Brunel University
Queen Mary, University of London
Royal Holloway, University of London
University College London

Intercollegiate post-graduate course in High Energy Physics

Paper 1: The Standard Model

Wednesday, 4 February 2009

Time allowed for Examination: 3 hours

Answer ALL questions

Books and notes may be consulted

The Standard Model

Question 1 (5 marks)

At a collider, two high energy particles, A and B with energies E_{A} and E_{B}, which are much greater than their rest masses, collide at a crossing angle, θ. Derive the general expression for the centre-of-mass energy in terms of the energies and crossing angle. [2]

At HERA, a 27.5 GeV electron beam collided with a 920 GeV proton beam at zero crossing angle. Evaluate the total centre-of-mass energy and show that a fixed-target electron accelerator would require a beam energy of approximately $5 \times 10^{4} \mathrm{GeV}$ to achieve the same total centre of mass energy

Question 2 (8 marks)

The invariant mass of two massless jets, $M^{j j}$, can be written in terms of their transverse energies, $E_{T}^{\text {jet1 }}$ and $E_{T}^{\text {jet2 }}$, pseudorapidities, $\eta^{\text {jet1 }}$ and $\eta^{\text {jet2 }}$ and azimuthal angles, $\phi^{\text {jet1 }}$ and $\phi^{\mathrm{jet} 2}$:

$$
M^{j j}=\sqrt{2 E_{T}^{\mathrm{jet} 1} E_{T}^{\mathrm{jet} 2}\left[\cosh \left(\eta^{\mathrm{jet} 1}-\eta^{\mathrm{jet} 2}\right)-\cos \left(\phi^{\mathrm{jet} 1}-\phi^{\mathrm{jet} 2}\right)\right]} .
$$

For two jets back-to-back in ϕ and with equal $E_{T}^{\text {jet }}$, show that:

$$
M^{j j}=\frac{2 E_{T}^{\mathrm{jet}}}{\sqrt{1-\cos ^{2} \theta^{*}}},
$$

where θ^{*}, the angle between the jet-jet axis and the beam axis in the two-jet centre-ofmass, system is given by:

$$
\begin{equation*}
\cos \theta^{*}=\tanh \left(\frac{\eta^{\mathrm{jet} 1}-\eta^{\mathrm{jet} 2}}{2}\right) \tag{2}
\end{equation*}
$$

(Recall: $\cos 2 \theta=2 \cos ^{2} \theta-1, \operatorname{sech}^{2} \theta+\tanh ^{2} \theta=1$.)
The cross-section dependence for a spin-1 propagator is $\propto\left(1-\left|\cos \theta^{*}\right|\right)^{-2}$ and for a spin $-\frac{1}{2}$ propagator is $\propto\left(1-\left|\cos \theta^{*}\right|\right)^{-1}$. Draw two Feynman diagrams representing parton collisions at the LHC, one of which has a spin-1 and the other a spin $-\frac{1}{2}$ propagator.

Many Feynman diagrams exist already at leading order in QCD at a hadron collider such as the LHC. Draw the four diagrams for the partonic process, $g g \rightarrow g g$.

Question 3 (6 marks)

State what is meant by local and global gauge transformations.
From the Lagrangian

$$
\frac{1}{8}\left[g_{W}^{2}(v+h)^{2}\left(W_{\mu}^{1}-i W_{\mu}^{2}\right)\left(W_{\mu}^{1}+i W_{\mu}^{2}\right)-(v+h)^{2}\left(g^{\prime} B_{\mu}-g_{W} W_{\mu}^{3}\right)\left(g^{\prime} B^{\mu}-g_{W} W_{3}^{\mu}\right)\right]
$$

derive the ZZH and ZZHH couplings. (Simplify your answer to remove any dependency on v or g^{\prime}.)

Question 4 (10 marks)

An electron of 4-momentum p scatters elastically off a μ^{-}of 4 -momentum k to produce a final state electron of 4 -momentum p^{\prime} and a μ^{-}of 4 -momentum k^{\prime}. The square of the matrix element is given by:

$$
\left|T_{\mathrm{fi}}^{2}\right|=\frac{8 e^{4}}{q^{4}}\left[(p \cdot k)\left(p^{\prime} \cdot k^{\prime}\right)+\left(p \cdot k^{\prime}\right)\left(p^{\prime} \cdot k\right)-M^{2} p \cdot p^{\prime}\right]
$$

where M is the muon mass, $q=p^{\prime}-p$ and the electron mass is set to zero.
Show (from $\left.q=p^{\prime}-p\right)$ that $q^{2}=-2 p \cdot p^{\prime}$ and (from $\left.k-q=k^{\prime}\right)$ that $q^{2}=2 k \cdot q$.
Hence, after using energy-momentum conservation to eliminate k^{\prime}, show that $\left|T_{\mathrm{fi}}^{2}\right|$ can be re-written as:

$$
\begin{equation*}
\left|T_{\mathrm{ff}}^{2}\right|=\frac{8 e^{4}}{q^{4}}\left[2(p \cdot k)\left(p^{\prime} \cdot k\right)+\frac{1}{4}\left(q^{2}\right)^{2}+\frac{1}{2} q^{2} M^{2}\right] . \tag{4}
\end{equation*}
$$

The initial μ^{-}is at rest and:

$$
p=(E, \vec{p}), \quad k=(M, \overrightarrow{0}), \quad p^{\prime}=\left(E^{\prime}, \overrightarrow{p^{\prime}}\right) .
$$

The electron is scattered through an angle θ. Hence deduce that $q^{2}=-2 E E^{\prime}(1-\cos \theta)$ and

$$
\begin{equation*}
\left|T_{\mathrm{fi}}^{2}\right|=\frac{8 e^{4}}{q^{4}} \cdot 2 M^{2} E E^{\prime}\left[\cos ^{2}(\theta / 2)-\frac{q^{2}}{2 M^{2}} \sin ^{2}(\theta / 2)\right] . \tag{5}
\end{equation*}
$$

(Recall: $\cos 2 \theta=1-2 \sin ^{2} \theta$)

Question 5 (8 marks)

The decays $B^{0} \rightarrow D^{-} \pi^{+}$and $B^{0} \rightarrow D^{-} K^{+}$have branching fractions $(2.68 \pm 0.13) \times 10^{-3}$ and $(2.0 \pm 0.6) \times 10^{-4}$, respectively. Assuming the spectator model, draw diagrams for the two decays and briefly explain the difference in the rates of the two channels.

Using, the CKM matrix,

$$
\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)=\left(\begin{array}{ccc}
0.97419 & 0.2257 & 0.00359 \\
0.2256 & 0.97334 & 0.0415 \\
0.00874 & 0.0407 & 0.999133
\end{array}\right),
$$

show that the measured ratio of rates can be predicted to within just over one standard deviation of the experimental uncertainty. (NB. remember the decay rate is $\sim\left|T_{\mathrm{fi}}\right|^{2}$.)

Question 6 (15 marks)

At leading order, the amplitude for the decay of the Z^{0} boson into a fermion of 4momentum p and anti-fermion of 4 -momentum p^{\prime} is:

$$
T_{\mathrm{fi}}=-i \frac{g_{W}}{\cos \theta_{W}} \bar{u}(p) \gamma^{\mu} \frac{1}{2}\left(c_{V}-c_{A} \gamma^{5}\right) v\left(p^{\prime}\right) \epsilon^{\mu}
$$

where g_{W} and $\cos \theta_{W}$ are the usual constants, c_{V} and c_{A} are the vector and vector-axial couplings for a given fermion and ϵ^{μ} the polarization of the boson.

Show that:

$$
\left|T_{\mathrm{fi}}\right|^{2}=\frac{1}{12} \frac{g_{W}^{2}}{\cos ^{2} \theta_{W}}\left(c_{V}^{2}+c_{A}^{2}\right) 4\left[2 p \cdot p^{\prime}+\frac{2}{M_{Z}^{2}}(p \cdot q)\left(p^{\prime} \cdot q\right)-\frac{1}{M_{Z}^{2}}(q \cdot q)\left(p \cdot p^{\prime}\right)\right],
$$

showing all your working.
In the rest frame of the Z^{0} boson,

$$
q=\left(M_{Z} ; 0,0,0\right), \quad p=\frac{M_{Z}}{2}(1 ; 0,0,1), \quad p^{\prime}=\frac{M_{Z}}{2}(1 ; 0,0,-1),
$$

and using,

$$
\Gamma=\frac{1}{64 \pi^{2} M_{Z}} \int\left|T_{\mathrm{fi}}\right|^{2} d \Omega
$$

show that the decay width is,

$$
\Gamma\left(Z^{0} \rightarrow f \bar{f}\right)=\frac{1}{6 \sqrt{2} \pi} G_{F} M_{Z}^{3}\left(c_{V}^{2}+c_{A}^{2}\right)
$$

and to electrons is,

$$
\Gamma\left(Z^{0} \rightarrow e^{+} e^{-}\right)=\frac{G_{F} M_{Z}^{3}}{12 \sqrt{2} \pi}\left(1-4 \sin ^{2} \theta_{W}+8 \sin ^{4} \theta_{W}\right) .
$$

Question 7 (5 marks)

Contrast the advantages and disadvantages of $e^{+} e^{-}$and $p p$ colliders. Use two headline measurements or major discoveries to justify your answer.

Question 8 (6 marks)

At the PETRA collider $(\sqrt{s}=34 \mathrm{GeV})$, the unpolarized cross section, $e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}$, was consistent with the form:

$$
\frac{d \sigma}{d \Omega}=\frac{\alpha^{2}}{4 s}\left[A_{0}\left(1+\cos ^{2} \theta\right)+A_{1} \cos \theta\right]
$$

where θ is the scattering angle in the centre-of-mass frame. Explain the origin of the two terms in the square brackets.

Integrate the differential formula over the solid angle to derive the total cross section in terms of constants and A_{0}.

Question 9 (6 marks)

Considering only QED, draw an example Feynman diagram for each of s-, t - and u-channel processes.

Write down the form of their cross sections in terms of the Mandelstam variables.

Question 10 (8 marks)

The first measurements of the proton structure function, F_{2}, showed that the quantity "scaled", i.e. was constant, with Q^{2}, the square of the 4 -momentum transfer of the probe. Later results showed a "violation" of this scaling with different values of x, the fraction of the proton's momentum carried by the struck parton. Draw a sketch of F_{2} versus Q^{2}, indicating the range in Q^{2} currently measured and specify low and high values of x. [3]

Explain the different trends at high and low x stating the dominant partonic density. [2]
The highest energy scales for measurements of the parton densities in the proton are from HERA. However, this is significantly below the LHC energy: briefly explain how predictions of the proton structure can be made for the LHC and highlight an inadequacy in the approach.

Question 11 (5 marks)

The muon decay rate, Γ, to an electron and neutrino pair and the muon lifetime, τ, are given by:

$$
\Gamma\left(\mu^{-} \rightarrow e^{-} \overline{\nu_{e}} \nu_{\mu}\right) \equiv \frac{1}{\tau}=\frac{G_{F}^{2} m_{\mu}^{5}}{192 \pi^{3}}
$$

Calculate the lifetime of the muon.
Given that the branching fraction for $\left(\tau^{-} \rightarrow e^{-} \overline{\nu_{e}} \nu_{\tau}\right)$ is 17.85%, use the above formula to predict the lifetime of the τ lepton.

State whether your prediction agrees with the measured value, $(290.6 \pm 1.0) \times 10^{-15} \mathrm{~s}$. [1]
$\left(G_{F}=1.16637 \times 10^{-5} \mathrm{GeV}^{-2}, h=6.6261 \times 10^{-34} \mathrm{~J} \mathrm{~s}, e=1.6022 \times 10^{-19} \mathrm{C} ;\right.$ $\left.m_{\mu}=105.658367 \mathrm{MeV}, m_{\tau}=1776.84 \mathrm{MeV}\right)$
[Total Marks $=82$]

