Brunel University
Queen Mary, University of London
Royal Holloway, University of London
University College London

Intercollegiate post-graduate course in High Energy Physics

Paper 1 : The Standard Model

Tuesday, 5 February 2013

Time allowed for Examination : 3 hours

Answer 6 from 8 questions

Books and notes may be consulted

Question 1 (20 marks)

(a) The highest energy cosmic rays have $E \sim 10^{20} \mathrm{eV}$. Assuming the cosmic ray collides with a proton in the atmosphere, determine the ratio of the centre-of-mass energy in such a collision to the centre-of-mass energy for proton-proton collisions at the LHC.
(b) Particle C of mass m_{C} decays into two particles, A and B, with masses m_{A} and m_{B}. Determine the energies of the decay products in the rest frame of the parent particle in terms of the masses of A, B and C.
(c) Also for $C \rightarrow A+B$, show that in the rest frame of the decaying particle, C, the outgoing momentum can be written in terms of the masses of A, B and C as

$$
\begin{equation*}
|\mathbf{p}|=\left[m_{A}^{4}+m_{B}^{4}+m_{C}^{4}-2 m_{A}^{2} m_{B}^{2}-2 m_{B}^{2} m_{C}^{2}-2 m_{A}^{2} m_{C}^{2}\right]^{1 / 2} / 2 m_{C} \tag{5}
\end{equation*}
$$

where \mathbf{p} is the outgoing momentum of either A or B.
(d) Show that the flux factor for the collinear collision of A and B is given by

$$
E_{A} E_{B}|\mathbf{v}|=\left[\left(p_{A} \cdot p_{B}\right)^{2}-m_{A}^{2} m_{B}^{2}\right]^{1 / 2}
$$

where \mathbf{v} is the velocity of incident A (energy, E_{A}, four-momentum, p_{A}, and mass, m_{A}) in the rest frame of target B (energy, E_{B}, four-momentum, p_{B}, and mass, m_{B}).

Question 2 (20 marks)

(a) The α_{i} and β matrices of the Dirac equation, have the following identities:

$$
\begin{aligned}
\alpha_{i} \alpha_{j}+\alpha_{j} \alpha_{i} & =2 \delta_{i j} \\
\alpha_{i} \beta+\beta \alpha_{i} & =0 \\
\alpha_{i}^{2}=\beta^{2} & =I .
\end{aligned}
$$

From these, derive the anti-commutation relationship for γ^{μ} matrices,

$$
\gamma^{\mu} \gamma^{\nu}+\gamma^{\nu} \gamma^{\mu}=2 g^{\mu \nu} .
$$

(b) Prove the identity,

$$
\not \phi \not \phi=a^{2} .
$$

(c) Show that

$$
\operatorname{Tr}[\beta]=0 .
$$

(d) From its definition, $\gamma^{5}=i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}$, show that

$$
\operatorname{Tr}\left[\gamma^{5}\right]=0
$$

Question 3 (20 marks)

(a) Show that $\gamma^{0} \gamma^{\mu \dagger} \gamma^{0}=\gamma^{\mu}$.
(b) For Coulomb scattering, $e^{-}(k) \rightarrow e^{-}\left(k^{\prime}\right)$, the lepton tensor can be written as

$$
L^{\mu \nu}=\frac{1}{2} \operatorname{Tr}\left[\left(\not k^{\prime}+m\right) \gamma^{\mu}(\nless+m) \gamma^{\nu}\right]
$$

Show that this can be evaluated as

$$
L^{\mu \nu}=2\left[k^{\prime \mu} k^{\nu}+k^{\prime \nu} k^{\mu}-\left(k^{\prime} \cdot k\right) g^{\mu \nu}\right]+2 m^{2} g^{\mu \nu}
$$

You do not have to prove but should quote any trace theorems used.
(c) Evaluate the lepton tenser, L^{00}, giving your answer in terms of the incident energy, E, velocity, v, and the scattering angle, θ.
(a) Contrast the advantages and disadvantages of $e^{+} e^{-}$and $p p$ colliders and give an example result from each to illustrate the differences.
(b) Describe the features of Fig. 1, the deep inelastic scattering cross section, and how this relates to the structure of the proton.

H1 and ZEUS

Figure 1: Cross section for neutral current deep inelastic scattering.
(c) Describe features of Fig. 2, showing the total cross section, $e^{+} e^{-} \rightarrow$ hadrons, and ratio, $e^{+} e^{-} \rightarrow$ hadrons $/ e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}$.

Figure 2: Measurement of the total cross section, $e^{+} e^{-} \rightarrow$ hadrons, and ratio, $e^{+} e^{-} \rightarrow$ hadrons $/ e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}$.

Question 5 (20 marks)

(a) State what are meant by global and local gauge transformations.
(b) Explain the four terms in the Lagrangian of QED :

$$
\mathcal{L}=i \bar{\psi} \gamma_{\mu} \partial^{\mu} \psi-m \bar{\psi} \psi+e \bar{\psi} \gamma_{\mu} A^{\mu} \psi-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}
$$

(c) Using the Euler-Lagrange equation,

$$
\partial_{\mu}\left(\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi\right)}\right)-\frac{\partial \mathcal{L}}{\partial \phi}=0
$$

i. substitute the Lagrangian,

$$
\mathcal{L}=\frac{1}{2}\left(\partial_{\mu} \phi\right)\left(\partial^{\mu} \phi\right)-\frac{1}{2} m^{2} \phi^{2},
$$

and show that this gives the Klein-Gordon equation.
ii. substitute the Lagrangian,

$$
\mathcal{L}=i \bar{\psi} \gamma_{\mu} \partial^{\mu} \psi-m \bar{\psi} \psi
$$

and show that this gives the Dirac equation.
(d) From the Lagrangian

$$
\frac{1}{8}\left[g_{W}^{2}(v+h)^{2}\left(W_{\mu}^{1}-i W_{\mu}^{2}\right)\left(W_{\mu}^{1}+i W_{\mu}^{2}\right)-(v+h)^{2}\left(g^{\prime} B_{\mu}-g_{W} W_{\mu}^{3}\right)\left(g^{\prime} B^{\mu}-g_{W} W_{3}^{\mu}\right)\right]
$$

derive the $Z Z H$ and $Z Z H H$ couplings. (Simplify your answer to give results in terms of g_{W} and θ_{W} and remove dependencies on both v and g^{\prime}.)

Question 6 (20 marks)

(a) The amplitude for the decay $\pi^{-}(q) \rightarrow \mu^{-}(p)+\overline{\nu_{\mu}}(k)$ is given by:

$$
\left|T_{\mathrm{f}}\right|^{2}=\frac{G_{F}^{2}}{2} f_{\pi}^{2} \cos ^{2} \theta_{c} m_{\mu}^{2} \operatorname{Tr}\left[\left(\not p+m_{\mu}\right)\left(1-\gamma^{5}\right) \not k\left(1+\gamma^{5}\right)\right]
$$

Use Trace theorems to show this simplifies to

$$
\left|T_{\mathrm{fi}}\right|^{2}=4 G_{F}^{2} f_{\pi}^{2} \cos ^{2} \theta_{c} m_{\mu}^{2}(p \cdot k)
$$

(b) The total decay width is given by

$$
\Gamma=\frac{1}{8 \pi m_{\pi}^{2}}\left|T_{\mathrm{f}}\right|^{2}|\mathbf{p}|
$$

where m_{π} is the pion mass and \mathbf{p} the momentum of the muon in the centre-of-mass frame. Hence show that

$$
\Gamma=\frac{1}{8 \pi m_{\pi}^{3}} G_{F}^{2} f_{\pi}^{2} \cos ^{2} \theta_{C} m_{\mu}^{2}\left(m_{\pi}^{2}-m_{\mu}^{2}\right)^{2}
$$

(c) From this, derive the ratio of decay rates:

$$
R=\frac{\Gamma\left(K^{-} \rightarrow e^{-}+\overline{\nu_{e}}\right)}{\Gamma\left(K^{-} \rightarrow \mu^{-}+\overline{\nu_{\mu}}\right)}
$$

in terms of the particle masses. Use this relation to give the value to 3 significant figures showing that the rate is close to that measured from experiment, $\sim 2.44 \times 10^{-5}$.
(d) Explain the above difference in decay rates to $e^{-} \bar{\nu}_{e}$ or $\mu^{-} \bar{\nu}_{\mu}$.

Question 7 (20 marks)

(a) At lowest order, the transition amplitude for the Higgs decay, $H \rightarrow f\left(p_{1}\right) \bar{f}\left(p_{2}\right)$, to two fermions of mass, m_{f}, is

$$
T_{\mathrm{fi}}=-i \frac{g_{W} m_{f}}{2 M_{W}} \bar{u}\left(p_{1}\right) v\left(p_{2}\right)
$$

where M_{W} is the W mass. Show that

$$
\left|T_{\mathrm{fi}}\right|^{2}=\frac{g_{W}^{2} m_{F}^{2}}{4 M_{W}^{2}}\left(2 M_{H}^{2}-8 m_{f}^{2}\right)
$$

(b) The total decay width is given by

$$
\Gamma=\frac{1}{8 \pi M_{H}^{2}}\left|T_{\mathrm{f}}\right|^{2}|\mathbf{p}|
$$

where M_{H} is the Higgs mass and \mathbf{p} the momentum of the fermion in the centre-of-mass frame. Hence show that

$$
\begin{equation*}
\Gamma(H \rightarrow f \bar{f})=\frac{G_{F} m_{f}^{2} M_{H}}{4 \sqrt{2} \pi}\left(1-\frac{4 m_{f}^{2}}{M_{H}^{2}}\right)^{3 / 2} \tag{7}
\end{equation*}
$$

(c) In fact the above expression is valid for decays to leptons; how would it be modified for decays to quarks ?
(d) Determine the widths for decays to muons and to bottom quarks. Which is the dominant rate of the two modes for the Higgs-like Boson discovered at the LHC ?

Question 8 (20 marks)

(a) Draw the leading order Feynman diagram for the scatter of a neutrino of four-momentum, k, off an anti-quark of four-momentum, p.
(b) The cross section for $\nu \bar{q}$ scattering is given by

$$
\frac{d \sigma}{d \Omega}(\nu \bar{q})=\frac{G_{F}^{2}}{4 \pi^{2}} \frac{u^{2}}{s} .
$$

First convert this into an expression for $\frac{d \sigma}{d t}(\nu \bar{q})$ and then find an expression relating $y=\frac{p \cdot q}{p \cdot k}(q$ is the exchanged four-momentum $)$ and u and s to express $\frac{d \sigma}{d t}(\nu \bar{q})$ in terms of y.
(c) The neutrino DIS cross section can be written in terms of the kinematic variables, x and y, and structure functions, $F_{2}^{(\nu)}$ and $F_{3}^{(\nu)}$, as

$$
\frac{d^{2} \sigma^{(\nu)}}{d x d y}=\frac{G_{F}^{2}}{2 \pi} s F_{2}^{(\nu)}\left(\frac{1+(1-y)^{2}}{2}+\frac{x F_{3}^{(\nu)}}{F_{2}^{(\nu)}} \frac{1-(1-y)^{2}}{2}\right) .
$$

Use the parton model prediction

$$
\frac{d^{2} \sigma^{(\nu)}}{d x d y}=\frac{G_{F}^{2}}{\pi} s x\left[q(x)+\bar{q}(x)(1-y)^{2}\right]
$$

in order to derive the dependence of $F_{2}^{(\nu)}$ and $\frac{x F_{3}^{(\nu)}}{F_{2}^{(\nu)}}$ on the quark, $q(x)$, and anti-quark, $\bar{q}(x)$, densities.

