects in the next lecture
 - This one will be less technical and more physics-oriented!
Backup
ATLAS Trigger / DAQ Data Flow
The CMS Trigger/DAQ System

Overall Trigger & DAQ Architecture: 2 Levels
Level-1 Trigger:
- 3.2 μs latency
- 100 kHz output

DAQ/HLT:
- Event building at full L1 rate
- Average event size: 1 MB
- Average HLT time: 50 ms
- Output rate: 100-300 Hz
CMS “3D” Event Builder

Event building and filtering done in 8 independent “slices” to facilitate 100 kHz rate
LHC-b Trigger System

Level-0 (hardware): High E_T / p_T candidates

HLT1 (software):
- Partial Reconstruction on ROIs to confirm L0 candidates
- Use VELO for IP filter
- Add extra tracks

HLT2 (software):
- Full Reconstruction of event
- RICH available for PID
- Few tracks (inclusive)
- All tracks (exclusive)
ALICE Trigger/DAQ System

ALICE has different constraints:
- Low rate (max 8 kHz of Pb+Pb)
- Very large events (>40 Mbytes)
- Slow detector (TPC ~ 100 μs)

3 levels of hardware triggers:

Collision

L0: Trigger detectors detect collision (V0/T0, PHOS, SPD, TOF, dimuon trigger)

L1: select events according to
 - centrality (ZDC, ...)
 - high-pt di-muons
 - high-pt di-electrons (TRD)
 - high-pt photons/π0 (PHOS)
 - jets (EMCAL, TRD)

L2: reject events due to past/future protection

HLT rejects events containing
 - no J/ψ, Y
 - no D0
 - no high-pt photon
 - no high-pt π0
 - no jet, di-jet, γ-jet

exact copy of detector data

HLT process data in parallel with event building
Also does event compression

High Level Trigger System
* trigger decision
* subevent map
* compressed data

Permanent storage
Trigger/DAQ parameters

<table>
<thead>
<tr>
<th>No. Levels</th>
<th>Level-0,1,2</th>
<th>Event</th>
<th>Readout</th>
<th>HLT Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trigger</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Pb-Pb</td>
<td>500</td>
<td>5x10^7</td>
<td>1250</td>
</tr>
<tr>
<td></td>
<td>p-p</td>
<td>10^3</td>
<td>2x10^6</td>
<td>200</td>
</tr>
<tr>
<td>3</td>
<td>LV-1</td>
<td>10^5</td>
<td>1.5x10^6</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td>LV-2</td>
<td>3x10^3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>LV-1</td>
<td>10^5</td>
<td>10^6</td>
<td>~1000</td>
</tr>
<tr>
<td>2</td>
<td>LV-0</td>
<td>10^6</td>
<td>3.5x10^4</td>
<td>70</td>
</tr>
</tbody>
</table>
CMS Event Building

40 MHz
Clock driven
Custom processors

100 kHz
Event driven
PC network

Level-1 Trigger
Custom design

High-Level Trigger
Industry products

- Level-1 output / HLT input: 100 kHz
- Network bandwidth: 1 Terabit/s
- HLT output: 10^2 Hz
- Invest in data transportation and CPU
Event Builder

- Send a part first (RoI)
- Run L2 algorithms and decide if you want to keep the event
- If yes, send complete event data

Alternative (used by CMS, Alice ad LHCb)
- Send everything, ask questions later
- Much higher demand on networking
Lot’s of Abbreviations…

- **Read-Out Drivers (ROD):**
 - subdetector-specific,
 - collect and process data (no event selection)

- **Read-Out Link (ROL)**
 - 160 MByte/s optical fibre

- **Read-Out Buffer input stage (ROBIN) card**
 - Part of Readout system
 - 64-bit 66 MHz PCI card - 3 ROL inputs

- **Read-Out Subsystem (ROS)**
 - Set of PCs
 - Each PC contains 4 ROBINs => 12 ROLs per ROS PC