
Trigger and Data Acquisition Systems

Monika Wielers RAL

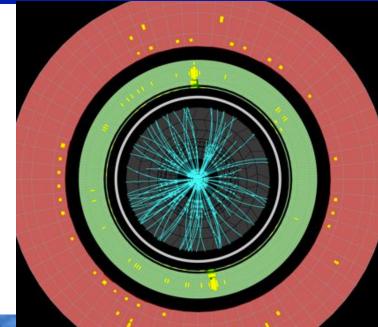
Lecture 3Trigger

Reminder from last time

- Last time we learned how to build a data acquisition system
- Studied several examples of data acquisition systems at the LHC
- We learned what a trigger is and how it works
 - Tells you when is the "right" moment to take your data
 - Decides very rapidly what output to keep if you can't keep all of it. The decision is based on some 'simple' criteria
 - Can be done in several levels
- Now we'll learn more how the trigger looks and how to devise the set of triggers needed for a physics analysis

Trigger = Rejection

- Problem: We must analyse and reject most collisions prior to storage
- Solution: Trigger
 - Fast processing
 - High efficiency for interesting physics
 - Huge rejection factor
 10⁴ 10⁵
- Note if the incoming rate is very high, the trigger itself is a 'severe' physics d



- itself is a 'severe' physics decision
- Make sure your favourite physics channel is selected with high efficiency
 - Many other trigger needed by other physics analyses will compete with you

Trigger, Oct 27, 2014

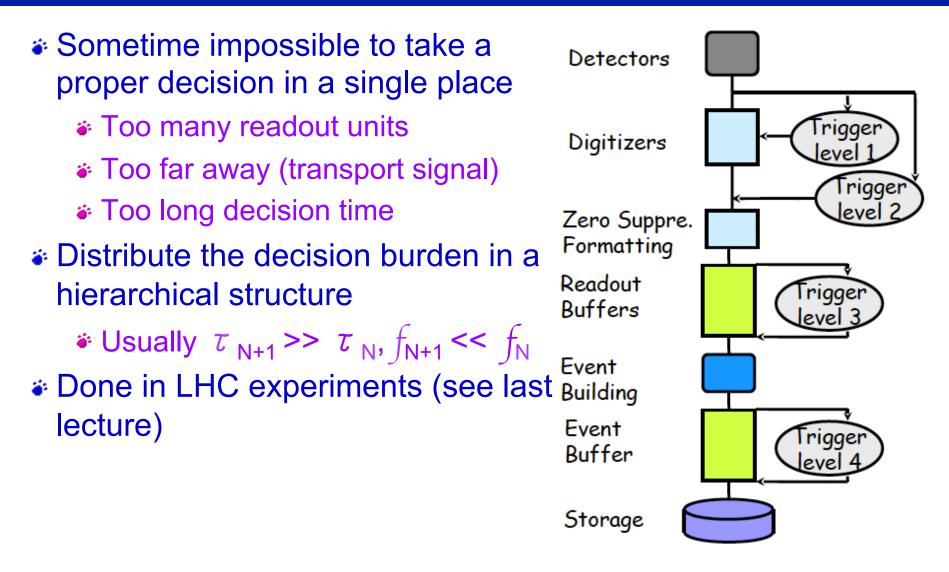
Example: $H \rightarrow \gamma \gamma$

- Roughly one 125 GeV Higgs for every 10 billion pp interactions
- H $\rightarrow\gamma\gamma$ is rare decay with BR ~10⁻³
- Approx. 1 H→γγ per 10 trillion interactions
- Make sure you select them all....

Trigger, Oct 27, 2014

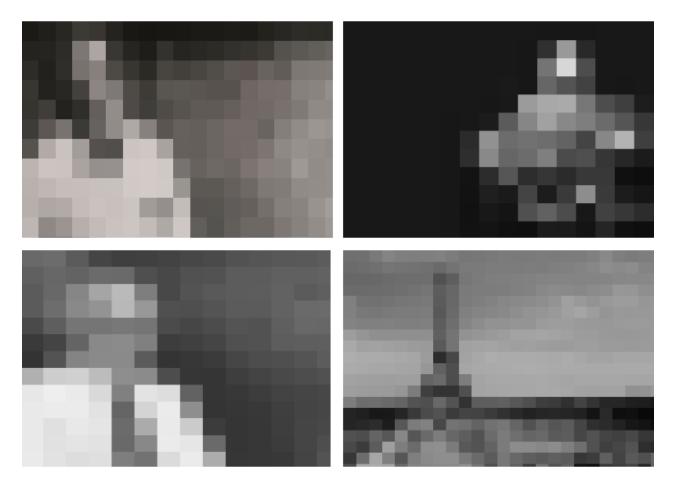
Other Challenges

- Pile-up (overlapping collisions)
 - Bunch crossing frequency of 40 (20) MHz in 2015 (2012)
 - LHC produced up to ~30 overlapping p-p interactions in 2012, expect 50-80 in 2015. Every bunch crossing ~few 1000 particles are produced
- It's on-line (cannot go back and recover events)
 - need to monitor selection need very good control over all conditions
- Any event thrown away is lost for ever!



"Simple" Trigger

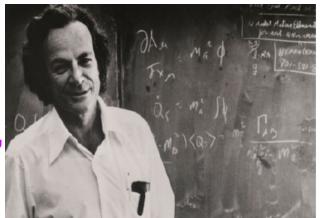
Example: dark matter experiment


- Detect a very small energy deposition seen as a scintillation light from i.e LXe or LAr.
- As there is only a low background can afford to select all events
- Trigger rate: ~100Hz

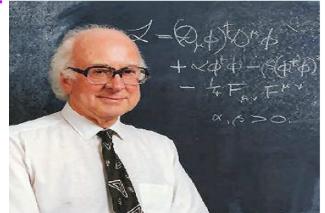
Multi-level trigger system


Example: Higgs

L1
 Coarse
 granularity

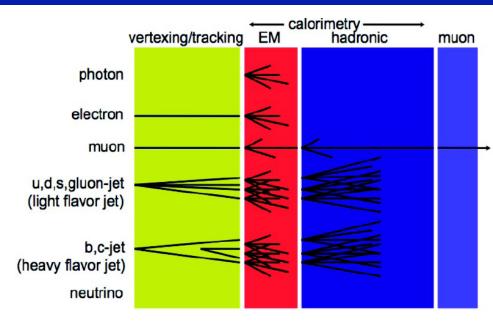

Example: Higgs

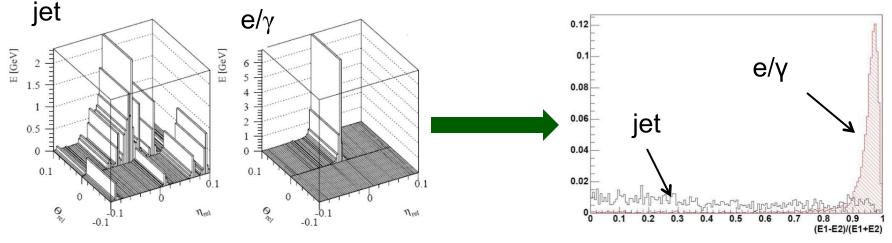
L2
Improved reconstruction, improved ability to reject events



Example: Higgs

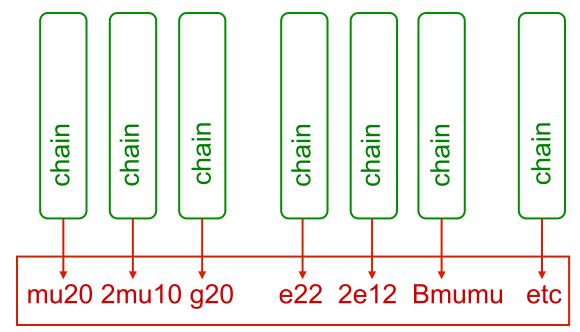
L3 high quality reconstruction, improved ability to reject events




How do I select interesting collisions

- Need to identify the different particles produced
 - Muons, electrons, photons, taus, jets missing E_T

Detector feature (deposit in EM calorimeter)


Trigger quantity

Trigger, Oct 27, 2014

How do I select interesting collisions

- For each trigger / signature there is a chain of processing steps for each trigger level (L1, L2, L3,...)
 - Called: Trigger Chain, Trigger Path
 - E.g: reconstruct cluster identify electron reconstruct track identify e[±]

Trigger Path

- Use the identified particles above given (transverse) energy thresholds
 - Isolated electron, muon and photons
 - * τ-, central- and forward-jets, jets from b-decays
 - * Events with missing E_T , missing E_T significance
- You can select events according to multiplicity
 - E.g. one electron and one muon, 4 jets etc
- Or even more complicated (topological trigger)
 - Select events with a jet and a photon which are back-to-back
 - * Select events with 2 γ 's with invariant mass ~ Higgs mass
- Each trigger item can be prescaled, thus only a fraction of the selected events is recorded.
- The set of triggers or trigger items to be run online is called Trigger Menu

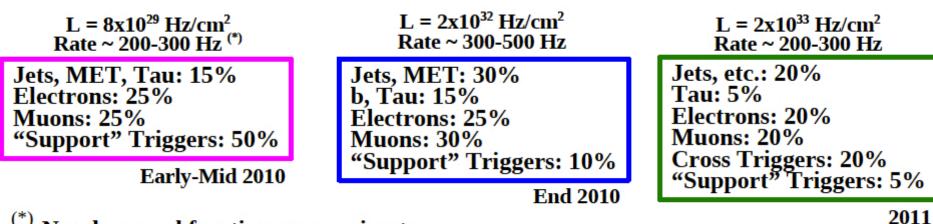
Trigger Menu

- Prepare a Trigger Menu
 - Defines the physics we want to do at our experiment
 - Each trigger item is defined by trigger chains
 - Event is stored if one or more trigger items are passed

Need flexibility

- Cope with changing luminosities
- Be able to add triggers if needed (e.g. new triggers upon discovery of new particles)
- In LHC experiments we ran 500-700 triggers online in 2012!

Trigger, Oct 27, 2014


What makes up a Menu

- Physics triggers (typically take all of them)
 - e.g. mu24 (one muon with p_T>24GeV, useful for many analysis from SM to searches for new particles (Higgs, Susy, …)
 - Obviously most of the trigger bandwidth is used for these
- Supporting trigger or cross trigger (typically prescaled)
 - Needed to understand (support) your physics analysis for e.g.
 - Measure trigger/offline efficiency
 - Understand your backgrounds
 - Calibration Triggers
 - E.g. select events selected by L1 only
 - Monitoring triggers

Trigger menu determines the physics we can do in the offline analysis!

Trigger Menu

Example from CMS: how menu changed as a function of luminosity

^(*) Numbers and fractions approximate, and do not account for trigger overlap

How to design a trigger

- First understand the physics you want to do
 - Which are the particles in your final state and how high is their p_T ?
- Understand the existing trigger menu
 - Figure out if there is already a trigger in place which does the job
 - * No need to design a new one if it's already covered
- If not, think up a new trigger
 - Can you combine several particles into one trigger, e.g. muon + 2 b-jets?
 - Can you take advantage of the topology of your event, e.g. invariant mass, back-to-back topology?
 - Also keep in mind that the trigger reconstruction is not as good as the offline one and your selections need to be looser
- Figure out if also other analyses might profit from your trigger
 - The more analyses there are the more likely your trigger will be accepted to run online

Trigger, Oct 27, 2014

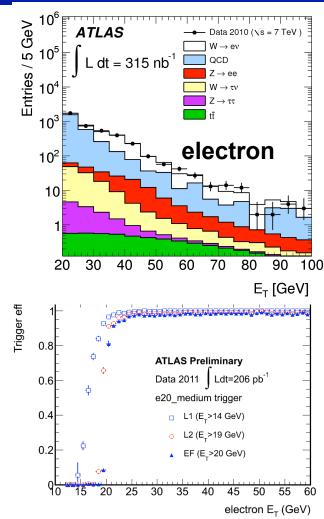
- General rule:
 - Make it as simple as possible
 - Less trigger losses
 - Avoids unnecessary trigger biases in your analysis
 - Less demand for supporting triggers
 - If possible, create a new trigger based on a already existing (older more inclusive) trigger

Already validated and easier to implement

Example: W cross section measurement (ATLAS/CMS)

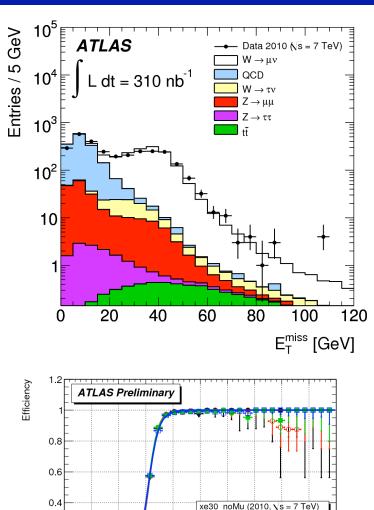
- How do I reconstruct W→Iv, I=e,µ in the offline?
 - Select events containing 1 electron or muon with high transverse momentum (p_T > 25 GeV)
 - Select events with high missing transverse energy (E_T^{miss} > 20 GeV)
 - Calculate transverse mass

•
$$M_T^2 = (E_{T,1} + E_{T,2})^2 - (\overrightarrow{p}_{T,1} + \overrightarrow{p}_{T,2})^2 \overleftrightarrow{p}_{T,2}^2$$


- Extract background and subtract
- Count events and convert in cross section

$$\bullet \sigma(\text{signal}) = \frac{(\text{N}_{\text{cand}} - \text{N}_{\text{bkg}})}{\alpha \cdot \varepsilon_{\text{trig}} \cdot \varepsilon_{\text{offline}} \cdot \int L \, dt}$$

- Trigger can select these events selecting $^{0-20}$ high energetic electrons or muons and/or via E_T^{miss}
 - So what should I choose?


Example: Trigger for measuring W cross section

- E_T of the electrons and muons
 - Selection of E_T>20 GeV e/µ's will keep most of the W's
- Select events containing one high p_T e/µ
- Next: check the turn-on trigger efficiency w.r.t. offline E_T near the trigger threshold
 - E.g. e[±]-trigger with E_T = 20 GeV threshold (e20) efficient for offline E_T > 22 GeV, plateau for E_T > 25 GeV
 - Trigger threshold few GeV lower than what you want in offline analysis (resolution effect)
- Check the rate:
 - Assume: Rate ≈ 500 Hz
 - need higher threshold and tighter selection
 - ➡ Rate: 60 Hz

Example: Trigger for measuring W cross section

- And if the rate is still too high?
 - Even tighter selection (typical lower eff)
 - Even higher E_T
- Could we rather use missing E_T for the trigger?
 - Promising for E_T^{miss}>30 GeV
- Let's look at turn-on for $E_T^{miss} > 30 GeV$
 - Efficient at offline E_T^{miss} > 40 GeV
 - Rate: ~5 kHz
- Combine E_T^{miss} with e/µ
 - e/µ with E_T > 25 GeV + E_T^{miss} > 30 GeV:
 20 Hz
 - But now less analyses can use this trigger... perhaps rather higher E_T?
 - Best compromise needed...

0.2

30

20

40

50

60

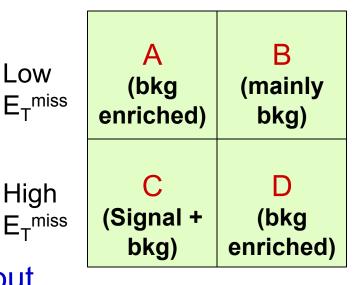
90 100

W(ev) cand, period F

period G

period H period I

70 80


MET_Topo Missing E, [GeV, EM scale]

Example: Trigger for measuring W cross section

- Another possible solution if you do not need the full data statistics
 - Prescaling
 - Find out how many events you need to do a useful analysis!
- If you also want to measure W+1, 2, 3, etc jets cross section
 - Add another trigger selecting based on e/μ (+ E_T^{miss}) + jets

What other triggers do I need: background trigger

- Now we e.g. select events with:
 - $e/\mu + E_T^{miss}$
- I need to estimate the background under my signal
 - Often done via cut-reversal (ABCD)
 method
- Need sample of events selected without or only loose electron selections
 - e.g. need e25_loose
 - Do not need all of them, so you can prescale by e.g. a factor of 100
 - Enough events for the analysis

Pass e [±]	Fail e [±]
identif.	identif.

What other triggers do I need: efficiency extraction

Trigger efficiency needs to be precisely measured since it enters in the calculation of the cross-sections

 $\varepsilon_{\text{trig}} = \frac{\text{Number of events passing trigger selection}}{2}$

Number of events without trigger selection

Trigger efficiency is usually measured w.r.t. offline, such that

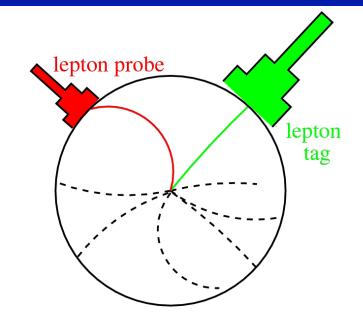
$$\sigma(\text{signal}) = \frac{(\text{N}_{\text{cand}} - \text{N}_{\text{bkg}})}{\alpha \cdot \varepsilon_{\text{trig}} \cdot \varepsilon_{\text{offline}} \cdot \int L \, dt} \text{ with } \varepsilon_{\text{trig}} = \varepsilon(\text{L1}) \cdot \varepsilon(\text{L2}) \cdot \varepsilon(\text{L3})$$

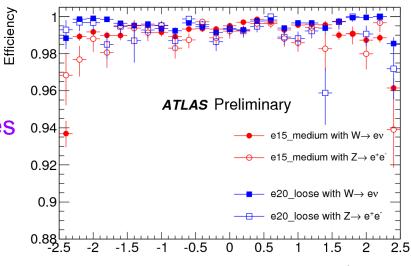
Your trigger is used to collect your data

You cannot blindly use your data to study efficiency as your trigger might have introduced a bias

Need an unbiased measurement of trigger and offline efficiency

Methods for trigger efficiency measurements


- Random sample of collisions
- Bootstrapping via pass-through triggers
 - Use looser trigger, e.g. apply only L1 selection, but nothing at L2, L3
 events passing L2 mu20


 ε (L2 mu20) = $\frac{\text{events passing L2 mu20}}{\text{events passing L2 mu20 in pass – through}}$

- Drawback: you might measure the efficiency of your signal plus some background
- Use "orthogonal" trigger
 - Trigger on certain particle type in the event, measure another one
 - For example use muon triggered events to measure electron trigger efficiency
 - Method might suffers from your topology (you might select more (less) crowded events), you measure signal + background
- Use simulations
 - Monte-Carlo must very well describe the data

Efficiency Measurement

- Use well-known physics processes and do "tag & probe"
 - - Most precise way to calculate efficiencies
 - W \rightarrow Iv: trigger on missing E_T
- ✤ Example: Z→ee tag and probe
 - Trigger on one of the electrons
 - Select offline events with 2 good electrons which have an invariant mass around the Z mass
 - "tag" electron: well identified, coincides with electron which triggered event
 - "probe" electron: check if this one passed or failed the trigger selection

electron η

Summary: triggers for W cross section measurement

Trigger to select signals

Well identified electrons/muons with E_T > 25 GeV and certain identification criteria

Might even consider prescaling

• electron/muon with $E_T > 25$ GeV and $E_T^{miss} > 30$ GeV

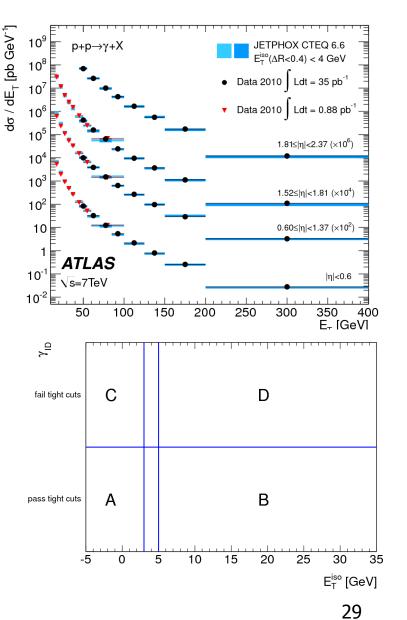
Trigger needed for background subtractions

Prescaled trigger with loosely identified electron/muon candidates with $E_T > 25 \text{ GeV}$

Triggers for efficiency extraction

- Well identified electrons/muons with E_T > 25 GeV (use the electrons from Z decays)
- Et^{miss} trigger to measure offline efficiency from W decays

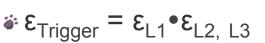
Example 2: Measurement of direct photon production

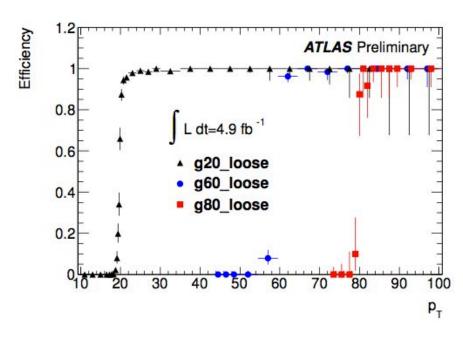

- Measure spectrum starting with $E_T > 15 \text{ GeV}$
- Can't keep all the collisions with photons at low E_T
 - Use prescaled triggers
 - # g10, g20, g40, g60, etc until rate low enough
 - Prescale each trigger to give
 ~1Hz rate

Trigger for background extraction

 If photons loosely selected, can use same sample to extract the background from jets faking γ's

> Identification criteria vs isolation


Trigger, Oct 27, 2014


Example 2: Measurement of direct photon production

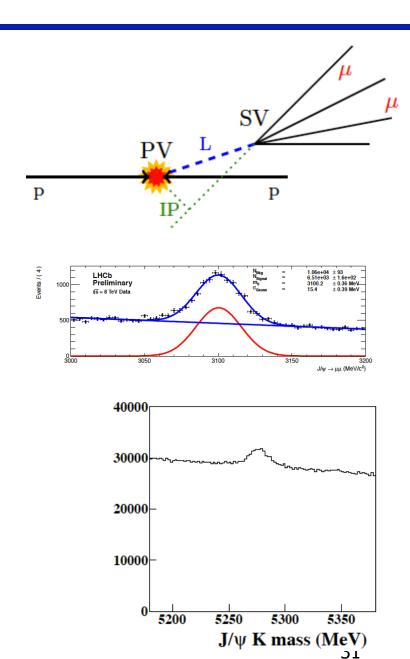
Efficiency

- Use bootstrapping
 - use photon candidates selected by L1 only, measure photon efficiency w.r.t. L1
 - Use unbiased sample e.g. minimum bias to measure L1 efficiency

- Advantage: 2-step approach results in less overall statistics needed due to high rejection at each trigger level
- Use Z->eeγ events (tag & probe)

Example 3: B→ J/ψ K (LHCb)

Select events with


- Displaced vertex
- a 2 muons from J/ψ decay

Muons come from displaced vertex

 Such a trigger is also useful for other analyses

 $\textcircled{\bullet} B \rightarrow \mu \mu, \ B_s{}^0 \rightarrow J/\psi \ \phi, \ B^0 \rightarrow K^{*0} \mu \mu$

- If you can't afford the rate
 - Muons need to fall in inv.
 mass window around J/ψ
 mass
 - Combine with loosely identified K

Preparing for LHC run 2

- Have to become even more selective due to pileup, increasing beam energy
 - Forced to throw away more of potentially interesting candidates or increase rate of events writing to mass storage
 - Cannot rely so much any more on single particle triggers
 - Single object triggers might need to increase threshold above W-peak
 - Need to have more combined triggers using identified particles
 - Need to have more topological trigger, select events with W/Z candidates, back-to-back signatures, etc.
- We decided to write out 1 kHz instead of ~300-400Hz in order not to throw away too much good physics...

Summary

Introduction to trigger selection

- Introduction to some slang: trigger path, trigger menu...
- Trigger strategy is trade-off between physics requirements and affordability
- How to devise a trigger for a physics analysis

Will be (hopefully) useful for your physics analysis