Brunel University
Queen Mary, University of London
Royal Holloway, University of London
University College London

Intercollegiate post-graduate course in High Energy Physics

Paper 1 : The Standard Model

Tuesday, 31 January 2012

Time allowed for Examination : 3 hours

Answer 6 from 8 questions

Books and notes may be consulted

Question 1 (20 marks)

At a collider, two high energy particles, A and B , with energies E_{A} and E_{B} which are much greater than their rest masses, collide head on. Derive the expression for the centre-of-mass energy. Using this expression, what would be the centre-of-mass energy of a proposed future facility ("LHeC") which will collide 7 TeV protons with 70 GeV electrons ?

Now consider particle B (the proton) to be at rest. Derive the formula for the centre-of-mass energy of such a fixed-target experiment. What electron beam energy would be required in the fixed-target experiment in order to achieve the same centre-of-mass energy as in the proposed LHeC facility?

One of the motivations for an $e P$ collider is to search for leptoquarks. Discuss.
The invariant mass of two massless jets, $M^{j j}$, can be written in terms of their transverse energies, $E_{T}^{\text {jet1 }}$ and $E_{T}^{\text {jet2 }}$, pseudorapidities, $\eta^{\text {jet1 }}$ and $\eta^{\text {jet2 }}$, and azimuthal angles, $\phi^{\text {jet1 }}$ and $\phi^{\text {jet2 }}$:

$$
M^{j j}=\sqrt{2 E_{T}^{\mathrm{jet} 1} E_{T}^{\mathrm{jet} 2}\left[\cosh \left(\eta^{\mathrm{jet} 1}-\eta^{\mathrm{jet} 2}\right)-\cos \left(\phi^{\mathrm{jet} 1}-\phi^{\mathrm{jet} 2}\right)\right]} .
$$

For two jets back-to-back in ϕ and with equal $E_{T}^{\text {jet }}$, show that :

$$
M^{j j}=\frac{2 E_{T}^{\mathrm{jet}}}{\sqrt{1-\cos ^{2} \theta^{*}}},
$$

where θ^{*}, the angle between the jet-jet axis and the beam axis in the two-jet centre-of-mass system is given by :

$$
\begin{equation*}
\cos \theta^{*}=\tanh \left(\frac{\eta^{\mathrm{jet} 1}-\eta^{\mathrm{jet} 2}}{2}\right) \tag{4}
\end{equation*}
$$

(Recall: $\cos 2 \theta=2 \cos ^{2} \theta-1, \operatorname{sech}^{2} \theta+\tanh ^{2} \theta=1$.)
The cross-section dependence for a spin-1 propagator is $\propto\left(1-\left|\cos \theta^{*}\right|\right)^{-2}$ and for a spin $-\frac{1}{2}$ propagator is $\propto\left(1-\left|\cos \theta^{*}\right|\right)^{-1}$. Draw two Feynman diagrams representing parton collisions at the LHC, one of which has a spin -1 and the other a spin $-\frac{1}{2}$ propagator.

Question 2 (20 marks)

Given the cross section for the scattering of an electron from a fixed Coulomb potential of point charge $Z e$:

$$
\frac{d \sigma}{d \Omega}=\frac{2(Z \alpha)^{2} m^{2}}{|\mathbf{q}|^{4}} \operatorname{Tr}\left[\gamma_{0} \frac{\not p_{i}+m}{2 m} \gamma_{0} \frac{\not p_{f}+m}{2 m}\right],
$$

where p_{i} and p_{f} are the initial and final momenta and $\mathbf{q}=\mathbf{p}_{f}-\mathbf{p}_{i}$, determine the Mott cross section :

$$
\frac{d \sigma}{d \Omega}=\frac{(Z \alpha)^{2}}{4\left(\gamma \beta^{2}\right)^{2}\left(m c^{2}\right)^{2} \sin ^{4} \theta / 2}\left(1-\beta^{2} \sin ^{2} \frac{\theta}{2}\right)
$$

Trace theorems used should be explicitly stated.
Show that in the non-relativistic limit

$$
\frac{d \sigma}{d \Omega}=\frac{(Z \alpha)^{2}}{16 E^{2} \sin ^{4} \frac{\theta}{2}}
$$

and in the extreme-relativistic limit

$$
\frac{d \sigma}{d \Omega}=\frac{(Z \alpha)^{2} \cos ^{2} \frac{\theta}{2}}{4 E^{2} \sin ^{4} \frac{\theta}{2}}
$$

Question 3 (20 marks)

In the decay of a π^{-}at rest, $\pi^{-} \rightarrow e^{-}+\overline{\nu_{e}}$, show that

$$
\frac{1}{2}\left(1-\frac{v_{e}}{c}\right)=\frac{m_{e}^{2}}{m_{\pi}^{2}+m_{e}^{2}}
$$

where v_{e} is the velocity of the electron.
To lowest order, the partial decays rate for pions are :

$$
\frac{1}{\tau\left(\pi \rightarrow e \overline{\nu_{e}}\right)}=\frac{\alpha_{\pi}^{2}}{4 \pi}\left(1-\frac{v_{e}}{c}\right) p_{e}^{2} E_{e}, \quad \frac{1}{\tau\left(\pi \rightarrow \mu \overline{\nu_{\mu}}\right)}=\frac{\alpha_{\pi}^{2}}{4 \pi}\left(1-\frac{v_{\mu}}{c}\right) p_{\mu}^{2} E_{\mu}
$$

where α_{π} is an effective coupling constant and E_{e}, E_{μ} and p_{e}, p_{μ} are the charged lepton's energy and momentum. Hence show :

$$
\begin{equation*}
\frac{\tau\left(\pi \rightarrow \mu \overline{\nu_{\mu}}\right)}{\tau\left(\pi \rightarrow e \overline{\nu_{e}}\right)}=\frac{m_{e}^{2}\left(m_{\pi}^{2}-m_{e}^{2}\right)^{2}}{m_{\mu}^{2}\left(m_{\pi}^{2}-m_{\mu}^{2}\right)^{2}} \tag{5}
\end{equation*}
$$

Use the analogue of the above equation for the decay of the K^{-}to estimate the ratio

$$
\frac{\tau\left(K \rightarrow \mu \overline{\nu_{\mu}}\right)}{\tau\left(K \rightarrow e \overline{\nu_{e}}\right)}
$$

and compare with the observed value $(2.4 \pm 0.1) \times 10^{-5}$.
Given the lifetimes $\tau\left(K \rightarrow \mu \overline{\nu_{\mu}}\right)=1.948 \times 10^{-8} \mathrm{~S}$ and $\tau\left(\pi \rightarrow \mu \overline{\nu_{\mu}}\right)=2.603 \times 10^{-8} \mathrm{~s}$, estimate $\alpha_{K} / \alpha_{\pi}$.
$\left(m_{K}=493.67 \mathrm{MeV}, m_{\pi}=139.57 \mathrm{MeV}, m_{\mu}=105.66 \mathrm{MeV}, m_{e}=0.511 \mathrm{MeV}.\right)$
Draw quark model diagrams for the decays $\pi^{-} \rightarrow \mu^{-}+\overline{\nu_{\mu}}$ and $K^{-} \rightarrow \mu^{-}+\overline{\nu_{\mu}}$, stating which element of the CKM matrix is involved in each.

Neglecting masses, the ratio of the CKM elements is equal to $\alpha_{K} / \alpha_{\pi}$. Hence estimate $\sin \theta_{12}$.

Question 4 (20 marks)

The covariant derivative,

$$
D^{\mu}=\partial^{\mu}+i e A^{\mu}
$$

in $U(1)$ satisfies the commutation relation

$$
\left[D^{\mu}, D^{\nu}\right] \psi=i e F^{\mu \nu} \psi
$$

Hence determine $F^{\mu \nu}$.
In $S U(2)$, using the definition of the covariant derivative,

$$
D^{\mu}=\partial^{\mu}+i g \boldsymbol{\tau} \cdot \frac{\mathbf{W}^{\mu}}{2}
$$

show that

$$
\begin{equation*}
\left[D^{\mu}, D^{\nu}\right] \psi=\frac{i g}{2} \boldsymbol{\tau} \cdot\left(\partial^{\mu} \mathbf{W}^{\nu}-\partial^{\nu} \mathbf{W}^{\mu}-g \mathbf{W}^{\mu} \times \mathbf{W}^{\nu}\right) \psi \tag{7}
\end{equation*}
$$

In $S U(3)$, the covariant derivative,

$$
D^{\mu}=\partial^{\mu}+\frac{i g_{s}}{2} \boldsymbol{\lambda} \cdot \mathbf{A}^{\mu}
$$

transforms as

$$
D^{\prime \mu} \psi^{\prime}=\left(1+\frac{i g_{s}}{2} \boldsymbol{\lambda} \cdot \boldsymbol{\eta}(x)\right) D^{\mu} \psi
$$

where

$$
\psi^{\prime}=\left(1+\frac{i g_{s}}{2} \boldsymbol{\lambda} \cdot \boldsymbol{\eta}(x)\right) \psi .
$$

Hence show that $\mathbf{A}^{\mu}=\mathbf{A}^{\mu}+\delta \mathbf{A}^{\mu}$ is given by

$$
A_{a}^{\prime \mu}=A_{a}^{\mu}-\partial^{\mu} \eta_{a}(x)-g_{s} f_{a b c} \eta_{b}(x) A_{c}^{\mu} .
$$

Question 5 (20 marks)

The dependency of the electric charge on an arbitrary scale, μ, is (to one-loop order) :

$$
\mu \frac{d e_{\mu}}{d \mu}=\frac{e_{\mu}^{3}}{12 \pi^{2}} .
$$

Given that at some scale, $\mu=M, e_{\mu}=e_{M}$, solve the above to show that

$$
\alpha_{\mu}=\frac{\alpha_{M}}{1-\frac{\alpha_{M}}{3 \pi} \ln \left(\mu^{2} / M^{2}\right)}
$$

where $\alpha=e^{2} / 4 \pi$.
Sketch a plot of α_{s} versus scale, Q, and describe the features and their physical implications. [4]
Give a brief description of a variable you could use to extract a value of α_{s}.
The DGLAP equations are:

$$
\begin{aligned}
& \frac{d Q_{i}\left(x, Q^{2}\right)}{d \log Q^{2}}=\frac{\alpha_{s}}{2 \pi} \int_{x}^{1} \frac{d y}{y}\left[Q_{i}\left(y, Q^{2}\right) P_{q q}\left(\frac{x}{y}\right)+G\left(y, Q^{2}\right) P_{q g}\left(\frac{x}{y}\right)\right] \\
& \frac{d G\left(x, Q^{2}\right)}{d \log Q^{2}}=\frac{\alpha_{s}}{2 \pi} \int_{x}^{1} \frac{d y}{y}\left[Q_{i}\left(y, Q^{2}\right) P_{g q}\left(\frac{x}{y}\right)+G\left(y, Q^{2}\right) P_{g g}\left(\frac{x}{y}\right)\right]
\end{aligned}
$$

Explain the functions Q_{i} and G and the four $P_{i j}$ functions.

Question 6 (20 marks)

Draw a Feynman diagram of a decay of a τ lepton.
Explain why we can write the branching ratio as

$$
\Gamma\left(\tau^{-} \rightarrow e^{-} \bar{\nu}_{e}+\nu_{\tau}\right) \sim \frac{1}{2+N_{c}}
$$

where N_{c} is the number of colours. Is this consistent with the experimental measure of 18% ? [4]
The branching ratio, $\Gamma\left(W^{-} \rightarrow e^{-}+\bar{\nu}_{e}\right)$, can be written in a similar form; what is this ? How does the result of this expression compare with the experimental value of 10.8% ?

Draw quark diagrams for the following and explain the difference in the measured branching ratios:

$$
\begin{aligned}
\Gamma\left(D^{+} \rightarrow K^{+}+\pi^{0}\right) & =1.83 \times 10^{-4} \\
\Gamma\left(D^{+} \rightarrow K^{+}+K^{0}\right) & =2.83 \times 10^{-3}
\end{aligned}
$$

and using the CKM matrix,

$$
\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)=\left(\begin{array}{ccc}
0.97383 & 0.2272 & 0.004 \\
0.2271 & 0.97296 & 0.042 \\
0.008 & 0.042 & 0.9991
\end{array}\right)
$$

predict the ratio of the two to within 20%.
Draw an example parton-level Feynman diagram of top production at the Tevatron. Why could $t \bar{t}$ production not be observed at LEP or at HERA ? Explain why the cross section for singletop production at LEP and HERA is small and draw a Feynman diagram for its production at both colliders.

Question 7 (20 marks)

The unpolarised cross section, $e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}$is given by

$$
\frac{d \sigma}{d \cos \theta}=\frac{\pi \alpha^{2}}{2 s}\left[A\left(1+\cos ^{2} \theta\right)+B \cos \theta\right]
$$

where θ is the scattering angle in the centre-of-mass frame. Given the forward-backward asymmetry is defined as

$$
A_{\mathrm{FB}}=\frac{N_{\mathrm{F}}-N_{\mathrm{B}}}{N_{\mathrm{F}}+N_{\mathrm{B}}}
$$

where N_{F} is the number scattered into the forward hemisphere, $0 \leq \cos \theta \leq 1$, and N_{B} that into the backward hemisphere, $-1 \leq \cos \theta<0$, determine A_{FB} in terms of A and B.

Given the relation of constants in electroweak theory,

$$
\frac{G_{F}}{\sqrt{2}}=\frac{g^{2}}{8 M_{W}^{2}}
$$

predict the masses of the W and Z bosons.
$\left(G_{F}=1.16637 \times 10^{-5} \mathrm{GeV}^{-2}, \alpha=7.297 \times 10^{-3}, \sin ^{2} \theta_{W} \sim 0.23\right.$.)
From the Lagrangian

$$
\frac{1}{8}\left[g_{W}^{2}(v+h)^{2}\left(W_{\mu}^{1}-i W_{\mu}^{2}\right)\left(W_{\mu}^{1}+i W_{\mu}^{2}\right)-(v+h)^{2}\left(g^{\prime} B_{\mu}-g_{W} W_{\mu}^{3}\right)\left(g^{\prime} B^{\mu}-g_{W} W_{3}^{\mu}\right)\right]
$$

derive the $W W H$ and $W W H H$ couplings and the $Z Z H$ and $Z Z H H$ couplings. (Simplify your answer to remove dependencies on both v and g^{\prime}.)

The Higgs Boson was searched for in $e^{+} e^{-}$collisions at LEP. Draw the Feynman diagram of the process for Higgs production. Masses of up to about 114 GeV were ruled out; hence give the approximate maximum centre-of-mass energy of LEP.

Question 8 (20 marks)

Draw Feynman diagrams of the lowest-order (electroweak) process in electron-proton scattering.

The matrix-element squared for lowest-order electromagnetic electron-proton scattering (under the assumption of the proton being a structureless, point-like Dirac particle) with given fourmomentum, $e^{-}\left(p_{i}\right) p\left(P_{i}\right) \rightarrow e^{-}\left(p_{f}\right) p\left(P_{f}\right)$, is

$$
\left|T_{\mathrm{fi}}\right|^{2}=\left(\frac{e^{2}}{q^{2}}\right)^{2} \frac{1}{4} \operatorname{Tr}\left[\frac{\not p_{f}+m}{2 m} \gamma^{\mu} \frac{\not \phi_{i}+m}{2 m} \gamma^{\nu}\right] \operatorname{Tr}\left[\frac{\not P_{f}+M}{2 M} \gamma_{\mu} \frac{\not P_{i}+M}{2 M} \gamma_{\nu}\right] .
$$

Evaluate the traces to show that
$\left|T_{\mathrm{f}}\right|^{2}=\frac{e^{4}}{2 m^{2} M^{2} q^{4}}\left[\left(p_{f} \cdot P_{f}\right)\left(p_{i} \cdot P_{i}\right)+\left(p_{f} \cdot P_{i}\right)\left(p_{i} \cdot P_{f}\right)-M^{2}\left(p_{f} \cdot p_{i}\right)-m^{2}\left(P_{f} \cdot P_{i}\right)+2 m^{2} M^{2}\right]$
where m is the mass of the electron, M is the mass of the proton and $q=p_{f}-p_{i}$.
[8]

Assuming four-vectors,

$$
p_{i}=(E, \mathbf{p}), \quad p_{f}=\left(E^{\prime}, \mathbf{p}^{\prime}\right), \quad P_{i}=(M, \mathbf{0}), \quad P_{f}=\left(E_{f}, \mathbf{P}_{\mathbf{f}}\right)
$$

conserve energy and momentum to show that for $m \ll E$,

$$
\begin{equation*}
\frac{E-E^{\prime}}{M}=-\frac{q^{2}}{2 M^{2}} \tag{5}
\end{equation*}
$$

Hence show that the cross section,

$$
\frac{d \sigma}{d \Omega}=\frac{m^{2}}{4 \pi^{2}} \frac{E^{\prime} / E}{1+(2 E / M) \sin ^{2} \theta / 2}\left|T_{\mathrm{fi}}\right|^{2}
$$

where

$$
\left|T_{\mathrm{f}}\right|^{2}=\frac{16 \pi^{2} \alpha^{2} E E^{\prime}}{m^{2} q^{4}}\left[1+\frac{q^{2}}{4 E E^{\prime}}\left(1+\frac{E^{\prime}-E}{M}\right)+\frac{m^{2}}{2 E E^{\prime}}\left(\frac{E^{\prime}-E}{M}\right)\right]
$$

can be simplified, in the limit $E \gg m$ but $E \ll M$, to

$$
\frac{d \sigma}{d \Omega}=\frac{\alpha^{2}}{4 E^{2} \sin ^{4} \frac{\theta}{2}} \cos ^{2} \frac{\theta}{2}
$$

where θ is the angle between the outgoing and incoming electron.

