Data acquisition and Trigger (with emphasis on LHC)

Monika Wielers (RAL)

- Introduction
 - Data handling requirements for LHC
- Design issues: Architectures
 - Front-end, event selection levels
- Trigger
- Upgrades
- Conclusion

DAQ challenges at LHC

Challenge 1

- Physics Rejection power
- Requirements for TDAQ driven by rejection power required for the search of rare events

Challenge 2

- Accelerator Bunch crossing frequency
- Highest luminosity needed for the production of rare events in wide mass range

Challenge 3

Detector – Size and data volume

Unprecedented data volumes from huge and complex detectors

Challenge 1: Physics

- Cross sections for most processes at the LHC span ~10 orders of magnitude
- LHC is a factory for almost everything: t, b, W, Z...
- But: some signatures have small branching ratios (e.g. H→γγ, BR ~10⁻³)

Process	Production Rate 10 ³⁴ cm ⁻² s ⁻¹
inelastic	~1 GHz
bbbar	5 MHz
W →Iv	150 Hz
Z →Iv	15 Hz
ttbar	10 Hz
Z'	0.5 Hz
H(125) SM	0.4 Hz

L=10³⁴ cm⁻²s⁻¹: Collision rate: ~10⁹ Hz. event selection: ~1/10¹³ or 10⁻⁴Hz !

Challenge 1: Physics

- Requirements for TDAQ driven by the search for rare events within the overwhelming amount of "uninteresting" collisions
- Main physics aim
 - Measure Higgs properties
 - Searches for new particles beyond the Standard Model
 - Susy, extra-dimensions, new gauge bosons, black holes etc.

- Plus many interesting Standard Model studies to be done
- All of this must fit in ~300-1000 Hz of data written out to storage
- Not as trivial, W→Iv: 150 Hz
 - Good" physics can become your enemy!

Challenge 2: Accelerator

- Unlike e⁺e⁻ colliders, proton colliders are more 'messy' due to proton remnants
- In 2012 LHC already produced up to 30 overlapping p-p interactions on top of each collision (pile-up) → >1000 particles seen in the detector!

Operating conditions: one "good" event (e.g Higgs in 4 muons) + ~20 minimum bias events) All charged tracks with pt > 2 GeV

Challenge 3: Detector

- Besides being huge: number of channels are O(10⁶-10⁸) at LHC, event sizes ~1.5 MB for pp collisions, 50 MB for pb-pb collisions in Alice
 - Need huge number of connections

- Some detectors need > 25ns to readout their channels and integrate more than one bunch crossing's worth of information (e.g. ATLAS LArg readout takes ~400ns)
- It's On-Line (cannot go back and recover events)
 - Need to monitor selection need very good control over all conditions

- Electronic readout of the sensors of the detectors ("front-end electronics")
- A system to collect the selected data ("DAQ")

- Electronic readout of the sensors of the detectors ("front-end electronics")
- A system to collect the selected data ("DAQ")
- A system to keep all those things in sync ("clock")

- Electronic readout of the sensors of the detectors ("front-end electronics")
- A system to collect the selected data ("DAQ")
- A system to keep all those things in sync ("clock")
- A trigger multi-level due to complexity

- Electronic readout of the sensors of the detectors ("front-end electronics")
- A system to collect the selected data ("DAQ")
- A system to keep all those things in sync ("clock")
- A trigger multi-level due to complexity
- A Control System to configure, control and monitor the entire DAQ

Let's look more at the trigger part...

Multi-level trigger system

LHC DAQ phase-space

Hardware Trigger (L0, L1)

- Custom electronics designed to make very fast decisions
 - Application-Specified Integrated Circuits (ASICs)
 - Field Programmable Gate Arrays (FPGAs)
 - Possible to change algorithms after installation
- Must cope with input rate of 40 MHz
 - Reduce rate from 40 MHz to ~100 kHz
 - Otherwise cannot process all events
 - Event buffering is expensive, too
- Use pipeline for holding data during L1 processing
 - Digital/analog custom front-end pipelines
 - Parallel processing of different inputs as much as possible
 DAQ and Trigger, Oct 6, 2014

Trigger Latency

DAQ and Trigger, Oct 6, 2014

Software Trigger: Higher Level Trigger (HLT)

- L1 selected a large rate (up to 100 kHz) of events that "might be interesting"
 - These events are not kept yet (rate too high for storage), but sent to the HLT for additional filtering
- Use network-based High Level Trigger computer farm(s)
 - commercially available HW organized in a farm

Higher Level Trigger

- Massive commercial computer farm
 - ATLAS: L2 and L3 handled by separate computing farms in 2012
 - Roughly 17k CPUs that can be freely assigned to either
 - CMS: Single computing farm (roughly 13k CPUs in 2012)
- Parallel processing, each CPU processes individual event
- Resources are still limited
 - Offline: Full reconstruction takes seconds (minutes)
 - Online latency: ms s (input rate dependent)

Need to reduce rate to O(few 100 Hz)

Note, output rate mainly driven by offline
 DAQ and Trigger, Oct 6, 2014

The ATLAS Trigger/DAQ System

- Overall Trigger & DAQ architecture: 3 trigger levels
- Level-1:
 - 2.5 µs latency
 - 75 kHz output in 2012, 100 kHz in 2015

- Analyse regions around particles identified at L1 or whole event
- Average output rate in 2012: 400 Hz prompt, 200 Hz "parked", ~1kHz in 2015
- Processing time: few seconds
- Average event size 1.5 MB in 2012, ~2 MB in 2015
 ¹⁹

The CMS Trigger/DAQ System

- Overall Trigger & DAQ architechture: 2 trigger levels
- Level-1:
 - 3.2 µs latency
 - 100 kHz output

DAQ and Trigger, Oct 6, 2014

South Event building at fu

- Event building at full L1 rate
- Average output rate in 2012: 350 Hz prompt, 300Hz "parked", ~1 kHz in 2015
- Average event size 1 MB in 2012, 2 Mb in 2015
- Average CPU time few 100 ms ²⁰

The LHCb Trigger/DAQ System

- Overall Trigger & DAQ architechture: 3 trigger levels
- Level-0:
 - 4 µs latency
 - I MHz output

DAQ and Trigger, Oct 6, 2014

DAQ/HLT

- L1: look displaced high p_T tracks, output 70 kHz
- L2: full event reconstruction
- Average output rate in 2012: 5 kHz, 2015: 12.5 kHz
- Average event size 35 kB in 2012, 60 kB in 2015
 ²¹

The ALICE Trigger/DAQ System

Alice has different constraints

- Low rate: max 8 kHz pb+pb
- Very large events: > 40MB
- Slow detector (TPC ~ 100 µs)

- Overall Trigger & DAQ architecture: 4 trigger levels
- 3 hardware-based trigger, 1 software-based:
 - ✤ L0 L2: 1.2, 6.5, 88 µs latency
 - L3: further rejection and data compression
 22

L1 Trigger in ATLAS

- Calorimeter and muons only
- Simple algorithms on reduced data granularity
- Selection based on particle type, multiplicities and thresholds
- Reject the bulk of uninteresting collisions

ATLAS L1 calorimeter trigger

Hadron Electromagnetic

- Search Example: ATLAS e/γ trigger
 - Sum energy in calorimeter cells into EM and hadronic towers
 - Loop over grid and search in 4x4 towers for a local maximum 1x2 (2x1):

Cluster DAQ and Trigger, Oct 6, 2014

 Can do something similar for other particles: jets, tau or sum the energy of all towers: missing E_T

CMS L1 muon trigger

Curved p_r-dependent muon path requires fast pattern recognition

Central/Global Trigger

Now we have the information on the particle candidates found by L1 in the detector

- $\boldsymbol{*}$ We know type, location and $\boldsymbol{E}_{T}/\boldsymbol{p}_{T}$ threshold passed
- Can also look at topological information

E.g. lepton opposite ETmiss, invariant mass of 2 leptons...

Need to decide if this event is of any interest to us

This needs to be made quickly

DAQ and Trigger, Oct 6, 2014

HLT Example: Muon

- Muons in CMS:
 - Reconstruct and fit tracks using only muon system
 - Continue if sufficient p_T
 - Combine tracker hits with muon system to improve p_T measurement
 - Keep the event if p_T is large enough
- Muons in ATLAS:
 - * At Level 2, using detector information from the region around the L1 muon candidate, assign muon p_T based on fast look up tables
 - Extrapolate to the collision point and find the associated track
 - Is the muon isolated in the tracker, calorimeters?
 - * Refine selection at L3 using offline-based reconstruction, recompute p_T
- More on HLT in next lecture

Upgrades

Long Shutdown

 2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023		2030
F	Phase (Run 1)	LS	51		Run 2		LS2	I	Phase Run 3	l	LS	\$3	Pha R	ase II un 4
(Prepare Run 2)				(Prepare Phase I)			(Prepare Phase II)								
Consolidation				Ultimate luminosity			HL-LHC								
$\sqrt{s} = 13 \sim 14 \text{ TeV}$															
					25 n	s bund	ch spa	cing							
L _{inst} 1	x10 ³⁴	cm ⁻² s			Linst 2	2-3 x1() ³⁴ cm	-2 S -1	L _{inst} 5	x10 ³⁴	cm ⁻² s	-1			
μ~27	7				μ~5	5–81			μ~1	40 [wi	ith lev	elling]			
 ∫L _{inst}	~ 50 fl	0 ⁻¹			∫ L _{inst}	> 350) fb⁻¹		L _{inst} 6	-7 x10) ³⁴ cm ⁻	⁻² S ⁻¹			
									μ~1	92 [wit	thout I	evellin	g]		
									∫L _{inst}	~ 300	0 fb ⁻¹				

- LHC data acquisition system backbones installed >5 years ago
 - Very stable running in last 3 years, better than we were hoping for

Current shutdown is occasion to

- Upgrade core systems and review architectures
- Introduce new technologies, retire obsolete ones
- Follow changes on the detector side

Prepare for challenges of Run2 (and Run3)

Long Shutdown

LHC data acquisition system backbones installed >5 years ago

Very stable running in last 3 years, better than we were hoping for

Current shutdown is occasion to

- upgrade core systems and review architectures
- introduce new technologies, retire obsolete ones
- follow changes on the detector side

prepare for challenges of Run2 (and Run3)

Pileup Issues

• CMS Simulation: 300 GeV $H \rightarrow ZZ \rightarrow ee\mu\mu$ at various luminosities

Run 2 challenges

Increased pileup

- \bullet more complex events \rightarrow increased computing needs, affects trigger efficiency and rejection power
- larger data size \rightarrow bandwidth and storage

Upgrades for Run 2

- preserve Region of Interest, but diluted the farm separation and fragmentation
- increased flexibly, computing power efficiency

- No architectural changes, but all network technologies replaced
- Filebased event distribution in the farm
 - achieve full decoupling between DAQ and HLT

LS2 and beyond

Alice

- 500 Hz → 50 kHz of PbPb interactions
 - Importance: physics with low S/B
 - Implies need to store 500 PB/ month (1 HI period)
- Data volume reduction
 - Online full reconstruction
 - discard raw data
- Combined DAQ/HLT/offline farm
 - COTS, FPGA and GPGPU

LHCb

- A MHz → 40 MHz readout and event building → trigger-less
 - trigger support for staged computing power deployment (only "soft" L0)
 - Need full event reconstruction with track finding and fitting plus particle identification to extract "interesting" event
- On detector zero suppression
 → radhard FPGA
- 4 TB/s event building

100 kB/event

On the long term, all experiments looking forward to significant increase in L1 trigger rate and bandwidth. Alice and LHCb will pioneer this path during LS2

Summary

- Challenge to design efficient trigger/DAQ for LHC
 - Very large collision rates (up to 40 MHz)
 - Very large data volumes (tens of MBytes per collision)
 - Very large rejection factors needed (>10⁵)
- Showed data acquisition used in LHC experiments
- Introduction to basic functionality of trigger
- We'll look in detail at the trigger aspects in the next lecture
 - That one will be less technical and more physics-oriented!

Backup

Trigger/DAQ parameters

THWID PPC DIPOLE MAGNET	No.Leve	Is _ö evel-0,1,2 Rate (Hz)	Event Size (Byte)	Readout Bandw.(GB/s)	HLT Out MB/s (Event/s)
	4	_{Рb-Рb} 500 _{p-p} 10 ³	5x10 ⁷ 2x10 ⁶	25	1250 (10 ²) 200 (10 ²)
	3	lv-1 10 5 lv-2 3x10 3	1.5x10 ⁶	4.5	300 (2x10 ²)
	2	LV-1 10 ⁵	10 ⁶	100	~1000 (10²)
	2	LV-0 10 ⁶	3.5x10⁴	35	70 (2x10 ³)

TDAQ comparison

	ATLAS	CMS	LHCb	ALICE
"L1" Latency [µs]	2.5	3.2	4	1.2/6/88
Max "L1" output rate [kHz]	75	100	1000	~2
Frontend readout bandwidth [GBytes/s]	120	100	40	25
Max HLT avg. latency [ms] (upgrade with luminosity)	L2: 40 EF: 1000	50 (in 2010)	20	
Event building bandwidth [GBytes/s]	4	100	40	25
Trigger output rate [Hz]	~200	~300	~2000	~50
Output bandwidth [MBytes/s]	300	300	100	1200
Event size [MBytes]	1.5	1	0.035	Up to 20

Data handling requirements

Event rate

	ON-Line		•	OFF-Line	
GHz	- Every second: obser	ve 40 million			
MHz	several (>20) p-p intera resulting in events with particles - Identify and select si out of 10 trillion collisio	ngle events			
kHz	 Locally digitize, read transport and process I TeraBits per sec 	d out, hundreds of	2		
H7			- Globally s analyze effic	tore , retrieve an iently tens of Pe	d taBytes
112	Collision rate Detector granularity Event size Selection power	~ 10 ⁹ Hz ~ 10 ⁸ cells ~ 1 Mbyte	of data per y	ear	
mHz	Readout bandwidth Storage event rate Processing power	~ Terabit/s ~ O(100Hz) ~ TeraFlops			
μHz	μs	ms	Sec	hour	year
	10 ⁻⁹ 10 ⁻⁶	10 ⁻³	10 ⁻⁰ Giga	10 ³ Tera	10 ⁶ sec Petabit Stored Data