Brunel University
Queen Mary, University of London
Royal Holloway, University of London
University College London

Intercollegiate post-graduate course in High Energy Physics

Paper 1: The Standard Model

Monday, 10 February 2014
Time allowed for Examination: 3 hours

Answer ALL questions
Books and notes may be consulted

The Standard Model and beyond part 2

1. Elastic electron-proton scattering.
(a) Draw the Feynman diagram for the lowest order (electromagnetic) process contributing to electron-proton scattering.

The matrix element squared for the lowest order electromagnetic electron-proton scattering (under the assumption of the proton being a structureless, point-like Dirac particle) with given four-momenta,

$$
e^{-}\left(p_{i}\right)+p\left(P_{i}\right) \rightarrow e^{-}\left(p_{f}\right)+p\left(P_{f}\right),
$$

can be written

$$
|\mathcal{M}|^{2}=\left(\frac{e^{2}}{q^{2}}\right)^{2} \frac{1}{4} \operatorname{Tr}\left[\frac{p_{f}^{\prime}+m}{2 m} \gamma^{\mu} \frac{p_{i}+m}{2 m} \gamma^{\nu}\right] \operatorname{Tr}\left[\frac{P_{f}+M}{2 M} \gamma_{\mu} \frac{P_{i}+M}{2 M} \gamma_{\nu}\right],
$$

where $q=p_{f}-p_{i}=P_{i}-P_{f}$, with m denoting the electron's mass, and M that of the proton.
(b) Evaluate the Dirac traces here to give

$$
|\mathcal{M}|^{2}=\frac{e^{4}}{2 m^{2} M^{2} q^{4}}\left[\left(p_{f} . P_{f}\right)\left(p_{i} \cdot P_{i}\right)+\left(p_{f} . P_{i}\right)\left(p_{i} \cdot P_{f}\right)-M^{2}\left(p_{f} \cdot p_{i}\right)-m^{2}\left(P_{f} \cdot P_{i}\right)+2 m^{2} M^{2}\right]
$$

[8]
(c) Assuming four-vectors

$$
p_{i}=(E, \boldsymbol{p}), \quad p_{f}=\left(E^{\prime}, \boldsymbol{p}^{\prime}\right), \quad P_{i}=(M, \mathbf{0}), \quad P_{f}=\left(E_{f}, \boldsymbol{P}_{f}\right)
$$

show that, in the limit $m \ll E$, energy-momentum conservation implies

$$
\frac{E-E^{\prime}}{M}=-\frac{q^{2}}{2 M^{2}}
$$

[5]
(d) Hence show that the cross section,

$$
\frac{d \sigma}{d \Omega}=\frac{m^{2}}{4 \pi^{2}} \frac{E^{\prime} / E}{1+(2 E / M) \sin ^{2} \theta / 2}|\mathcal{M}|^{2}
$$

where

$$
|\mathcal{M}|^{2}=\frac{16 \pi^{2} \alpha^{2} E E^{\prime}}{m^{2} q^{4}}\left[1+\frac{q^{2}}{4 E E^{\prime}}\left(1+\frac{E^{\prime}-E}{M}\right)+\frac{m^{2}}{2 E E^{\prime}}\left(\frac{E^{\prime}-E}{M}\right)\right]
$$

can be simplified, in the limit $E \gg m$ but $E \ll M$, to

$$
\frac{d \sigma}{d \Omega}=\frac{\alpha^{2}}{4 E^{2} \sin ^{4} \frac{\theta}{2}} \cos ^{2} \frac{\theta}{2}
$$

where θ is the angle between the outgoing and incoming electron.

CONTINUED

2. Collinear factorisation of matrix elements.

Throughout this question one should take the on-shell quark and gluon masses to be zero: $p^{2}=g^{2}=0$.

Consider an $n+1$ particle process, with amplitude $\mathcal{M}^{(n+1)}$, in which a quark and a gluon are produced; the momenta of the quark and the gluon are denoted p and g respectively, likewise their colour indices are i and a. In the limit that the quark and gluon momenta are collinear $\left(p . g=E_{p} E_{g}\left(1-\cos \theta_{p g}\right) \rightarrow 0\right)$ the amplitude is dominated by diagrams involving propagators of the form $1 /(p+g)^{2}$, i.e. it is dominated by graphs in which the gluon is radiated by the quark leg coming out of the n particle process. This is depicted in figure 1, where the right-hand side represents the sum of all graphs involving a quark of momentum $P=p+g$ and colour j branching to the collinear quark-gluon pair.

Figure 1: Collinear limit $(p+g)^{2} \rightarrow 0$ for an arbitrary $n+1$ particle process involving the production of a quark and gluon.

Neglecting terms that are finite as p.g 0, using standard Feynman rules, in the collinear limit, the amplitude may then be written

$$
\mathcal{M}^{(n+1)}=\epsilon^{*}(g)^{\mu} \overline{u(p)}\left(-i g_{s} T_{i j}^{a} \gamma_{\mu}\right) \frac{i(p p+g)}{(p+g)^{2}} \mathcal{M}_{j}^{(n) \prime}
$$

where $\mathcal{M}_{j}^{(n) \prime}$ denotes all contributions to the $n+1$ particle amplitude, except the $q(p+g, j) \rightarrow q(p, i)+g(g, a)$ branching, g_{s} is the strong coupling constant and $T_{i j}^{a}$ is a Gell-Mann matrix.
(a) Derive the complex conjugate amplitude:

$$
\mathcal{M}^{(n+1) \dagger}=\frac{g_{s}}{2 p \cdot g} T_{j^{\prime} i}^{a} \mathcal{M}_{j^{\prime}}^{(n) \dagger \dagger} \gamma_{0}(p+\not g) \gamma_{\nu} u(p) \epsilon(g)^{\nu}
$$

(b) Summing over gluon polarizations and colour indices (a and i) gives

$$
\begin{aligned}
\sum_{\mathrm{pol}, \mathrm{col}} \mathcal{M}^{(n+1)} \mathcal{M}^{(n+1) \dagger} & =\frac{g_{s}^{2} C_{F}}{(2 p \cdot g)^{2}}\left(-\eta^{\mu \nu}+\frac{g^{\mu} n^{\nu}+n^{\mu} g^{\nu}}{n \cdot g}\right) \delta_{j j^{\prime}} \\
& \times \overline{u(p)} \gamma_{\mu}(p x+g) \mathcal{M}_{j}^{(n) \prime} \mathcal{M}_{j^{\prime}}^{(n) \dagger} \gamma_{0}(p p+\not g) \gamma_{\nu} u(p),
\end{aligned}
$$

where $\eta_{\mu \nu}$ here denotes the usual metric tensor, and n is an unphysical gauge vector arising in the sum over gluon polarizations: n is a light-like four-vector, $n^{2}=0$, which is arbitrary except for the constraints $n . p \neq 0$ and $n . g \neq 0$. Perform a further sum over the external quark spins in this expression to give the full spin-polarization- and colour-summed squared amplitude as

$$
\begin{aligned}
\sum \mathcal{M}^{(n+1)} \mathcal{M}^{(n+1) \dagger} & =\frac{g_{s}^{2} C_{F}}{(2 p \cdot g)^{2}}\left(-\eta^{\mu \nu}+\frac{g^{\mu} n^{\nu}+n^{\mu} g^{\nu}}{n \cdot g}\right) \delta_{j j^{\prime}} \\
& \times \operatorname{Tr}\left[\mathcal{M}_{j^{\prime}}^{(n) / \dagger} \gamma_{0}(\not p+\not g) \gamma_{\nu} \not p \gamma_{\mu}(\not p+g g) \mathcal{M}_{j}^{(n) \prime}\right]
\end{aligned}
$$

(c) After straightforward Dirac algebra this matrix element simplifies further to yield

$$
\sum \mathcal{M}^{(n+1)} \mathcal{M}^{(n+1) \dagger}=\frac{g_{s}^{2} C_{F} \delta_{j j^{\prime}}}{(p . g)(n . g)} \operatorname{Tr}\left[\mathcal{M}_{j^{\prime}}^{(n) \dagger \dagger} \gamma_{0}(n .(p+g)(\not p+\not g)+n . p \not p-p . g \npreceq) \mathcal{M}_{j}^{(n) \prime}\right]
$$

Keeping only the dominant $\mathcal{O}(1 / p . g)$ terms, one can replace in the trace and the $1 / n . g$ part of the denominator

$$
p=z P, \quad g=(1-z) P,
$$

where z is the momentum fraction of the daughter quark with respect to the parent with momentum P (i.e. z is just a scalar number). Using these momentum relations write $\sum \mathcal{M}^{(n+1)} \mathcal{M}^{(n+1) \dagger}$ in the form

$$
\sum \mathcal{M}^{(n+1)} \mathcal{M}^{(n+1) \dagger}=\frac{g_{s}^{2}}{p . g} \widehat{P}_{q q}(z) \operatorname{Tr}\left[\mathcal{M}_{j^{\prime}}^{(n) \uparrow \dagger} \gamma_{0} P \delta_{j j^{\prime}} \mathcal{M}_{j}^{(n) \prime}\right]
$$

recording explicitly the form you obtain for the function $\widehat{P}_{q q}(z)$.
(d) Using the completeness relation for a fermion with (light-like) momentum P, $\sum u_{j^{\prime}}(P) \bar{u}_{j}(P)=P P \delta_{j j^{\prime}}$, derive the factorized form of the spin- and coloursummed squared matrix element for the $n+1$ particle process, in terms of the n particle one:

$$
\sum \mathcal{M}^{(n+1)} \mathcal{M}^{(n+1) \dagger}=\frac{2 g_{s}^{2}}{P^{2}} \widehat{P}_{q q}(z) \sum \mathcal{M}^{(n) \dagger} \mathcal{M}^{(n)}
$$

where $\mathcal{M}^{(n)}$ is the amplitude for the n-particle process, related to $\mathcal{M}^{(n) \prime}$ by

$$
\mathcal{M}_{j}^{(n)}=\overline{u_{j}(P)} \mathcal{M}_{j}^{(n) \prime}, \quad \text { and (hence) } \quad \mathcal{M}_{j^{\prime}}^{(n) \dagger}=\mathcal{M}_{j^{\prime}}^{(n) \dagger} \gamma_{0} u_{j^{\prime}}(P) .
$$

Comment on whether this result is interesting.

CONTINUED

3. Spontaneous breaking of global symmetry in a complex scalar field theory.

The Lagrangian density for a complex scalar (ϕ) field theory is given by

$$
\mathcal{L}=\left(\partial_{\mu} \phi\right)\left(\partial^{\mu} \phi^{*}\right)-m^{2} \phi^{*} \phi-\lambda\left(\phi^{*} \phi\right)^{2} .
$$

(a) Show that the ground/vacuum state field configuration ϕ_{0} satisfies i) $\left|\phi_{0}\right|=0$ for $m^{2}>0$ and ii) $\left|\phi_{0}\right|=\sqrt{\frac{-m^{2}}{2 \lambda}}$ for $m^{2}<0$.
(b) Comment briefly on the difference in the vacuum state obtained for $m^{2}<0$ with respect to that found for $m^{2}>0$.
(c) Assuming $m^{2}<0$ and taking as the vacuum state for ϕ

$$
\phi_{0}=\left|\phi_{0}\right|, \quad\left|\phi_{0}\right|=\sqrt{\frac{-m^{2}}{2 \lambda}},
$$

determine the Lagrangian density in terms of two real scalar fields, ϕ_{1} and ϕ_{2}, reparameterizing ϕ as

$$
\phi=\left|\phi_{0}\right|+\frac{1}{\sqrt{2}}\left(\phi_{1}+i \phi_{2}\right) .
$$

(d) Comment on the nature of the various terms in the Lagrangian that results in terms of ϕ_{1} and ϕ_{2}, in particular, comment on the masses of ϕ_{1} and ϕ_{2} and whether or not these are what you might have expected them to be, based on what you know of spontaneous symmetry breaking.

CONTINUED

4. Abelian gauge invariance for a complex scalar field theory.

The Lagrangian density for a complex scalar (ϕ) field theory is given by

$$
\begin{gathered}
\mathcal{L}=\left(\partial_{\mu} \phi\right)\left(\partial^{\mu} \phi^{*}\right)-V\left(\phi, \phi^{*}\right) \\
V\left(\phi, \phi^{*}\right)=-m^{2} \phi^{*} \phi-\lambda\left(\phi^{*} \phi\right)^{2} .
\end{gathered}
$$

(a) Determine how the potential $V\left(\phi, \phi^{*}\right)$ changes under a local $U(1)$ symmetry transformations $\phi \rightarrow U \phi, U=e^{i q \Lambda}, \Lambda=\Lambda(x)$.
(b) Determine how the derivative term $\partial_{\mu} \phi$ changes under the same $U(1)$ transformation.
(c) Defining the covariant derivative as

$$
D_{\mu}=\partial_{\mu}+i q A_{\mu}
$$

with A^{μ} transforming as

$$
\begin{aligned}
A^{\mu} \rightarrow A^{\prime \mu} & =U A^{\mu} U^{\dagger}+\frac{i}{q}\left(\partial^{\mu} U\right) U^{\dagger} \\
& =A^{\mu}-\partial^{\mu} \Lambda
\end{aligned}
$$

determine the result of the same $U(1)$ transformation applied to $D_{\mu} \phi$.
(d) Hence show that

$$
\mathcal{L}_{\text {gauged }}=\left(D_{\mu} \phi\right)\left(D^{\dagger \mu} \phi^{*}\right)-V\left(\phi, \phi^{*}\right)-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}
$$

where

$$
F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\nu}
$$

is $U(1)$ gauge invariant.

CONTINUED

5. Euler-Lagrange field equations and symmetry transformations.
(a) Consider a Lagrangian density $\mathcal{L}\left(\phi^{(i)}, \partial_{\mu} \phi^{(i)}\right)$ and the corresponding action,

$$
S=\int d^{4} x \mathcal{L}\left(\phi^{(i)}, \partial_{\mu} \phi^{(i)}\right)
$$

where (i) labels various fields; $i=1, \ldots, N$. Consider small variations of the fields

$$
\phi^{(i)}(x, t) \rightarrow \phi^{(i)}(x, t)+\delta \phi^{(i)}(x, t),
$$

the variations $\delta \phi^{(i)}$ all being zero at space-time infinity (the boundary of the action integral). Applying the variational principle, in particular, by imposing the action be extremised with respect to the field variations $(\delta S=0)$ derive the EulerLagrange differential equations obeyed by the fields $\phi^{(i)}$.
(b) Suppose that \mathcal{L}, the Lagrangian density itself, is invariant under some symmetry transformation group. Under an infinitesimal transformation associated with the ' a th' generator of this symmetry group we denote the change in the fields and their derivatives naturally as

$$
\phi^{(i)} \rightarrow \phi^{(i)}+\delta_{a} \phi^{(i)}, \quad \partial_{\nu} \phi^{(i)} \rightarrow \partial_{\nu} \phi^{(i)}+\partial_{\nu} \delta_{a} \phi^{(i)},
$$

where the subscript a on δ_{a} is simply there to clarify that the infinitesimal change δ is to be associated with a 'rotation' by the ' a th' generator of the group only. Assuming that the fields $\phi^{(i)}$ and their derivatives $\partial_{\nu} \phi^{(i)}$ satisfy the Euler-Lagrange field equations, compute the change in the Lagrangian density $\delta \mathcal{L}$ and show that invariance of the Lagrangian implies the conservation of four-vector currents:

$$
\partial_{\nu} J_{a}^{\nu}=0 \quad \text { where } \quad J_{a}^{\nu}=\sum_{i} \frac{\partial \mathcal{L}}{\partial\left(\partial_{\nu} \phi^{(i)}\right)} \delta_{a} \phi^{(i)}
$$

CONTINUED

6. Computation of the width for Higgs boson decay to fermion-antifermion pairs.

Since the Higgs boson is a scalar particle, rather than associating a polarization vector or spinor to its presence as an external particle in amplitudes (as would be the case if it were a vector boson or a fermion), instead one simply associates a trivial factor ' 1 ' to each external Higgs boson in the amplitude.

The vertex Feynman rule for a Higgs boson coupling to a fermion is depicted in Fig. 2.

Figure 2: The vertex Feynman rule for a Higgs boson coupling to a fermion; e is the electric charge and θ_{w} the Weinberg angle, while m_{f} and m_{W} are, respectively, the mass of the fermion and the W boson.
(a) Denoting the fermion momentum by p and the anti-fermion momentum by k, write down the amplitude for a Higgs boson decaying into a fermion anti-fermion pair. [5]
(b) Compute the amplitude squared for a Higgs boson decaying into a fermion pair, summed over final-state fermion spins and colours, averaged over incoming polarizations, eliminating all momenta in terms of m_{h} (the Higgs boson mass) and m_{f}. Do not neglect the fermion mass.
(c) Using the expression for the two-body Lorentz invariant phase space

$$
d \operatorname{LIPS}=\frac{1}{4 \pi^{2}} \frac{|\vec{p}|}{4 m_{h}} d \Omega
$$

where \vec{p} is the three-momentum of either decay product in the Higgs boson rest frame, and $d \Omega$ is the solid angle, compute the width for a Higgs boson decaying into a fermion anti-fermion pair, again, eliminating all momenta in terms of m_{h} and m_{f}. Do not neglect the fermion mass.

END OF PAPER

