Symmetries \& Conservations Laws - Exam Question - Jan 2009

Answer all the questions. Time 1 hour. Total 20 marks.

Formulae: $\quad \exp (i \alpha \mathbf{n} \bullet \boldsymbol{\sigma})=\cos \alpha+i \sin \alpha \mathbf{n} \bullet \boldsymbol{\sigma} \quad \sigma_{x}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right) \sigma_{y}=\left(\begin{array}{cc}0 & -i \\ i & 0\end{array}\right) \sigma_{z}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$

1) Colour states in $\operatorname{SU}(3)$ generators [4 marks]

Consider the combination of a single-particle colour state and with a single-particle anticolour state. Use Young Tableaux to identify the possible states (in terms of YT; no need to consider wavefunctions) and their multiplicities.

For the above, which states are a valid description of a) gluons and b) mesons ?
Consider the combination of three single-particle colour states. Use Young Tableaux to identify the possible states and their multiplicities.

For the above, which states are a valid description of baryons ?

2) Handling SU(2) generators [7 marks]

By replacing the exponentials in the expression $Q=\exp \left(i \alpha \sigma_{x}\right) \exp \left(i \beta \sigma_{x}\right)$ with trig functions, derive a simplified form for Q, expressing this as an exponential.

Why is this expression what you would expect ?
Now consider a product $P=\exp \left(i \alpha \sigma_{x}\right) \exp \left(i \beta \sigma_{y}\right)$ - where the second transformation is now wrt the y-axis. Evaluate this in terms of trig functions. Can it be represented as a simple exponential ?

Expand $\exp \left(i \alpha \sigma_{x}\right) \exp \left(i \beta \sigma_{y}\right)$ and $\exp \left(i \alpha \sigma_{x}+i \beta \sigma_{y}\right)$ to second order in α and β to confirm your answer to the last question.
3) Reduced SU (2) group [3 marks]

Using the results of Question 2, demonstrate that the reduced $\mathrm{SU}(2)$ group made up of the set of operators $\left\{\exp \left(i \alpha \sigma_{x}\right) ; \alpha \in \mathfrak{R}\right\}$ and the operation "follows" (or matrix multiplication) is a group.

To which of the following groups is this reduced group isomorphic ? Explain briefly.
a) $\mathrm{SO}(2)$, b) $\mathrm{U}(1)$, c) Real numbers under addition.

4) $\mathrm{SU}(2)$ transformations of a $\mathrm{J}=1$ state [6 marks]

Consider a general $\operatorname{SU}(2)$ transformation $\exp (i \alpha \mathbf{n} \bullet \boldsymbol{\sigma})$ acting on a two-quark state uu - quark flavour (but could also be spin). $\boldsymbol{\sigma}=\boldsymbol{\sigma}_{1}+\boldsymbol{\sigma}_{2}$ - the σ operators act on the individual quarks and hence are independent (commuting), i.e. σ_{1} acts on the first quark etc.. Express the resultant state in terms of both quark flavour $\{\mathrm{uu}, \mathrm{ud}, \mathrm{du}, \mathrm{dd}\}$ and isospin $\{\mathrm{I}=1, \mathrm{I}=0\}$ states.

What is the projection on to the $\mathrm{I}=0$ state ? Explain.
Hint: Express quark states as base-vectors: $u \equiv\binom{1}{0}, \quad d \equiv\binom{0}{1}$

