Brunel University
Queen Mary, University of London
Royal Holloway, University of London
University College London

Intercollegiate post-graduate course in High Energy Physics

Paper 1 : The Standard Model

Tuesday, 1 February 2011

Time allowed for Examination : 3 hours

Answer 6 from 8 questions

Books and notes may be consulted

Question 1 (20 marks)

For Bhabha scattering, $e^{+}(q) e^{-}(p) \rightarrow e^{+}\left(q^{\prime}\right) e^{-}\left(p^{\prime}\right)$, with four momenta as given, determine

$$
\begin{aligned}
p \cdot q & \left(=p^{\prime} \cdot q^{\prime}\right) \\
p \cdot p^{\prime} & \left(=q \cdot q^{\prime}\right) \\
p \cdot q^{\prime} & \left(=p^{\prime} \cdot q\right)
\end{aligned}
$$

in terms of the energy, E, of the electron and of the positron and in terms of half the scattering angle, $\theta / 2$, in the centre-of-mass system.

Draw the two lowest order diagrams for Bhabha scattering, stating whether they are s-, t - or u-channel.

The lowest order cross section can be written as

$$
\frac{d \sigma}{d \Omega}=\frac{\alpha^{2}}{4 E^{2}}\left[\frac{T_{1}}{\left(p-p^{\prime}\right)^{4}}+\frac{T_{2}}{(p+q)^{4}}-\frac{2 T_{3}}{\left(p-p^{\prime}\right)^{2}(p+q)^{2}}\right]
$$

where α is the fine structure constant and

$$
\begin{aligned}
& T_{1}=\operatorname{Tr}\left[\frac{\not p^{\prime}+m}{2} \gamma_{\mu} \frac{p p+m}{2} \gamma_{\nu}\right] \operatorname{Tr}\left[\frac{-\not q+m}{2} \gamma^{\mu} \frac{-\not q^{\prime}+m}{2} \gamma^{\nu}\right], \\
& T_{2}=\operatorname{Tr}\left[\frac{-\not q+m}{2} \gamma_{\mu} \frac{\not p+m}{2} \gamma_{\nu}\right] \operatorname{Tr}\left[\frac{\not p^{\prime}+m}{2} \gamma^{\mu} \frac{-\not q^{\prime}+m}{2} \gamma^{\nu}\right], \\
& T_{3}=\operatorname{Tr}\left[\frac{\not p+m}{2} \gamma_{\mu} \frac{\not p+m}{2} \gamma_{\nu} \frac{-q q+m}{2} \gamma^{\mu} \frac{-\not q^{\prime}+m}{2} \gamma^{\nu}\right] .
\end{aligned}
$$

Hence show that

$$
\frac{d \sigma}{d \Omega}=\frac{\alpha^{2}}{8 E^{2}}\left[\frac{1+\cos ^{4} \theta / 2}{\sin ^{4} \theta / 2}-\frac{2 \cos ^{4} \theta / 2}{\sin ^{2} \theta / 2}+\frac{1+\cos ^{2} \theta}{2}\right]
$$

in the high-energy limit. Trace theorems and identities for γ matrices need not be derived, but should be quoted.

Question 2 (20 marks)

Draw the two lowest order diagrams for Møller scattering, $e^{-} e^{-} \rightarrow e^{-} e^{-}$, stating whether they are s-, t - or u-channel.

The cross section for Møller scattering in the high-energy limit is

$$
\begin{equation*}
\frac{d \sigma}{d \Omega}=\frac{\alpha^{2}}{8 E^{2}}\left[\frac{1+\cos ^{4} \theta / 2}{\sin ^{4} \theta / 2}+\frac{2}{\sin ^{2} \theta / 2 \cos ^{2} \theta / 2}+\frac{1+\sin ^{4} \theta / 2}{\cos ^{4} \theta / 2}\right] \tag{1}
\end{equation*}
$$

Show that this can be simplified to

$$
\frac{d \sigma}{d \Omega}=\frac{\alpha^{2}}{4 E^{2}} \frac{\left(3+\cos ^{2} \theta\right)^{2}}{\sin ^{4} \theta}
$$

where E is the energy of both electrons and θ is the scattering angle in the centre-of-mass frame.

Also starting from the original cross section given (Eq. 1), derive the dependence on the Mandelstam variables, rather than angle θ.

Use this result to write down, with a brief explanation, the cross sections in terms of the Mandelstam variables for $e^{-} \mu^{-} \rightarrow e^{-} \mu^{-}$and $e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}$.

Question 3 (20 marks)

Draw Feynman diagrams of the lowest-order (electroweak) process in electron-proton scattering.

The matrix-element squared for lowest-order electromagnetic electron-proton scattering (under the assumption of the proton being a structureless, point-like Dirac particle) with given fourmomentum, $e^{-}\left(p_{i}\right) p\left(P_{i}\right) \rightarrow e^{-}\left(p_{f}\right) p\left(P_{f}\right)$, is

$$
\left|T_{\mathrm{fi}}\right|^{2}=\left(\frac{e^{2}}{q^{2}}\right)^{2} \frac{1}{4} \operatorname{Tr}\left[\frac{\not p_{f}+m}{2 m} \gamma^{\mu} \frac{\not p_{i}+m}{2 m} \gamma^{\nu}\right] \operatorname{Tr}\left[\frac{\not P_{f}+M}{2 M} \gamma_{\mu} \frac{P_{i}+M}{2 M} \gamma_{\nu}\right] .
$$

Evaluate the traces to show that
$\left|T_{\mathrm{f}}\right|^{2}=\frac{e^{4}}{2 m^{2} M^{2} q^{4}}\left[\left(p_{f} \cdot P_{f}\right)\left(p_{i} \cdot P_{i}\right)+\left(p_{f} \cdot P_{i}\right)\left(p_{i} \cdot P_{f}\right)-M^{2}\left(p_{f} \cdot p_{i}\right)-m^{2}\left(P_{f} \cdot P_{i}\right)+2 m^{2} M^{2}\right]$
where m is the mass of the electron, M is the mass of the proton and $q=p_{f}-p_{i}$.
Assuming four-vectors,

$$
p_{i}=(E, \mathbf{p}), \quad p_{f}=\left(E^{\prime}, \mathbf{p}^{\prime}\right), \quad P_{i}=(M, 0), \quad P_{f}=\left(E_{f}, \mathbf{P}_{\mathbf{f}}\right)
$$

conserve energy and momentum to show that for $m \ll E$,

$$
\begin{equation*}
\frac{E-E^{\prime}}{M}=-\frac{q^{2}}{2 M^{2}} . \tag{5}
\end{equation*}
$$

Hence show that the cross section,

$$
\frac{d \sigma}{d \Omega}=\frac{m^{2}}{4 \pi^{2}} \frac{E^{\prime} / E}{1+(2 E / M) \sin ^{2} \theta / 2}\left|T_{\mathrm{fi}}\right|^{2}
$$

where

$$
\left|T_{\mathrm{f}}\right|^{2}=\frac{16 \pi^{2} \alpha^{2} E E^{\prime}}{m^{2} q^{4}}\left[1+\frac{q^{2}}{4 E E^{\prime}}\left(1+\frac{E^{\prime}-E}{M}\right)+\frac{m^{2}}{2 E E^{\prime}}\left(\frac{E^{\prime}-E}{M}\right)\right]
$$

can be simplified, in the limit $E \gg m$ but $E \ll M$, to

$$
\frac{d \sigma}{d \Omega}=\frac{\alpha^{2}}{4 E^{2} \sin ^{4} \frac{\theta}{2}} \cos ^{2} \frac{\theta}{2}
$$

where θ is the angle between the outgoing and incoming electron.

Question 4 (20 marks)

Contrast the advantages and disadvantages of $e^{+} e^{-}$and $p p$ colliders. Use two headline measurements of major discoveries to justify your answer.

Draw Feynman diagram(s) for $e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}$, stating whether it (they) are $s-, t$-, or u-channel.

At the PETRA collider $(\sqrt{s}=34 \mathrm{GeV})$, the unpolarized cross section, $e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}$, was consistent with the form:

$$
\frac{d \sigma}{d \Omega}=\frac{\alpha^{2}}{4 s}\left[A_{0}\left(1+\cos ^{2} \theta\right)+A_{1} \cos \theta\right]
$$

where θ is the scattering angle in the centre-of-mass frame. Explain the origin of the two terms in the square brackets.

Integrate the differential formula over the solid angle to derive the total cross section in terms of constants and A_{0}. Hence show that the total cross section can be written in approximate form as:

$$
\sigma \sim \frac{20 A_{0}(\mathrm{nb})}{E_{\text {beam }}^{2}\left(\text { in } \mathrm{GeV}^{2}\right)},
$$

where $E_{\text {beam }}$ is the beam energy (of both the e^{+}and e^{-}). $\left(\alpha=\frac{1}{137.036}\right)$

Draw a (Feynman-like) diagram showing Drell-Yan production and write down the total lowestorder partonic cross section.

Question 5 (20 marks)

Sketch quark diagrams for the decays :
(a) $K^{+} \rightarrow \mu^{+}+\nu_{\mu}$
(b) $D^{+} \rightarrow \bar{K}^{0}+e^{+}+\nu_{e}$
(c) $B^{+} \rightarrow \bar{D}^{0}+\pi^{+}$
and identify the quark vertices according to the CKM matrix.
Explain the difference in the measured branching ratios:

$$
\begin{aligned}
\Gamma\left(D^{0} \rightarrow K^{-}+\pi^{+}\right) & =3.80 \% \\
\Gamma\left(D^{0} \rightarrow K^{+}+\pi^{-}\right) & =1.43 \times 10^{-4}
\end{aligned}
$$

and using the CKM matrix,

$$
\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)=\left(\begin{array}{ccc}
0.97383 & 0.2272 & 0.004 \\
0.2271 & 0.97296 & 0.042 \\
0.008 & 0.042 & 0.9991
\end{array}\right)
$$

predict the ratio of the two to within 30%.
Draw an example parton-level Feynman diagram of top production at the Tevatron. Why could $t \bar{t}$ production not be observed at LEP or at HERA ? Explain why the cross section for singletop production at LEP and HERA is small and draw a Feynman diagram for its production at both colliders.

Question 6 (20 marks)

Draw all Feynman diagrams at lowest order in QCD for the hard scatters $q q^{\prime} \rightarrow q q^{\prime}$ and $q q \rightarrow q q$.

By comparing to QED processes, write down the forms of the (partonic) cross sections for $q q^{\prime} \rightarrow q q^{\prime}$ and $q q \rightarrow q q$ in terms of the Mandelstam variables s, t and u, associating each term with the relevant Feynman diagram

The DGLAP equations are:

$$
\begin{aligned}
& \frac{d Q_{i}\left(x, Q^{2}\right)}{d \log Q^{2}}=\frac{\alpha_{s}}{2 \pi} \int_{x}^{1} \frac{d y}{y}\left[Q_{i}\left(y, Q^{2}\right) P_{q q}\left(\frac{x}{y}\right)+G\left(y, Q^{2}\right) P_{q g}\left(\frac{x}{y}\right)\right] \\
& \frac{d G\left(x, Q^{2}\right)}{d \log Q^{2}}=\frac{\alpha_{s}}{2 \pi} \int_{x}^{1} \frac{d y}{y}\left[Q_{i}\left(y, Q^{2}\right) P_{g q}\left(\frac{x}{y}\right)+G\left(y, Q^{2}\right) P_{g g}\left(\frac{x}{y}\right)\right]
\end{aligned}
$$

Explain the functions Q_{i} and G and the four $P_{i j}$ functions.
Discuss the importance of understanding the structure of the proton for future measurements at the LHC.

Question 7 (20 marks)

State what are meant by global and local gauge transformations.
Explain the four terms in the Lagrangian of QED :

$$
\begin{equation*}
\mathcal{L}=\bar{\psi}\left(i \gamma_{\mu} \partial^{\mu}-m\right) \psi+e \bar{\psi} \gamma_{\mu} A^{\mu} \psi-\frac{1}{4} F_{\mu \nu} F^{\mu \nu} \tag{4}
\end{equation*}
$$

Using the Euler-Lagrange equation,

$$
\partial_{\mu}\left(\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi\right)}\right)-\frac{\partial \mathcal{L}}{\partial \phi}=0
$$

i. substitute the Lagrangian,

$$
\mathcal{L}=\frac{1}{2}\left(\partial_{\mu} \phi\right)\left(\partial^{\mu} \phi\right)-\frac{1}{2} m^{2} \phi^{2},
$$

and show that this gives the Klein-Gordon equation.
ii. substitute the Lagrangian,

$$
\mathcal{L}=i \bar{\psi} \gamma_{\mu} \partial^{\mu} \psi-m \bar{\psi} \psi
$$

and show that this gives the Dirac equation.

From the Lagrangian

$$
\frac{1}{8}\left[g_{W}^{2}(v+h)^{2}\left(W_{\mu}^{1}-i W_{\mu}^{2}\right)\left(W_{\mu}^{1}+i W_{\mu}^{2}\right)-(v+h)^{2}\left(g^{\prime} B_{\mu}-g_{W} W_{\mu}^{3}\right)\left(g^{\prime} B^{\mu}-g_{W} W_{3}^{\mu}\right)\right]
$$

derive the $Z Z H$ and $Z Z H H$ couplings. (Simplify your answer to remove dependencies on both v and g^{\prime}.)

Question 8 (20 marks)

The highest energy cosmic rays have $E \sim 10^{20} \mathrm{eV}$. Assuming the cosmic ray collides with a proton in the atmosphere, determine how much higher in centre-of-mass energy such a collision is compared to that at the LHC.

Show that the sum of the three Mandelstam variables in the collision $A B \rightarrow C D$ is given by

$$
s+t+u=m_{A}^{2}+m_{B}^{2}+m_{C}^{2}+m_{D}^{2}
$$

where m_{i} are the rest masses of the particles.
Taking $e^{-} e^{+} \rightarrow e^{-} e^{+}$to be the s-channel process, verify that

$$
\begin{aligned}
s & =4\left(k^{2}+m^{2}\right) \\
t & =-2 k^{2}(1-\cos \theta) \\
u & =-2 k^{2}(1+\cos \theta)
\end{aligned}
$$

where θ is the centre-of-mass scattering angle and $k=\left|\mathbf{k}_{\mathbf{i}}\right|=\left|\mathbf{k}_{\mathbf{f}}\right|$, where $\mathbf{k}_{\mathbf{i}}$ and $\mathbf{k}_{\mathbf{f}}$ are, respectively, the momenta of the incident and scattered electrons in the centre-of-mass frame.

Considering combinations of the Pauli matrices,

$$
\left\{\sigma_{1}, \sigma_{2}\right\}, \quad\left\{\sigma_{1}, \sigma_{3}\right\}, \quad\left\{\sigma_{2}, \sigma_{3}\right\}, \quad\left\{\sigma_{1}, \sigma_{1}\right\}
$$

determine them explicitly to show that

$$
\left\{\sigma_{i}, \sigma_{j}\right\}=2 \delta_{i j} I
$$

where I is the 2×2 identity matrix.
Consider a momentum \mathbf{p} in the direction specified by the polar coordinates θ and ϕ

$$
\hat{\mathbf{p}}=(\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta) .
$$

Show that

$$
\boldsymbol{\sigma} \cdot \hat{\mathbf{p}}=\left(\begin{array}{cc}
\cos \theta & \sin \theta e^{-i \phi} \\
\sin \theta e^{i \phi} & -\cos \theta
\end{array}\right)
$$

