Brunel University
Queen Mary, University of London
Royal Holloway, University of London
University College London

Intercollegiate post-graduate course in High Energy Physics

Paper 1 : The Standard Model

Friday, 29 January 2010

Time allowed for Examination : 3 hours

Answer 6 from 8 questions

Books and notes may be consulted

Question 1 (20 marks)

For a four-momentum, p_{μ}, show that $p_{\mu} p^{\mu}$ is a Lorentz invariant, by considering a Lorentz transformation along a spatial axis of your choice.

At a collider, two high energy particles, A and B with energies E_{A} and E_{B}, which are much greater than their rest masses, collide head on. Derive the expression for the centre-of-mass energy. Using this expression, what would be the centre-of-mass energy of a proposed future facility ("LHeC") which is supposed to collide 7 TeV protons with 70 GeV electrons ? Now consider particle B (the proton) to be at rest. Derive the formula for the centre-of-mass energy of such a fixed-target experiment. What electron beam energy would be required in the fixedtarget experiment in order to achieve the same centre-of-mass energy as in the proposed LHeC facility?

Obtain the relation for the centre-of-mass energy in electron-neutrino scattering

$$
s=m_{e}\left(2 E_{\nu}+m_{e}\right)
$$

A particle of mass M decays into two particles with masses m_{1} and m_{2}. Determine the energies of the decay products in the rest frame of the parent particle.

Hence write down, in terms of masses and the centre-of-mass energy, the energy in the rest frame of particle A in a scattering, $A B \rightarrow C D$.

Question 2 (20 marks)

Given the cross section for the scattering of an electron from a fixed Coulomb potential of point charge $Z e$:

$$
\frac{d \sigma}{d \Omega}=\frac{2(Z \alpha)^{2} m^{2}}{|\mathbf{q}|^{4}} \operatorname{Tr}\left[\gamma_{0} \frac{\not p_{i}+m}{2 m} \gamma_{0} \frac{\not p_{f}+m}{2 m}\right],
$$

where p_{i} and p_{f} are the initial and final momenta and $\mathbf{q}=\mathbf{p}_{f}-\mathbf{p}_{i}$, determine the Mott cross section :

$$
\frac{d \sigma}{d \Omega}=\frac{(Z \alpha)^{2}}{4\left(\gamma \beta^{2}\right)^{2}\left(m c^{2}\right)^{2} \sin ^{4} \theta / 2}\left(1-\beta^{2} \sin ^{2} \frac{\theta}{2}\right)
$$

Trace theorems used should be explicitly stated.
Show that in the non-relativistic limit

$$
\frac{d \sigma}{d \Omega}=\frac{(Z \alpha)^{2}}{16 E^{2} \sin ^{4} \frac{\theta}{2}}
$$

and in the extreme-relativistic limit

$$
\frac{d \sigma}{d \Omega}=\frac{(Z \alpha)^{2} \cos ^{2} \frac{\theta}{2}}{4 E^{2} \sin ^{4} \frac{\theta}{2}}
$$

Question 3 (20 marks)

Evaluate, in terms of the four-vectors (you do not have to convert to the Mandelstam variable),

$$
\operatorname{Tr}\left[\gamma^{\mu} k \gamma^{\nu}(\not p+m) \gamma_{\nu} k^{\prime} \gamma_{\mu}\left(\not p^{\prime}+m\right)\right]
$$

and

$$
\operatorname{Tr}\left[\gamma^{\mu} k \gamma^{\nu}(\not p+m) \gamma_{\mu} k^{\prime} \gamma_{\nu}\left(\not p^{\prime}+m\right)\right] .
$$

that occur in the calculation of electron-photon scattering. Trace theorems and identities for γ matrices need not be derived, but should be quoted.

In a massless limit, the terms in final squared transition amplitude for Compton scattering are
(a) $2 e^{4}\left(-\frac{u}{s}\right)$
(b) $2 e^{4}\left(-\frac{s}{u}\right)$
(c) $2 e^{4} \frac{t}{u s}(s+u+t)$.

Identify the Feynman diagram(s) which contribute to each term. Hence write down the final squared transition amplitudes when the incoming photon is real and when it is virtual.

Given the Compton condition

$$
\lambda^{\prime}=\lambda+\frac{2 \pi}{m}(1-\cos \theta)
$$

and the Klein-Nishina formula for Compton scattering

$$
\frac{d \sigma}{d \Omega}\left(\lambda, \lambda^{\prime}\right)=\frac{\alpha^{2}}{4 m^{2}}\left(\frac{\omega^{\prime}}{\omega}\right)^{2}\left[\frac{\omega^{\prime}}{\omega}+\frac{\omega}{\omega^{\prime}}+4\left(\epsilon^{\prime *} \cdot \epsilon\right)^{2}-2\right]
$$

determine the cross section in the low-energy limit, i.e. $\omega \rightarrow 0$, in terms of the fine structure constant, α, the mass of the electron, m, and the polarisation vectors of the photon, ϵ and $\epsilon^{\prime *}$.

Question 4 (20 marks)

What property of the EM interaction means that photons do not self-couple ?
Explain the four terms in the Lagrangian of QED :

$$
\mathcal{L}=\bar{\psi}\left(i \gamma_{\mu} \partial^{\mu}-m\right) \psi+e \bar{\psi} \gamma_{\mu} A^{\mu} \psi-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}
$$

Briefly explain the concept of a "running" coupling constant in QED where the variation is with the scale of the process, Q^{2}. Draw two Feynman diagrams, one for QED and and for QCD, to illustrate the effect. And draw a diagram which leads to the QCD coupling having a different dependence.

State what are meant by global and local gauge transformations.
Given the phase transformations of the wave function and the electromagnetic field :

$$
\phi(x) \rightarrow \phi^{\prime}(x)=\exp (i q \alpha) \phi(x) \quad A^{\mu}(x) \rightarrow A^{\prime \mu}(x)=A^{\mu}(x)-\partial^{\mu} \alpha(x)
$$

and the gauge-covariant derivative,

$$
\partial^{\mu} \rightarrow D^{\mu}=\partial^{\mu}+i q A^{\mu}
$$

show that the Klein-Gordon equation is invariant under these transformations.

Question 5 (20 marks)

In the decay of a π^{-}at rest, $\pi^{-} \rightarrow e^{-}+\overline{\nu_{e}}$, show that

$$
\frac{1}{2}\left(1-\frac{v_{e}}{c}\right)=\frac{m_{e}^{2}}{m_{\pi}^{2}+m_{e}^{2}}
$$

where v_{e} is the velocity of the electron.
To lowest order, the partial decays rate for pions are :

$$
\frac{1}{\tau\left(\pi \rightarrow e \overline{\nu_{e}}\right)}=\frac{\alpha_{\pi}^{2}}{4 \pi}\left(1-\frac{v_{e}}{c}\right) p_{e}^{2} E_{e}, \quad \frac{1}{\tau\left(\pi \rightarrow \mu \overline{\nu_{\mu}}\right)}=\frac{\alpha_{\pi}^{2}}{4 \pi}\left(1-\frac{v_{\mu}}{c}\right) p_{\mu}^{2} E_{\mu}
$$

where α_{π} is an effective coupling constant and E_{e}, E_{μ} and p_{e}, p_{μ} are the charged lepton's energy and momentum. Hence show :

$$
\begin{equation*}
\frac{\tau\left(\pi \rightarrow \mu \overline{\nu_{\mu}}\right)}{\tau\left(\pi \rightarrow e \overline{\nu_{e}}\right)}=\frac{m_{e}^{2}\left(m_{\pi}^{2}-m_{e}^{2}\right)^{2}}{m_{\mu}^{2}\left(m_{\pi}^{2}-m_{\mu}^{2}\right)^{2}} \tag{5}
\end{equation*}
$$

Use the analogue of the above equation for the decay of the K^{-}to estimate the ratio

$$
\frac{\tau\left(K \rightarrow \mu \overline{\nu_{\mu}}\right)}{\tau\left(K \rightarrow e \overline{\nu_{e}}\right)}
$$

and compare with the observed value $(2.4 \pm 0.1) \times 10^{-5}$.
Given the lifetimes $\tau\left(K \rightarrow \mu \overline{\nu_{\mu}}\right)=1.948 \times 10^{-8} \mathrm{~s}$ and $\tau\left(\pi \rightarrow \mu \overline{\nu_{\mu}}\right)=2.603 \times 10^{-8} \mathrm{~s}$, estimate $\alpha_{K} / \alpha_{\pi}$.
$\left(m_{K}=493.67 \mathrm{MeV}, m_{\pi}=139.57 \mathrm{MeV}, m_{\mu}=105.66 \mathrm{MeV}, m_{e}=0.511 \mathrm{MeV}.\right)$
Draw quark model diagrams for the decays $\pi^{-} \rightarrow \mu^{-}+\overline{\nu_{\mu}}$ and $K^{-} \rightarrow \mu^{-}+\overline{\nu_{\mu}}$, stating which element of the CKM matrix is involved in each.
Neglecting masses, the ratio of the CKM elements is equal to $\alpha_{K} / \alpha_{\pi}$. Hence estimate $\sin \theta_{12}$.

Question 6 (20 marks)

In deep inelastic scattering at HERA, the four-momenta of the incoming and scattered electron are (E, \mathbf{p}) and $\left(E^{\prime}, \mathbf{p}^{\prime}\right)$, respectively. Show that the square of the four-momentum transfer is given by

$$
Q^{2}=4 E E^{\prime} \sin ^{2} \frac{\theta}{2}
$$

where θ is the angle of the scattered electron. And show that the mass of the proton is related to the energies by

$$
M\left(E-E^{\prime}\right)-2 E E^{\prime} \sin ^{2} \frac{\theta}{2}=0 .
$$

Give a physical description of the kinematic variables, x, y and Q^{2}, which describe deep inelastic scattering.

The electron-quark cross section is :

$$
\frac{d \sigma}{d \Omega}=\frac{1}{64 \pi^{2} \hat{s}} 2 e^{4} q_{i}^{2}\left[\frac{\hat{s}^{2}+\hat{u}^{2}}{\hat{t}^{2}}\right]
$$

Show that this can be written in a more useful form as:

$$
\frac{d \sigma}{d y}=\frac{2 \pi \alpha^{2}}{Q^{4}} q_{i}^{2} s\left[1+(1-y)^{2}\right]
$$

[6]
The cross section for the QCD Compton and Boson-gluon fusion processes are :

$$
\begin{aligned}
\frac{d \sigma}{d \Omega} & \sim-\frac{\hat{t}}{\hat{s}}-\frac{\hat{s}}{\hat{t}}+\frac{2 \hat{u} Q^{2}}{\hat{s} \hat{t}} \\
\frac{d \sigma}{d \Omega} & \sim \frac{\hat{u}}{\hat{t}}+\frac{\hat{t}}{\hat{u}}-\frac{2 \hat{s} Q^{2}}{\hat{t} \hat{u}}
\end{aligned}
$$

respectively. State where (e.g. with reference to Feynman diagrams or the Mandelstam channel) each term comes from.

Question 7 (20 marks)

A possible decay of the W boson with associated four-momenta is

$$
W(q) \rightarrow \mu(p)+\nu_{\mu}(k) .
$$

The transition amplitude squared is:

$$
\left|T_{\mathrm{fi}}\right|^{2}=\frac{g_{W}^{2}}{3}\left[p \cdot k+\frac{2}{M_{W}^{2}}(q \cdot k)(q \cdot p)\right] .
$$

In the W rest frame, show that :

$$
q \cdot k=\frac{M_{W}^{2}}{2}\left(1-\frac{m_{\mu}^{2}}{M_{W}^{2}}\right) \quad q \cdot p=\frac{M_{W}^{2}}{2}\left(1+\frac{m_{\mu}^{2}}{M_{W}^{2}}\right) \quad p \cdot k=\frac{M_{W}^{2}}{2}\left(1-\frac{m_{\mu}^{2}}{M_{W}^{2}}\right) .
$$

Then using the relationship :

$$
\Gamma=\frac{1}{16 \pi M_{W}}\left|T_{\mathrm{fi}}\right|^{2}
$$

derive the partial width in terms of the masses of the W and μ and show that this can be simplified to

$$
\Gamma=\frac{G_{F}}{\sqrt{2}} \frac{M_{W}^{3}}{6 \pi} .
$$

$\left(m_{\mu}=105.66 \mathrm{MeV}, M_{W}=80.4 \mathrm{GeV}\right)$

Question 8 (20 marks)

In the Weinberg-Salam electroweak theory, the vacuum potential, boson masses, couplings, and mixing angle are related by :

$$
M_{Z}=\frac{M_{W}}{\cos \theta_{W}}, \quad \frac{g^{\prime}}{g_{W}}=\tan \theta_{W}, \quad M_{W}=\frac{v g_{W}}{2}
$$

Hence show that

$$
M_{Z}=\frac{1}{2} v \sqrt{g_{W}^{2}+g^{\prime 2}} .
$$

From the Lagrangian

$$
\frac{1}{8}\left[g_{W}^{2}(v+h)^{2}\left(W_{\mu}^{1}-i W_{\mu}^{2}\right)\left(W_{\mu}^{1}+i W_{\mu}^{2}\right)-(v+h)^{2}\left(g^{\prime} B_{\mu}-g_{W} W_{\mu}^{3}\right)\left(g^{\prime} B^{\mu}-g_{W} W_{3}^{\mu}\right)\right]
$$

derive the $W W H$ and $W W H H$ couplings and the $Z Z H$ and $Z Z H H$ couplings. (Simplify your answer to remove dependencies on both v and g^{\prime}.)

Given Fermi's constant, $G_{F}=1.16637 \times 10^{-5} \mathrm{GeV}^{-2}$, calculate the value of v.
The Higgs Boson was searched for in $e^{+} e^{-}$collisions at LEP. Draw the Feynman diagram of the process for Higgs production. Masses of up to about 114 GeV were ruled out; hence give the approximate maximum centre-of-mass energy of LEP.

