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The Standard Model and beyond part 2

1. Elastic electron-proton scattering.

(a) Draw the Feynman diagram for the lowest order (electromagnetic) process con-
tributing to electron-proton scattering. [3]

The matrix element squared for the lowest order electromagnetic electron-proton scat-
tering (under the assumption of the proton being a structureless, point-like Dirac par-
ticle) with given four-momenta,

e− (pi) + p (Pi)→ e− (pf ) + p (Pf ) ,

can be written

|M|2 =

(
e2

q2

)2
1

4
Tr

[
pf/ + m

2m
γµ pi/ + m

2m
γν

]
Tr

[
Pf/ + M

2M
γµ

Pi/ + M

2M
γν

]
,

where q = pf − pi = Pi − Pf , with m denoting the electron's mass, and M that of the
proton.

(b) Evaluate the Dirac traces here to give

|M|2 =
e4

2m2M2q4

[
(pf .Pf ) (pi.Pi) + (pf .Pi) (pi.Pf )−M2 (pf .pi)−m2 (Pf .Pi) + 2m2M2

]
.

[8]

(c) Assuming four-vectors

pi = (E, p) , pf = (E ′, p′) , Pi = (M,0) , Pf = (Ef , P f ) ,

show that, in the limit m� E, energy-momentum conservation implies

E − E ′

M
= − q2

2M2
.

[5]

(d) Hence show that the cross section,

dσ

dΩ
=

m2

4π2

E ′/E

1 + (2E/M) sin2 θ/2
|M|2 ,
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where

|M|2 =
16π2α2EE ′

m2q4

[
1 +

q2

4EE ′

(
1 +

E ′ − E

M

)
+

m2

2EE ′

(
E ′ − E

M

)]
can be simpli�ed, in the limit E � m but E �M , to

dσ

dΩ
=

α2

4E2 sin4 θ
2

cos2 θ

2
,

where θ is the angle between the outgoing and incoming electron. [4]

CONTINUED
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2. Collinear factorisation of matrix elements.

Throughout this question one should take the on-shell quark and gluon masses to
be zero: p2 = g2 = 0.

Consider an n + 1 particle process, with amplitude M(n+1), in which a quark and
a gluon are produced; the momenta of the quark and the gluon are denoted p and g
respectively, likewise their colour indices are i and a. In the limit that the quark and
gluon momenta are collinear (p.g = EpEg (1− cos θpg) → 0) the amplitude is domi-
nated by diagrams involving propagators of the form 1/ (p + g)2, i.e. it is dominated
by graphs in which the gluon is radiated by the quark leg coming out of the n particle
process. This is depicted in �gure 1, where the right-hand side represents the sum of
all graphs involving a quark of momentum P = p + g and colour j branching to the
collinear quark-gluon pair.

→ Mj
(n)

 

‚ p, i

g, a

n-2
n-1

1
2

M(n+1) p, i
g, a

n-2
n-1

1
2

lim
p.g → 0

P, j

Figure 1: Collinear limit (p + g)2 → 0 for an arbitrary n + 1 particle process involving the
production of a quark and gluon.

Neglecting terms that are �nite as p.g → 0, using standard Feynman rules, in the
collinear limit, the amplitude may then be written

M(n+1) = ε∗ (g)µ u (p)
(
−igsT

a
ijγµ

) i (p/ + g/)

(p + g)2M
(n)′
j ,

where M(n)′
j denotes all contributions to the n + 1 particle amplitude, except the

q (p + g, j) → q (p, i) + g (g, a) branching, gs is the strong coupling constant and T a
ij

is a Gell-Mann matrix.

(a) Derive the complex conjugate amplitude:

M(n+1)† = gs

2p.g
T a

j′iM
(n)′†
j′ γ0 (p/ + g/) γνu (p) ε (g)ν .

[5]
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(b) Summing over gluon polarizations and colour indices (a and i) gives∑
pol,colM(n+1)M(n+1)† = g2

sCF

(2p.g)2

(
−ηµν + gµnν+nµgν

n.g

)
δjj′

× u (p)γµ (p/ + g/)M(n)′
j M(n)′†

j′ γ0 (p/ + g/) γνu (p) ,

where ηµν here denotes the usual metric tensor, and n is an unphysical gauge
vector arising in the sum over gluon polarizations: n is a light-like four-vector,
n2 = 0, which is arbitrary except for the constraints n.p 6= 0 and n.g 6= 0. Perform
a further sum over the external quark spins in this expression to give the full spin-
polarization- and colour-summed squared amplitude as∑

M(n+1)M(n+1)† = g2
sCF

(2p.g)2

(
−ηµν + gµnν+nµgν

n.g

)
δjj′

× Tr
[
M(n)′†

j′ γ0 (p/ + g/) γνp/γµ (p/ + g/)M(n)′
j

]
.

[5]

(c) After straightforward Dirac algebra this matrix element simpli�es further to yield∑
M(n+1)M(n+1)† =

g2
sCF δjj′

(p.g)(n.g)
Tr

[
M(n)′†

j′ γ0 (n. (p + g) (p/ + g/) + n.pp/ − p.gn/)M(n)′
j

]
.

Keeping only the dominant O (1/p.g) terms, one can replace in the trace and the
1/n.g part of the denominator

p = zP, g = (1− z) P ,

where z is the momentum fraction of the daughter quark with respect to the
parent with momentum P (i.e. z is just a scalar number). Using these momentum
relations write

∑
M(n+1)M(n+1)† in the form∑

M(n+1)M(n+1)† = g2
s

p.g
P̂qq (z) Tr

[
M(n)′†

j′ γ0P/ δjj′M(n)′
j

]
,

recording explicitly the form you obtain for the function P̂qq (z). [5]

(d) Using the completeness relation for a fermion with (light-like) momentum P ,∑
uj′ (P ) uj (P ) = P/ δjj′ , derive the factorized form of the spin- and colour-

summed squared matrix element for the n + 1 particle process, in terms of the n
particle one: ∑

M(n+1)M(n+1)† =
2g2

s

P 2
P̂qq (z)

∑
M(n)†M(n)
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whereM(n) is the amplitude for the n−particle process, related toM(n)′ by

M(n)
j = uj (P )M(n)′

j , and (hence) M(n)†
j′ =M(n)′†

j′ γ0uj′ (P ) .

Comment on whether this result is interesting. [5]

CONTINUED
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3. Spontaneous breaking of global symmetry in a complex scalar �eld theory.

The Lagrangian density for a complex scalar (φ) �eld theory is given by

L = (∂µφ) (∂µφ∗)−m2φ∗φ− λ (φ∗φ)2 .

(a) Show that the ground/vacuum state �eld con�guration φ0 satis�es i) |φ0| = 0 for

m2 > 0 and ii) |φ0| =
√

−m2

2λ
for m2 < 0. [6]

(b) Comment brie�y on the di�erence in the vacuum state obtained for m2 < 0 with
respect to that found for m2 > 0. [2]

(c) Assuming m2 < 0 and taking as the vacuum state for φ

φ0 = |φ0| , |φ0| =
√
−m2

2λ
,

determine the Lagrangian density in terms of two real scalar �elds, φ1 and φ2,
reparameterizing φ as

φ = |φ0|+
1√
2

(φ1 + iφ2) .

[8]

(d) Comment on the nature of the various terms in the Lagrangian that results in terms
of φ1 and φ2, in particular, comment on the masses of φ1 and φ2 and whether or
not these are what you might have expected them to be, based on what you know
of spontaneous symmetry breaking. [4]

CONTINUED
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4. Abelian gauge invariance for a complex scalar �eld theory.

The Lagrangian density for a complex scalar (φ) �eld theory is given by

L = (∂µφ) (∂µφ∗)− V (φ, φ∗)

V (φ, φ∗) = −m2φ∗φ− λ (φ∗φ)2 .

(a) Determine how the potential V (φ, φ∗) changes under a local U (1) symmetry trans-
formations φ→ Uφ, U = eiqΛ, Λ = Λ (x). [3]

(b) Determine how the derivative term ∂µφ changes under the same U (1) transforma-
tion. [4]

(c) De�ning the covariant derivative as

Dµ = ∂µ + iqAµ ,

with Aµ transforming as

Aµ → A′µ = UAµU † +
i

q
(∂µU) U †

= Aµ − ∂µΛ ,

determine the result of the same U (1) transformation applied to Dµφ. [6]

(d) Hence show that

Lgauged = (Dµφ)
(
D†µφ∗)− V (φ, φ∗)− 1

4
FµνF

µν ,

where
Fµν = ∂µAν − ∂νAν .

is U (1) gauge invariant. [7]

CONTINUED
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5. Euler-Lagrange �eld equations and symmetry transformations.

(a) Consider a Lagrangian density L
(
φ(i), ∂µφ

(i)
)
and the corresponding action,

S =

�
d4xL

(
φ(i), ∂µφ

(i)
)

,

where (i) labels various �elds; i = 1, ..., N . Consider small variations of the �elds

φ(i) (x, t)→ φ(i) (x, t) + δφ(i) (x, t) ,

the variations δφ(i) all being zero at space-time in�nity (the boundary of the ac-
tion integral). Applying the variational principle, in particular, by imposing the
action be extremised with respect to the �eld variations (δS = 0) derive the Euler-
Lagrange di�erential equations obeyed by the �elds φ(i). [10]

(b) Suppose that L, the Lagrangian density itself, is invariant under some symmetry
transformation group. Under an in�nitesimal transformation associated with the
`ath' generator of this symmetry group we denote the change in the �elds and
their derivatives naturally as

φ(i) → φ(i) + δaφ
(i), ∂νφ

(i) → ∂νφ
(i) + ∂νδaφ

(i) ,

where the subscript a on δa is simply there to clarify that the in�nitesimal change
δ is to be associated with a `rotation' by the `ath' generator of the group only.
Assuming that the �elds φ(i) and their derivatives ∂νφ

(i) satisfy the Euler-Lagrange
�eld equations, compute the change in the Lagrangian density δL and show that
invariance of the Lagrangian implies the conservation of four-vector currents :

∂νJ
ν
a = 0 where Jν

a =
∑

i

∂L
∂ (∂νφ(i))

δaφ
(i) .

[10]

CONTINUED
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6. Computation of the width for Higgs boson decay to fermion-antifermion pairs.

Since the Higgs boson is a scalar particle, rather than associating a polarization vector
or spinor to its presence as an external particle in amplitudes (as would be the case if
it were a vector boson or a fermion), instead one simply associates a trivial factor `1'
to each external Higgs boson in the amplitude.

The vertex Feynman rule for a Higgs boson coupling to a fermion is depicted in Fig. 2.

1 PREPARATIONS

1.3 Lorentz-invariant phase space for two particles

With equation (5) one can finally perform the integration in the definiton of the decay width in equa-
tion (1). The result is the “Lorentz Invariant Phase Space” (LIPS) for two particles:

LIPS =

∫

d3p
(2π)3

d3k
(2π)3

1
2Ep

1
2Ek

(2π)4δ(4) (ph − (p+ k))

=

∫

d3p
(2π)3

d3k
(2π)3

(2π)4

4E2

E
2 |p|
δ
(

|p|−
√
m2

h/4−m2

)

δ(3) (p+ k)

=
1

32π2

∫

d3p
1
E |p|

δ
(

|p|−
√
m2

h/4−m2

)

=
1

32π2

4π∫

0

dΩ

∞∫

0

d |p|
|p|2

E |p|
δ
(

|p|−
√
m2

h/4−m2

)

=
1
8π

∞∫

0

d |p|
|p|

E
δ
(

|p|−
√
m2

h/4−m2

)

=
1
8π

√
m2

h/4−m2

√

m2 + m2

h/4−m2

=
1
8π

(

1−
4m2

m2
h

)1/2

(6)

With this result the definition of the of the decay width simplifies to:

Γ =
1

2mh
|M|2 LIPS (7)

1.4 Feynman rules for Higgs decays

All calculations will be done in Feynman t’Hooft gauge, i.e. ξ = 1 for the following formulas. This gauge
will be of use when calculating the Higgs to two-photon decay.

1.4.1 Propagators

1. Fermion propagator.

p
=
i
(

/p+m
)

p2 −m2 + iϵ
(8)

2. Goldstone propagator.

p
=

i
p2 − ξm2 + iϵ

(9)

3. Ghost propagator.

p
=

i
p2 − ξm2 + iϵ

(10)

4. W boson propagator.

p
=

−igµnu

p2 −m2 + iϵ
(11)

1.4.2 3-Vertices

1. Higgs-fermion-fermion-vertex [PS95b]. For quarks one should multiply with an additional δAB

(A,B color indices) to ensure color-charge conservation:

h0

f

f

= −i
mf
v

= −
ie

2 sin θw

mf
mW

(12)

2
Figure 2: The vertex Feynman rule for a Higgs boson coupling to a fermion; e is the electric
charge and θw the Weinberg angle, while mf and mW are, respectively, the mass of the
fermion and the W boson.

(a) Denoting the fermion momentum by p and the anti-fermion momentum by k, write
down the amplitude for a Higgs boson decaying into a fermion anti-fermion pair.
[5]

(b) Compute the amplitude squared for a Higgs boson decaying into a fermion pair,
summed over �nal-state fermion spins and colours, averaged over incoming polar-
izations, eliminating all momenta in terms of mh (the Higgs boson mass) and mf .
Do not neglect the fermion mass. [8]

(c) Using the expression for the two-body Lorentz invariant phase space

dLIPS =
1

4π2

|~p|
4mh

dΩ ,

where ~p is the three-momentum of either decay product in the Higgs boson rest
frame, and dΩ is the solid angle, compute the width for a Higgs boson decaying
into a fermion anti-fermion pair, again, eliminating all momenta in terms of mh

and mf . Do not neglect the fermion mass. [7]

END OF PAPER
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