Brunel University
Queen Mary, University of London
Royal Holloway, University of London
University College London

Intercollegiate post-graduate course in High Energy Physics

Paper 1: The Standard Model

Monday, 28 January 2008

Time allowed for Examination: 3 hours

Answer ALL questions

Books and notes may be consulted

The Standard Model

Question 1 (4 marks)

At a collider, two high energy particles, A and B with energies E_{A} and E_{B}, which are much greater than their rest masses, collide head on. Derive the expression for the centre-of-mass energy.

Using this expression, what would be the centre-of-mass energy of a proposed future facility ("LHeC") which will collide 7 TeV protons with 70 GeV electrons?

Now consider particle B (the proton) to be at rest. Derive the formula for the centre-ofmass energy of such a fixed-target experiment.

What electron beam energy would be required in the fixed-target experiment in order to achieve the same centre-of-mass energy as in the proposed LHeC facility?

Question 2 (12 marks)

Consider the Compton scattering of a photon, $k=(\omega, \vec{k})$, off a stationary electron, $p=$ $(m, \overrightarrow{0})$. The photon is scattered through an angle θ and the four momenta of the final state particles are $k^{\prime}=\left(\omega^{\prime}, \overrightarrow{k^{\prime}}\right)$ and $p^{\prime}=\left(E^{\prime}, \overrightarrow{p^{\prime}}\right)$ for the photon and electron respectively. Derive the Compton shift relation

$$
\begin{equation*}
\lambda^{\prime}-\lambda=2 \lambda_{c} \sin ^{2}(\theta / 2) \tag{4}
\end{equation*}
$$

where $\lambda=2 \pi / \omega, \lambda^{\prime}=2 \pi / \omega^{\prime}$ and $\lambda_{c}=2 \pi / m$
Draw the leading order Feynman diagrams for Compton scattering and state whether they are s, t or u channel.

Part of the trace calculation for evaluating the cross section involves

$$
A=\frac{1}{4} \operatorname{Tr}\left[\not \xi^{\prime} k \notin(\not p+m) \notin k \not \phi^{\prime}\left(\not p^{\prime}+m\right)\right],
$$

where ϵ and ϵ^{\prime} are the photon's initial and final polarization four vectors. In a gauge for which $p \cdot \epsilon=p \cdot \epsilon^{\prime}=0$, show that

$$
A=2 \epsilon^{2} k \cdot p\left[2\left(\epsilon^{\prime} \cdot k\right)^{2}-\epsilon^{\prime 2}\left(k^{\prime} \cdot p\right)\right] .
$$

Trace theorems for γ matrices need not be derived, but should be quoted. Note that $\not b b b d=2 a \cdot b \not b-a^{2} b$.

Question 3 (10 marks)

Draw the leading order Feynman diagram for electron-muon scattering, $e^{-}(k)+\mu^{-}(p) \rightarrow$ $e^{-}\left(k^{\prime}\right)+\mu^{-}\left(p^{\prime}\right)$, where the four momenta are indicated in the reaction.

Simplify the expression for the transition amplitude:

$$
\left|T_{\mathrm{f}}\right|^{2}=\frac{e^{4}}{4 q^{4}} \operatorname{Tr}\left[\left(\not k^{\prime}+m\right) \gamma_{\mu}(\not k+m) \gamma_{\nu}\right] \cdot \operatorname{Tr}\left[\left(\not p^{\prime}+M\right) \gamma^{\mu}(\not p+M) \gamma^{\nu}\right]
$$

such that the Traces are removed, assuming the high-s limit of zero masses. Trace theorems for γ matrices need not be derived, but should be quoted.

Use the cross-section definition (in the centre-of-mass system):

$$
\frac{d \sigma}{d \Omega}=\frac{1}{64 \pi^{2} s} \frac{p_{f}}{p_{i}}\left|T_{\mathrm{fi}}\right|^{2},
$$

where p_{f} and p_{i} are the final and initial three-momenta, to derive the cross section.

$$
\frac{d \sigma}{d \Omega}=\frac{\alpha^{2}}{4 s}\left(1+\cos ^{2} \theta\right),
$$

where α is the fine structure constant and θ is the angle between the e^{-}and μ^{-}.

Question 4 (4 marks)

The branching ratios for $D^{+} \rightarrow K_{s}^{0} \pi^{+}$and $D^{+} \rightarrow K^{+} \pi^{0}$ are very different, viz. 1.47% and $2.37 \cdot 10^{-4}$. Assuming the simple spectator model, draw diagrams for the two decays.

Give a reasoning for some of the difference in rate.

Question 5 (6 marks)

State what is meant by local and global gauge transformations.
From the Lagrangian

$$
\frac{1}{8}\left[g_{W}^{2}(v+h)^{2}\left(W_{\mu}^{1}-i W_{\mu}^{2}\right)\left(W_{\mu}^{1}+i W_{\mu}^{2}\right)-(v+h)^{2}\left(g^{\prime} B_{\mu}-g_{W} W_{\mu}^{3}\right)\left(g^{\prime} B^{\mu}-g_{W} W_{3}^{\mu}\right)\right]
$$

derive the ZZH and ZZHH couplings. (Simplify your answer to remove any dependency on v.)

Question 6 (6 marks)

For $\sqrt{s}=35 \mathrm{GeV}$, what would you expect the value of

$$
R=\frac{\sigma\left(e^{+} e^{-} \rightarrow \text { hadrons }\right)}{\sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right)}
$$

to be when considering only the EM coupling? At what higher energy would would you expect the value to change?

Draw a higher-order diagram (i.e. consideration of the strong force) which would affect this value.

Briefly describe how such higher-order diagrams led to the discovery of the gluon.

Question 7 (7 marks)

The amplitude for the decay $\pi^{-}(q) \rightarrow \mu^{-}(p)+\overline{\nu_{\mu}}(k)$ is given by:

$$
\left|T_{\mathrm{f}}\right|^{2}=\frac{G_{F}^{2}}{2} f_{\pi}^{2} \cos ^{2} \theta_{c} m_{\mu}^{2} \operatorname{Tr}\left[\left(\not p+m_{\mu}\right)\left(1-\gamma^{5}\right) \not k\left(1+\gamma^{5}\right)\right]
$$

Use Trace theorems to show this simplifies to

$$
\left|T_{\mathrm{f}}\right|^{2}=4 G_{F}^{2} f_{\pi}^{2} \cos ^{2} \theta_{c} m_{\mu}^{2}(p \cdot k)
$$

The ratio of decay rates:

$$
R=\frac{\Gamma\left(K^{-} \rightarrow e^{-}+\overline{\nu_{e}}\right)}{\Gamma\left(K^{-} \rightarrow \mu^{-}+\overline{\nu_{\mu}}\right)}
$$

can be written in terms of the particle masses. Use this relation to give the value to 2 decimal places showing that the rate is close to that measured from experiment, ~ 2.44 $\times 10^{-5}$.
$\left(m_{e}=0.511 \mathrm{MeV}, m_{\mu}=105.7 \mathrm{MeV}, m_{K}=493.7 \mathrm{MeV}\right)$

Question 8 (12 marks)

Draw the Feynman diagrams of the two leading order (in α_{s}) processes in deep inelastic $e p$ scattering.

The photon emitted from the electron can also be sometimes considered to have a structure, by fluctuating into a pair of quarks. Draw an example Feynman diagram of these so-called "resolved" photon processes.

In this way, an ep collider can also be thought of as a hadron collider. Draw all Feynman representations, including the initial hadrons and their products, for the hard scatters, $q q^{\prime} \rightarrow q q^{\prime}$ and $q q \rightarrow q q$.

Write down the forms of the (partonic) cross sections for $q q^{\prime} \rightarrow q q^{\prime}$ and $q q \rightarrow q q$ in terms of the Mandelstam variables, s, t and u, associating each term with the relevant Feynman diagram.

Question 9 (5 marks)

Contrast the advantages and disadvantages of $e^{+} e^{-}$and $p p$ colliders. Use two headline measurements or major discoveries to justify your answer.

Question 10 (6 marks)

What property of the EM interaction means that photons do not self-couple?
Draw a Feynman diagram of a process at the LHC in which three gluons couple at one vertex.

Explain briefly why the QCD coupling, α_{s}, has a different behaviour with the scale, Q^{2}, compared to that of the QED coupling, α.

Question 11 (6 marks)

Draw a Feynman diagrams for each of neutral current and charge current deep inelastic scattering at HERA.

Draw a sketch of how their cross sections vary with Q^{2} and explain the features.

The neutral current cross section is sensitive to all quarks in the proton. Which quarks are the charge current cross section for (a) $e^{+} p$ and (b) $e^{-} p$ sensitive to?

