John Morris

Monte Carlo

What is MC? Why use MC? MC Generation Detector Sim

Reconstruction

Reconstruction Event Properties

MC Corrections

MC Correction Re-Weighting Tag & Probe Smearing Summary

Measurements

Cross section Luminosity Selection Backgrounds Efficiency Results

Uncertainties

Statistical Luminosity Experimenta Modelling

Searches

Searches Higgs BSM

HEP Analysis

John Morris Queen Mary University of London 2012

> < □ > < □ > < □ > < Ξ > < Ξ > < Ξ > Ξ のQ() 1 / 105

John Morris

Monte Carlo

What is MC? Why use MC? MC Generation Detector Sim

Reconstruction

Reconstruction Event Properties

MC Corrections

MC Correction Re-Weighting Tag & Probe Smearing Summary

Measurements

Cross section Luminosity Selection Backgrounds Efficiency Results

Uncertainties

Statistical Luminosity Experimental Modelling

Searches

Searches Higgs BSM

Outline

- Monte Carlo (MC)
 - What is MC and why do we use it?
 - MC event generation
 - MC detector simulation
- What happens when MC does not agree with data?
 - Event re-weighting
 - 4-vector smearing
- Cross Section measurement
- Systematic uncertainties
- These notes will focus on the *ATLAS* experiment, but also apply to other experiments
- Borrowing slides, plots and ideas from E. Rizvi, T. Sjostrand and ATLAS public results

HEP Analysis

John Morris

Monte Carlo

What is MC? Why use MC? MC Generation Detector Sim

Reconstruction

Reconstruction Event Properties

MC Corrections

MC Corrections Re-Weighting Tag & Probe Smearing Summary

Measurements

Cross section Luminosity Selection Backgrounds Efficiency Results

Uncertainties

Statistical Luminosity Experimental Modelling

Searches

Searches Higgs BSM

HEP Analysis

This is not an in-depth MC course

- The subject of MC is vast
- There are many different models, generators and techniques
 - · Could spend hours, weeks, months on each
- These slides are just a brief outline
 - · Focus on the generalities
 - Explain the steps involved
 - · Not going to get bogged down in details

Aim of this course

- Aim is to provide a working knowledge of MC basics
 - Steps involved in generation
 - Introduction to various systematics
- Techniques for correcting MC to describe data
- Overview of a measurement
- Systematics

John Morris

Monte Carlo

What is MC?

Why use MC? MC Generation Detector Sim

Reconstruction

Reconstruction Event Properties

MC Corrections

MC Corrections Re-Weighting Tag & Probe Smearing Summary

Measurements

Cross section Luminosity Selection Backgrounds Efficiency Results

Uncertaintie

Statistical Luminosity Experimental Modelling

Searches

Searches Higgs BSM

Monte Carlo (MC) - What is MC?

• MC is a simulation of collisions between particles

- For these notes, pp collisions in ATLAS at the LHC
- MC is used in all particle physics experiments
- MC generation is broadly split into 2 parts:
 - 1 Generation of the physics process
 - Matrix element calculation
 - ...(lots of steps)...
 - 4-vectors of final state hadrons
 - 2 Simulation of the detector
 - Trigger, tracking and calorimeter simulation
 - ...(lots of steps)...
 - Analysis objects like electrons and jets
- End result:
 - MC Samples in the same format as the actual data
 - With additional information from Step 1, the truth record

John Morris

Monte Carlo

What is MC?

Why use MC? MC Generation Detector Sim

Reconstruction

Reconstruction Event Properties

MC Corrections

MC Corrections Re-Weighting Tag & Probe Smearing Summary

Measurements

Cross section Luminosity Selection Backgrounds Efficiency Results

Uncertainties

Statistical Luminosity Experimental Modelling

Searches

Searches Higgs BSM

Monte Carlo (MC) - What is MC?

- MC simulates what happens at the *LHC* and *ATLAS*
- Many different programmes can be used at each stage

John Morris

Monte Carlo What is MC? Why use MC? MC Generation

Reconstruction

Reconstruction Event Properties

MC Corrections

MC Correction Re-Weighting Tag & Probe Smearing Summary

Measurements

Cross section Luminosity Selection Backgrounds Efficiency Results

Uncertainties

Statistical Luminosity Experimental Modelling

Searches

Searches Higgs BSM

Monte Carlo (MC) - Why use MC? Why use generators?

- Allows studies of complex multi-particle physics
- Allows studies of theoretical models
 - $\bullet \ \Rightarrow \mathsf{What} \ \mathsf{does} \ \mathsf{a} \ \mathsf{SUSY} \ \mathsf{signal} \ \mathsf{look} \ \mathsf{like}?$

Can be used to

- Predict cross sections and topologies of various processes
 - \Rightarrow Feasibility study Can we find the theoretical particle X?
- Simulate background processes to the signal of interest
 - $\bullet \ \Rightarrow \mathsf{Can} \ \mathsf{devise} \ \mathsf{analysis} \ \mathsf{strategies}$
- Study detector response
 - $\bullet \Rightarrow \mathsf{Optimise} \ \mathsf{trigger} \ \& \ \mathsf{detector} \ \mathsf{selection} \ \mathsf{cuts}$
- Study detector imperfections
 - $\bullet \ \Rightarrow \mathsf{Can} \ \mathsf{evaluate} \ \mathsf{acceptance} \ \mathsf{corrections}$
 - See next week for a discussion of acceptance
- Remove the effect of the apparatus from the measurement
 - \Rightarrow Unfold the data. Correcting the data for detector effects

John Morris

Monte Carlo

What is MC? Why use MC? MC Generation Detector Sim

Reconstruction

Reconstruction Event Properties

MC Corrections

MC Correction Re-Weighting Tag & Probe Smearing Summary

Measurements

Cross section Luminosity Selection Backgrounds Efficiency Results

Uncertainties

Statistical Luminosity Experimenta Modelling

Searches

Searches Higgs BSM

MC Generation

Use random numbers for integration

Code uses random number generator to integrate

$$\int_{x1}^{x2} f(x) \, dx = (x_2 - x_1) \, \langle f(x) \rangle$$

$$\langle f(\mathbf{x}) \rangle = \frac{1}{N} \sum_{i=1}^{N} f(\mathbf{x}_i)$$

- Cross section randomly sampled over phase space
- Want to generate events that simulate nature
 - · Get average and fluctuations right
 - Need to make random choices, as in nature
 - An event with *n* particles involves $\mathcal{O}(10n)$ random choices
 - LHC events involve 1000's of random choices

John Morris

Monte Carlo

What is MC? Why use MC? MC Generation Detector Sim

Reconstruction

Reconstruction Event Properties

MC Corrections

MC Corrections Re-Weighting Tag & Probe Smearing Summary

Measurements

Cross section Luminosity Selection Backgrounds Efficiency Results

Uncertainties

Statistical Luminosity Experimental Modelling

Searches

Searches Higgs BSM

Matrix elements (ME):

1) Hard subprocess: $|\mathcal{M}|^2$, Breit-Wigners, parton densities.

2) Resonance decays: includes correlations.

Parton Showers (PS):

Monte Carlo Generation

3) Final-state parton showers.

4) Initial-state parton showers.

John Morris

Monte Carlo

What is MC? Why use MC? MC Generation Detector Sim

Reconstruction

Reconstruction Event Properties

MC Corrections

MC Corrections Re-Weighting Tag & Probe Smearing Summary

Measurements

Cross section Luminosity Selection Backgrounds Efficiency Results

Uncertainties

Statistical Luminosity Experimental Modelling

Searches

Searches Higgs BSM

Conclusion

5) Multiple parton–parton interactions.

6) Beam remnants, with colour connections.

5) + 6) = Underlying Event

7) Hadronization

Monte Carlo Generation

8) Ordinary decays: hadronic, τ , charm, ...

John Morris

Monte Carlo

What is MC? Why use MC? MC Generation Detector Sim

Reconstruction

Reconstruction Event Properties

MC Corrections

MC Correction Re-Weighting Tag & Probe Smearing Summary

Measurements

Cross section Luminosity Selection Backgrounds Efficiency Results

Uncertainties

Statistical Luminosity Experimental Modelling

Searches

Searches Higgs BSM

Monte Carlo Generation

Identifying theoretical modelling uncertainties

- Let's look at some of these steps in more detail
- There are several ways to perform each step
- This choice leads to theoretical modelling uncertainties
 - These uncertainties enter into most LHC results
 - Want to understand where they come from
- Theoretical modelling uncertainties include:
 - Generator uncertainties
 - PDF uncertainties
 - Parton shower uncertainties
 - Hadronisation uncertainties

John Morris

Monte Carlo

What is MC? Why use MC? MC Generation Detector Sim

Reconstruction

Reconstruction Event Properties

MC Corrections

MC Correction Re-Weighting Tag & Probe Smearing Summary

Measurements

Cross section Luminosity Selection Backgrounds Efficiency Results

Uncertainties

Statistical Luminosity Experimental Modelling

Searches

Searches Higgs BSM

Matrix element calculation

Normally calculated at LO or NLO

- Higher order corrections are important:
 - Normalisation and shape of kinematic distributions
 - Multiplicity of objects like jets
- Higher order corrections are hard to calculate and CPU intensive
- Several programs that will do the calculation
 - Different calculation techniques
 - Different assumptions
 - Different results
 - ⇒ Theoretical modelling uncertainty

John Morris

Monte Carlo

What is MC? Why use MC? MC Generation Detector Sim

Reconstruction

Reconstruction Event Properties

MC Corrections

MC Correction Re-Weighting Tag & Probe Smearing Summary

Measurements

Cross section Luminosity Selection Backgrounds Efficiency Results

Uncertainties

Statistical Luminosity Experimenta Modelling

Searches

Searches Higgs BSM

The Proton Port

The Proton Parton Density Function (PDF)

- Proton is not a point-like particle, it's full of partons
- Need to calculate:
 - Probability of propagator interacting with quarks/gluon

PDF

• Needed as a function of Q^2 and x

John Morris

Monte Carlo

What is MC? Why use MC? MC Generation Detector Sim

Reconstruction

Reconstruction Event Properties

MC Corrections

MC Corrections Re-Weighting Tag & Probe Smearing Summary

Measurements

Cross section Luminosity Selection Backgrounds Efficiency Results

Uncertainties

Statistical Luminosity Experimental Modelling

Searches

Searches Higgs BSM

Parton Showering

- Need to go from $2 \rightarrow 2$ scattering to 100's of particles
 - A particle can decay into more particles
 - A particle can emit another particle
 - All controlled by random numbers
- Parton shower evolution is a probabilistic process
 - Occurs with unit total probability

John Morris

Monte Carlo

What is MC? Why use MC? MC Generation Detector Sim

Reconstruction

Reconstruction Event Properties

MC Corrections

MC Correction Re-Weighting Tag & Probe Smearing Summary

Measurements

Cross section Luminosity Selection Backgrounds Efficiency Results

Uncertainties

Statistical Luminosity Experimental Modelling

Searches

Searches Higgs BSM

Parton Showering

2 Common approaches to parton showering

- Need to avoid divergences and infinities in calculations
 - See your QCD course for why these occur
 - Solution requires the final state partons to be ordered
- There are 2 common approaches to do this
- Pythia : $Q^2 = m^2$
 - The parton with the highest p_{T} is calculated first
- Herwig : $Q^2 \approx E^2 \left(1 \cos(\theta)\right)$
 - The parton with the largest angle is calculated first

This represents a theoretical modelling uncertainty

- Both provide a good description of data but which is correct?
 - Neither is correct, but nature is unknown, we only have models
- All physics measurements need to take this into account
 - Expect to see a parton shower systematic for every result
 - Use both methods for calculation of physics result
 - Difference between results is a theoretical modelling systematic

John Morris

Monte Carlo

What is MC? Why use MC? MC Generation Detector Sim

Reconstruction

Reconstruction Event Properties

MC Corrections

MC Correction Re-Weighting Tag & Probe Smearing Summary

Measurements

Cross section Luminosity Selection Backgrounds Efficiency Results

Uncertaintie

Statistical Luminosity Experimental Modelling

Searches

Searches Higgs BSM

Going from partons to hadrons

- Partons are not observed directly in nature, only hadrons
- Hadronisation occurs at low energy scales
 - Perturbation theory is not valid
 - Cannot calculate this process from first principals
- Require models to simulate what happens
- 2 common approaches are used
 - PYTHIA : Lund string model
 - HERWIG : Cluster model

This is another theoretical modelling uncertainty

- Similar type of uncertainty as for parton showering
 - · We don't know exactly how nature works
 - We have 2 reasonable models
 - · Calculate physics result using each method
 - Difference is a theoretical modelling systematic

Hadronisation

John Morris

Monte Carlo

Why use MC? MC Generation

Reconstruction

Reconstruction Event Properties

MC Corrections

MC Correction Re-Weighting Tag & Probe Smearing Summary

Measurements

Cross section Luminosity Selection Backgrounds Efficiency Results

Uncertainties

Statistical Luminosity Experimenta Modelling

Searches

Searches Higgs BSM

Hadronisation

The Lund string model

- In WED, field lines go all the way to infinity
- Photons do not interact with each other

- In QCD, for large charge separation, field lines seem to be compressed into tube-like regions ⇒ string(s)
- · Self-interaction among soft gluons in the vacuum

16 / 105

John Morris

Monte Carlo

What is MC? Why use MC? MC Generation Detector Sim

Reconstruction

Reconstruction Event Properties

MC Corrections

MC Correction Re-Weighting Tag & Probe Smearing Summary

Measurements

Cross section Luminosity Selection Backgrounds Efficiency Results

Uncertainties

Statistical Luminosity Experimental Modelling

Searches

Searches Higgs BSM

Hadronisation

The Lund string model

- The strings connecting the 2 partons breaks as they move apart
- Fragmentation starts in the middle and spreads out

- The breakup vertices become causally disconnected
- This is governed by many internal parameters
- Implemented by the PYTHIA MC program

John Morris

Monte Carlo

What is MC? Why use MC? MC Generation Detector Sim

Reconstruction

Reconstruction Event Properties

MC Corrections

MC Correction Re-Weighting Tag & Probe Smearing Summary

Measurements

Cross section Luminosity Selection Backgrounds Efficiency Results

Uncertainties

Statistical Luminosity Experimenta Modelling

Searches

Searches Higgs BSM

Conclusion

The Cluster model

Hadronisation

- Pre-confinement colour flow is local
- Forced g
 ightarrow q ar q branchings
- Colour singlet clusters are formed
- Clusters decay isotropically to hadrons
- Relatively few internal parameters
- Implemented by the HERWIG MC program

John Morris

Monte Carlo What is MC? Why use MC? MC Generation Detector Sim

Reconstruction

Reconstruction Event Properties

MC Corrections

MC Correction Re-Weighting Tag & Probe Smearing Summary

Measurements

Cross section Luminosity Selection Backgrounds Efficiency Results

Uncertainties

Statistical Luminosity Experimental Modelling

Searches

Searches Higgs BSM

onclusion

Summary

- There are many steps involved in generating MC
- There are competing models for each step
 - $\bullet \ \Rightarrow$ Leads to theoretical modelling uncertainties
- General practice for a physics measurement
 - Decide on a "Nominal" choice for all options
 - Vary the generator, PDF, parton shower and hadronisation
 - Use the difference in your result as a systematic

Why only a few models?

- Don't really know what is happening, only have models
- · Choice a few different models and take the difference
 - If model is very poor, doesn't this inflate the uncertainty?
- Why not use my "back-of-an-envelope" model?
 - Feel free to come up with a new model!
 - Need to describe the data accurately
 - Need to convince physics community

MC Generation

(日) (同) (三) (三)

John Morris

Monte Carlo

What is MC? Why use MC? MC Generation Detector Sim

Reconstruction

Reconstruction Event Properties

a

MC Corrections

MC Correction Re-Weighting Tag & Probe Smearing Summary

Measurements

Cross section Luminosity Selection Backgrounds Efficiency Results

Uncertainties

Statistical Luminosity Experimental Modelling

Searches

Searches Higgs BSM

MC Generation

- MC Generator stops with set of "stable" final state particles
- Complete 4-vector info is known about every particle
- All parent-daughter relations are known and stored
- High energy parton state known as parton level
- Stable particle state known as hadron level
- This level of information is often called the truth record
- This is the pure event before it interacts with any apparatus

John Morris

Monte Carlo

What is MC? Why use MC? MC Generation Detector Sim

Reconstruction

Reconstruction Event Properties

MC Corrections

MC Correction Re-Weighting Tag & Probe Smearing Summary

Measurements

Cross section Luminosity Selection Backgrounds Efficiency Results

Uncertainties

Statistical Luminosity Experimenta Modelling

Searches

Searches Higgs BSM

Detector Simulation

Now need to simulate the detector

John Morris

Monte Carlo

What is MC? Why use MC? MC Generation Detector Sim

Reconstruction

Reconstruction Event Properties

MC Corrections

MC Correction Re-Weighting Tag & Probe Smearing Summary

Measurements

Cross section Luminosity Selection Backgrounds Efficiency Results

Uncertainties

Statistical Luminosity Experimental Modelling

Searches

Searches Higgs BSM

Conclusion

Detector Simulation

Detector simulation is complex and detailed

- Simulation of all major components and materials
 - Tracking, calorimetry, magnets, muon chambers
 - Support structure, cooling pipes, cables
 - · Faulty components leading to missing readout
- GEANT4 program uses generator output 4-vectors
- Simulates interaction of particles within the detector volume
 - Particle ionisation in trackers
 - Energy deposition in calorimeters
 - · Intermediate particle decays, radiation and scattering
- Full Simulation can take 10 minutes per event!
 - · Possible to do a fast simulation AtlFastII
 - Smears 4-vectors instead of doing calorimeter simulation
- Final output is raw data
 - Charges measured on each tracker wire
 - Electronic pulses in each calorimeter photomultiplier
 - Same format as raw data

John Morris

Monte Carlo

What is MC? Why use MC? MC Generation Detector Sim

Reconstruction

Reconstruction Event Properties

MC Corrections

MC Corrections Re-Weighting Tag & Probe Smearing Summary

Measurements

Cross section Luminosity Selection Backgrounds Efficiency Results

Uncertainties

Statistical Luminosity Experimental Modelling

Searches

Searches Higgs BSM

Example of ATLAS material

Inner detector material in ATLAS

- This is what is in the current simulation
- Does it match reality? Probably not 100%

John Morris

Monte Carlo

What is MC? Why use MC? MC Generation Detector Sim

Reconstructior

Reconstruction Event Properties

MC Corrections

MC Correction Re-Weighting Tag & Probe Smearing Summary

Measurements

Cross section Luminosity Selection Backgrounds Efficiency Results

Uncertainties

Statistical Luminosity Experimental Modelling

Searches

Searches Higgs BSM

MC Warning

MC is not the truth

- What happened in the MC generator didn't happen at the LHC
 - The MC is our best guess
- The MC only simulates specific physics processes
- The cross section calculation may be:
 - Wrong, Incomplete, Inaccurate
 - Have a false kinematic dependence
 - The MC code may have unknown bugs in it
- Some processes require higher order corrections which have not been calculated
- · Simulation cannot account for all detector effects

John Morris

Monte Carlo

What is MC? Why use MC? MC Generation Detector Sim

Reconstruction

Reconstruction Event Properties

MC Corrections

MC Correction Re-Weighting Tag & Probe Smearing Summary

Measurements

Cross section Luminosity Selection Backgrounds Efficiency Results

Uncertainties

Statistical Luminosity Experimental Modelling

Searches

Searches Higgs BSM

Conclusion

Reconstruction

Going from electronic pulses to analysis objects

- Data and MC pass through the same reconstruction algorithms
- Raw electronic pulses reconstructed into:
 - Tracks
 - Calorimeter deposits
- Which are then reconstructed into:
 - Jets, electron, muons, taus,
 - Photons, tracks, missing $E_{\rm T}$

Real life issues need to be reflected in the MC

- Some parts of the detector become faulty over time
- e.g. A section of the calorimeter readout dies and cannot be repaired until the detector is opened up in a shutdown
- Lets say that this affects x% of the data luminosity
- Need to generate MC with this problem in x% of the MC
 - Cannot know x until end of year
 - $\bullet \ \Rightarrow$ Need to reprocess the MC at the end of the year
- Some MC bugs do not become apparent for some time

John Morris

Monte Carlo

What is MC? Why use MC? MC Generation Detector Sim

Reconstruction

Reconstruction Event Properties

MC Corrections

MC Correction: Re-Weighting Tag & Probe Smearing Summary

Measurements

Cross section Luminosity Selection Backgrounds Efficiency Results

Uncertainties

Statistical Luminosity Experimental Modelling

Searches

Searches Higgs BSM

Event Properties

- Final state particles from the Standard Model:
 - Electrons, Muons, Taus, Neutrinos, Photons, (un)charged Hadrons
- Each interacts with detector in different ways
 - e, μ and τ are very similar in theory, however:
 - e leaves a track and doesn't penetrate further than EM Calo
 - μ leaves a track and passes through Calo into Muon chambers
 - au looks very much like a jet
 - Decays within the inner detector
 - \Rightarrow Lots of tracks, EM and Hadronic Calo deposits

EM energy without a track	Photon
EM energy with a track	Electron
Hadronic energy without a track	Neutral Hadron (eg Neutron)
Hadronic energy with a track	Charged Hadron (eg Proton)
Hadronic energy with many tracks	Jet, Tau
ID and Muon chamber track	Muon
Missing transverse energy	Neutrino
Missing longitudinal energy	Beam remnants
Displaced secondary vertex	in-flight decay

John Morris

Monte Carlo

What is MC? Why use MC? MC Generation Detector Sim

Reconstruction

Reconstruction Event Properties

MC Corrections

MC Corrections Re-Weighting Tag & Probe Smearing Summary

Measurements

Cross section Luminosity Selection Backgrounds Efficiency Results

Uncertainties

Statistical Luminosity Experimental Modelling

Searches

Searches Higgs BSM

Reconstructing an event requires recognising event properties

Event Properties

Conclusion

John Morris

Monte Carlo

What is MC? Why use MC? MC Generation Detector Sim

Reconstruction

Reconstruction Event Properties

MC Corrections

MC Corrections Re-Weighting Tag & Probe Smearing Summary

Measurements

Cross section Luminosity Selection Backgrounds Efficiency Results

Uncertainties

Statistical Luminosity Experimenta Modelling

Searches

Searches Higgs BSM

Event Display : $W \rightarrow e\nu$

- Electron (yellow) leaves track and EM Calo deposit
- Missing $E_{\rm T}$ (red) identified with a neutrino
- W
 ightarrow e
 u Candidate event

John Morris

Monte Carlo

What is MC? Why use MC? MC Generation Detector Sim

Reconstruction

Reconstruction Event Properties

MC Corrections

MC Corrections Re-Weighting Tag & Probe Smearing Summary

Measurements

Cross section Luminosity Selection Backgrounds Efficiency Results

Uncertainties

Statistical Luminosity Experimental Modelling

Searches

Searches Higgs BSM

Conclusion

Event Display : $WZ \rightarrow e \nu \mu \mu$

- Electron (green) and Missing $E_{\rm T}$ (orange) are reconstructed as $W \rightarrow e \nu$, like in the previous slide
- 2 additional Muons (red) reconstructed as $Z \rightarrow \mu \mu$

John Morris

Monte Carlo

What is MC? Why use MC? MC Generation Detector Sim

Reconstruction

Reconstruction Event Properties

MC Corrections

MC Correction Re-Weighting Tag & Probe Smearing Summary

Measurements

Cross section Luminosity Selection Backgrounds Efficiency Results

Uncertainties

Statistical Luminosity Experimenta Modelling

Searches

Searches Higgs BSM

Conclusion

30 / 105

・ロト ・回ト ・ヨト ・ヨト

Event Display : $H \rightarrow 4e$

John Morris

Monte Carlo

What is MC? Why use MC? MC Generation Detector Sim

Reconstruction

Reconstruction Event Properties

MC Corrections

MC Corrections Re-Weighting Tag & Probe Smearing Summary

Measurements

Cross section Luminosity Selection Backgrounds Efficiency Results

Uncertainties

Statistical Luminosity Experimental Modelling

Searches

Searches Higgs BSM

Event Display : $H \rightarrow ee \mu \mu$

• 2 electrons (green) and 2 muons (red) reconstructed to candidate Higgs Boson

John Morris

Monte Carlo

What is MC? Why use MC? MC Generation Detector Sim

Reconstruction

Reconstruction Event Properties

MC Corrections

MC Corrections Re-Weighting Tag & Probe Smearing Summary

Measurements

Cross section Luminosity Selection Backgrounds Efficiency Results

Uncertainties

Statistical Luminosity Experimental Modelling

Searches

Searches Higgs BSM

Conclusion

When MC gets it wrong

Simulating the LHC and ATLAS is difficult

- As you can see, this is a very complex task
- Far more involved that my brief overview
- MC description of data often not good enough
 - \Rightarrow Re-generate MC \Rightarrow time consuming and difficult to get right
 - \Rightarrow Apply corrections to the MC \Rightarrow pragmatic and usable

How to deal with inaccurate descriptions

- This is broadly split into 3 different methodologies
- Re-weight the MC:
 - A data event contributes 1 entry to a histogram
 - A MC event may contribute 0.9 or 1.13 entries
 - Commonly used for trigger and reconstruction efficiencies
- Smear the MC:
 - Use random numbers (yet more!) to alter 4-vectors
 - Commonly used for jet, electron and muon p_{T}
- Tune the MC Regenerate the MC with tuned input parameters

John Morris

Monte Carlo

What is MC? Why use MC? MC Generation Detector Sim

Reconstruction

Reconstruction Event Properties

MC Corrections

MC Corrections Re-Weighting

Tag & Probe Smearing Summary

Measurements

Cross section Luminosity Selection Backgrounds Efficiency Results

Uncertainties

Statistical Luminosity Experimental Modelling

Searches

Searches Higgs BSM

Re-Weighting basics

Histograms in ROOT

- You use histograms to plot data and MC
- An entry in a histogram contains a weight
 - histogram \rightarrow Fill(x, weight);
- · For MC we will often want to give weight to an event
- The default in ROOT is to do simple errors $\sigma = \sqrt{N}$
- This will get the errors wrong in a weighted distribution
- Need to use the sum of squares of weights $\sigma = \sqrt{\sum w^2}$
- In your code, please ensure than when you book a histogram
 - TH1D* histo = new TH1D("name", "title", nBins, MinX, MaxX);
 - histo→sumw2();

John Morris

Monte Carlo

What is MC? Why use MC? MC Generation Detector Sim

Reconstruction

Reconstruction Event Properties

MC Corrections

MC Corrections

Re-Weighting

Tag & Probe Smearing Summary

Measurements

Cross section Luminosity Selection Backgrounds Efficiency Results

Uncertainties

Statistical Luminosity Experimental Modelling

Searches

Searches Higgs BSM

Number of tracks in ATLAS events

Re-Weighting MC

< ロ > < 同 > < 回 > < 回 >

- The MC clearly does not describe the data
- What has gone so wrong?
- Is it parton showering, hadronisation or something else?
 - Need to understand the root cause of this disagreement

John Morris

Monte Carlo

What is MC? Why use MC? MC Generation Detector Sim

Reconstruction

Reconstruction Event Properties

MC Corrections

MC Corrections

Re-Weighting

Tag & Probe Smearing Summary

Measurements

Cross section Luminosity Selection Backgrounds Efficiency Results

Uncertainties

Statistical Luminosity Experimenta Modelling

Searches

Searches Higgs BSM

Pileup Re-Weighting

N vertices Vs average N interactions per bunch crossing

- Classic ATLAS example of MC not describing data accurately
- This shows that the MC gets the number of vertices wrong
 - Problem simulating proton bunches with 10¹¹ protons
 - Understandably a very difficult task!
- Unfortunately this has big effects for many distributions

John Morris

Why use MC? MC Generation

Re-Weighting Tag & Probe

Need to determine re-weighting factors

(b) Fit of the ratio of the distributions in (a)

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Pileup Re-Weighting

- Divide Data by MC to determine correction
- In this case, fit the ratio and determine a weight
- Use this weight for each MC event
 - histogram \rightarrow Fill(x, weight);
John Morris

Monte Carlo

What is MC? Why use MC? MC Generation Detector Sim

Reconstruction

Reconstruction Event Properties

MC Corrections

MC Corrections

Re-Weighting

Tag & Probe Smearing Summary

Measurements

Cross section Luminosity Selection Backgrounds Efficiency Results

Uncertainties

Statistical Luminosity Experimenta Modelling

Searches

Searches Higgs BSM

Cartoon illustrating re-weighting procedure

Pileup Re-Weighting

events in data Data * <mu> events in MC # MC $< mu > \times 0.83$ events in data of data / MC $< mu > \times 1$ Ratio Data * <mu> (a) Reweight procedure (b) Rescale procedure

Conclusion

4 ロ ト 4 日 ト 4 王 ト 4 王 ト 王 の 9 ()
37 / 105

John Morris

Pileup Re-Weighting

Monte Carlo

What is MC? Why use MC? MC Generation Detector Sim

Reconstruction

Reconstruction Event Properties

MC Corrections

MC Corrections Re-Weighting Tag & Probe

Smearing Summary

Measurements

Cross section Luminosity Selection Backgrounds Efficiency Results

Uncertainties

Statistical Luminosity Experimental Modelling

Searches

Searches Higgs BSM

Effect of re-weighting on N Tracks

- (a) Before re-weighting MC describes the data poorly
- (b) After re-weighting the MC description is much better
- We have identified the underlying problem N vertices
 - We have re-weighted the N vertices distribution
 - Can see effect in the number of tracks distribution

Conclusion

< 回 > < 三 > < 三 >

John Morris

Monte Carlo

What is MC? Why use MC? MC Generation Detector Sim

Reconstruction

Reconstruction Event Properties

MC Corrections

MC Corrections

Re-Weighting

Tag & Probe Smearing Summary

Measurements

Cross section Luminosity Selection Backgrounds Efficiency Results

Uncertainties

Statistical Luminosity Experimenta Modelling

Searches

Searches Higgs BSM

We require many different weights

- Pileup is just 1 example where we need weights
- Electrons, muons, taus, photons all require weights for:
 - Trigger, reconstruction, identification
- Jets require weights for:
 - Reconstruction, resolution, jet vertex fraction
- All of these weights provide a correction to specific aspects of data/MC disagreement
- Combined all (via multiplication) to provide an overall weight

$$W_{\rm Event} = W_e \ x \ W_\mu \ x \ W_\tau \ x \ W_{\rm jets} \ x \ W_{\rm Pileup} \ x \ W_{\rm other}$$

where
$$W_e = W_{\text{Trigger}} \times W_{\text{Reco}} \times W_{\text{ID}}$$

- The vast majority of weights are determined via dedicated studies using the Tag & probe methodology
 - \Rightarrow Ideal service task for ATLAS authorship

Re-Weighting

John Morris

Monte Carlo

What is MC? Why use MC? MC Generation Detector Sim

Reconstruction

Reconstruction Event Properties

MC Corrections

MC Corrections Re-Weighting Tag & Probe Smearing Summary

Measurements

Cross section Luminosity Selection Backgrounds Efficiency Results

Uncertainties

Statistical Luminosity Experimenta Modelling

Searches

Searches Higgs BSM

Tag & Probe Methods

A very common methodology for ATLAS

- Tag & Probe is a method to study analysis objects (jets, μ , etc)
- Study trigger, reconstruction efficiencies
- Data and MC often disagree in many places
 - Determine many different weights, often binned in p_{T} and η
- Use Standard Model candles like Z
 ightarrow ee, $W
 ightarrow \mu
 u$
 - · What to use decay products from well known particles
 - Know that $Z \rightarrow ee$ has 2 electrons
 - Know the invariant mass of a Z very well
 - "Tag" one electron and study the other, "Probe" electron
- Use data-driven methods to determine the detector response
 - No need for MC in determining trigger, reco efficiencies
 - MC generally only used to determine weights
- In ATLAS weights are often called Scale Factors

John Morris

Why use MC? MC Generation

Tag & Probe

Tag & Probe : $Z \rightarrow ee$ example

Tag electron:

Tag & Probe Methods

- Matched to Trigger
- Tight reconstruction
- Satisfies all conditions for being an excellent electron
- Probe electron.
 - Minimal selection

Use probe to determine efficiencies

Probe Passes Selection Some Efficiency =All probes Probe Fires Trigger :: Trigger Efficiency = For Example All probes

John Morris

Monte Carlo

What is MC? Why use MC? MC Generation Detector Sim

Reconstruction

Reconstruction Event Properties

MC Corrections

MC Corrections Re-Weighting **Tag & Probe** Smearing Summary

Measurements

Cross section Luminosity Selection Backgrounds Efficiency Results

Uncertainties

Statistical Luminosity Experimenta Modelling

Searches

Searches Higgs BSM

Tag & Probe Methods Tag & Probe : Electron trigger efficiency

- $Z \rightarrow ee$ event selection applied
- Tag electron used to select events
 - No requirement on probe to pass trigger
- Probe electron asked "Did you fire the trigger?"
- Trigger efficiency determined for L1, L2 and EF
- Shown as a function of electron E_{T} and η

John Morris

Monte Carlo

What is MC? Why use MC? MC Generation Detector Sim

Reconstruction

Reconstruction Event Properties

MC Corrections

MC Correction Re-Weighting Tag & Probe Smearing Summary

Measurements

Cross section Luminosity Selection Backgrounds Efficiency Results

Uncertainties

Statistical Luminosity Experimental Modelling

Searches

Searches Higgs BSM

Tag & Probe Methods

Tag & Probe : Electron Identification efficiency

- $J/\Psi \rightarrow ee$ and $Z \rightarrow ee$ event selection applied
- Tag electron used to select events
 - No requirement on probe to pass identification cuts
- Probe electron asked "Did you pass ID selection?"
- Shown as a function of electron $E_{\rm T}$ and number of vertices
- Note how MC does not match data \Rightarrow weights are required

John Morris

Monte Carlo

What is MC? Why use MC? MC Generation Detector Sim

Reconstruction

Reconstruction Event Properties

MC Corrections

MC Corrections Re-Weighting Tag & Probe Smearing Summary

Measurements

Cross section Luminosity Selection Backgrounds Efficiency Results

Uncertainties

Statistical Luminosity Experimenta Modelling

Searches

Searches Higgs BSM

What's wrong with this plot?

- Reconstructed Z mass using invariant mass of 2 muons
- Is this a scale or resolution effect?

John Morris

Monte Carlo

What is MC? Why use MC? MC Generation Detector Sim

Reconstruction

Reconstruction Event Properties

MC Corrections

MC Correction Re-Weighting Tag & Probe Smearing Summary

Measurements

Cross section Luminosity Selection Backgrounds Efficiency Results

Uncertainties

Statistical Luminosity Experimenta Modelling

Searches

Searches Higgs BSM

Muons in ATLAS

- Muons are reconstructed using 2 detectors in ATLAS
 - Inner detector : Pixel + SCT + TRT
 - Muon Spectrometer

 σ

• Each detector has it's own momentum resolution

$$rac{\sigma\left(
ho
ight)}{
ho} = rac{
ho_{0}^{\mathrm{MS}}}{
ho_{\mathrm{T}}} \oplus
ho_{1}^{\mathrm{MS}} \oplus
ho_{2}^{\mathrm{MS}} \cdot
ho_{\mathrm{T}}$$
 $rac{\sigma\left(
ho
ight)}{
ho} =
ho_{1}^{\mathrm{ID}} \oplus
ho_{2}^{\mathrm{ID}} \cdot
ho_{\mathrm{T}}$

- These equations quantify the how well we can measure the momentum of any given muon
- A MC muon should be subject to the same uncertainties
 - $\bullet \Rightarrow$ Smear the MC muon momentum using random numbers

Smearing the MC

John Morris

Monte Carlo

What is MC? Why use MC? MC Generation Detector Sim

Reconstruction

Reconstruction Event Properties

MC Corrections

MC Correction Re-Weighting Tag & Probe Smearing Summary

Measurements

Cross section Luminosity Selection Backgrounds Efficiency Results

Uncertainties

Statistical Luminosity Experimenta Modelling

Searches

Searches Higgs BSM

Muons in ATLAS

$$p_{\mathrm{T}}' = p_{\mathrm{T}} \left(1 + g \Delta p_{1}^{\mathrm{ID,MS}} + g \Delta p_{2}^{\mathrm{ID,MS}} p_{\mathrm{T}} \right)$$

Smearing the MC

イロト イポト イヨト イヨト

- p_{T}' : MC muon p_{T} after applying the corrections $\Delta p_i^{\mathrm{ID,MS}}$
- g : normally distributed random number, mean 0 and width 1

Z mass before(left) and after(right) MC muon smearing

John Morris

Monte Carlo

What is MC? Why use MC? MC Generation Detector Sim

Reconstruction

Reconstruction Event Properties

MC Corrections

MC Correction Re-Weighting Tag & Probe Smearing Summary

Measurements

Cross section Luminosity Selection Backgrounds Efficiency Results

Uncertainties

Statistical Luminosity Experimenta Modelling

Searches

Searches Higgs BSM

Smearing the MC

Smear depending on detector region

- Detector resolution varies with region
- Resolution in Barrel is different from that in End-Cap

η region	p_0^{MS} (TeV)	p_1^{MS} (%)	p_2^{MS} (TeV ⁻¹)
barrel	0.25 ± 0.01	3.27 ± 0.05	0.168 ± 0.016
transition	0	6.49 ± 0.26	0.336 ± 0.072
end-caps	0	3.79 ± 0.11	0.196 ± 0.069
CSC/No-TRT	0.15 ± 0.01	2.82 ± 0.58	0.469 ± 0.028
η region	p_0^{ID} (TeV)	$p_1^{ID}(\%)$	$p_2^{ID} ({\rm TeV^{-1}})$
barrel	n.a	1.55 ± 0.01	0.417 ± 0.011
transition	n.a	2.55 ± 0.01	0.801 ± 0.567
end-caps	n.a	3.32 ± 0.02	0.985 ± 0.019
CSC/No-TRT	na	486 ± 0.22	0.069 ± 0.003

- This is just for muons
- All sub-detectors have similar resolution tables

Conclusion

John Morris

Monte Carlo

What is MC? Why use MC? MC Generation Detector Sim

Reconstruction

Reconstruction Event Properties

MC Corrections

MC Correction Re-Weighting Tag & Probe Smearing Summary

Measurements

Cross section Luminosity Selection Backgrounds Efficiency Results

Uncertainties

Statistical Luminosity Experimental Modelling

Searches

Searches Higgs BSM

Monte Carlo (MC)

- MC generation:
 - Random numbers used extensively
 - Simulate matrix element
 - Simulate decays and hadronisation
- Detector simulation:
 - Output 4-vectors put through a complex detector description

Summary so far

・ロン ・四 と ・ ヨ と ・

• MC and data are reconstructed using the same algorithms

MC often doesn't describe the data

- Scale Factors used to provide MC event weights
- · Physics objects have their momentum smeared
- "Tag" and "Probe" methodology is widely used in ATLAS Hopefully the MC now describes the data
 - · After simulation, extensive study and many corrections
 - \Rightarrow Can now use the MC in physics measurements

John Morris

Monte Carlo

What is MC? Why use MC? MC Generation Detector Sim

Reconstruction

Reconstruction Event Properties

MC Corrections

MC Corrections Re-Weighting Tag & Probe Smearing Summary

Measurements

Cross section

Luminosity Selection Backgrounds Efficiency Results

Uncertainties

Statistical Luminosity Experimental Modelling

Searches

Searches Higgs BSM

Day 2

- Review of Day 1
 - MC Generation
 - Detector simulation
 - · Correcting MC with re-weighting and smearing
- Making a measurement
 - Cross section
 - Acceptance & Purity
 - Luminosity
 - Systematics
- Searches and exclusions

John Morris

Monte Carlo

What is MC? Why use MC? MC Generation Detector Sim

Reconstruction

Reconstruction Event Properties

MC Corrections

MC Corrections Re-Weighting Tag & Probe Smearing Summary

Measurements

Cross section

Luminosity Selection Backgrounds Efficiency Results

Uncertainties

Statistical Luminosity Experimental Modelling

Searches

Searches Higgs BSM

Matrix elements (ME):

1) Hard subprocess: $|\mathcal{M}|^2$, Breit-Wigners, parton densities.

2) Resonance decays: includes correlations.

MC Generation

Parton Showers (PS):

3) Final-state parton showers.

4) Initial-state parton showers.

John Morris

Monte Carlo

What is MC? Why use MC? MC Generation Detector Sim

Reconstruction

Reconstruction Event Properties

MC Corrections

MC Corrections Re-Weighting Tag & Probe Smearing Summary

Measurements

Cross section

Luminosity Selection Backgrounds Efficiency Results

Uncertainties

Statistical Luminosity Experimental Modelling

Searches

Searches Higgs BSM

Conclusion

5) Multiple parton–parton interactions.

6) Beam remnants, with colour connections.

5) + 6) = Underlying Event

MC Generation

7) Hadronization

8) Ordinary decays: hadronic, τ , charm, ...

John Morris

Monte Carlo

What is MC? Why use MC? MC Generation Detector Sim

Reconstruction

Reconstruction Event Properties

MC Corrections

MC Correction Re-Weighting Tag & Probe Smearing Summary

Measurements

Cross section

Luminosity Selection Backgrounds Efficiency Results

Uncertainties

Statistical Luminosity Experimental Modelling

Searches

Searches Higgs BSM

Conclusion

Detector Simulation

Detector simulation is complex and detailed

- Simulation of all major components and materials
 - Tracking, calorimetry, magnets, muon chambers
 - Support structure, cooling pipes, cables
 - Faulty components leading to missing readout
- $\operatorname{GEANT4}$ program uses generator output 4-vectors
- Simulates interaction of particles within the detector volume
 - Particle ionisation in trackers
 - Energy deposition in calorimeters
 - · Intermediate particle decays, radiation and scattering
- Final output is raw data
 - Charges measured on each tracker wire
 - Electronic pulses in each calorimeter photomultiplier
 - Same format as raw data
- This represents out best guess of the detector
 - Detector simulation is very complex
 - · Difficult to model detector imperfections
 - Difficult to model bits of detector that break during running

52 / 105

John Morris

Monte Carlo

What is MC? Why use MC? MC Generation Detector Sim

Reconstruction

Reconstruction Event Properties

MC Corrections

MC Correction Re-Weighting Tag & Probe Smearing Summary

Measurements

Cross section

Luminosity Selection Backgrounds Efficiency Results

Uncertainties

Statistical Luminosity Experimental Modelling

Searches

Searches Higgs BSM

Use event weighting and 4-vector smearing

- Re-weight MC events to achieve same efficiency in MC as in data
- Smear MC 4-vectors to achieve same resolution in MC as in data

Correcting MC

John Morris

Monte Carlo

What is MC? Why use MC? MC Generation Detector Sim

Reconstruction

Reconstruction Event Properties

MC Corrections

MC Corrections Re-Weighting Tag & Probe Smearing Summary

Measurements

Cross section

Luminosity Selection Backgrounds Efficiency Results

Uncertainties

Statistical Luminosity Experimental Modelling

Searches

Searches Higgs BSM

Cross section

A cross section is defined by

$$\sigma = \frac{N}{\mathcal{L}}$$

- Where:
 - *N* is the number of events
 - \mathcal{L} is the total integrated luminosity
- · Represents a probability that an event will occur
- · Given a fixed luminosity, you expect
 - X number of Z-boson events
 - Y number of $t\bar{t}$ events
 - Z number of Higgs events
- All have different cross sections

John Morris

Monte Carlo

What is MC? Why use MC? MC Generation Detector Sim

Reconstruction

Reconstruction Event Properties

MC Corrections

MC Corrections Re-Weighting Tag & Probe Smearing Summary

Measurements

Cross section

Luminosity Selection Backgrounds Efficiency Results

Uncertainties

Statistical Luminosity Experimenta Modelling

Searches

Searches Higgs BSM

σ_{total} [pb] ATLAS Preliminary 35 pb⁻¹ LHC pp vs = 7 TeV 35 pb⁻¹ Theory 10⁴ Data 2010 (L = 35 pb⁻¹) Data 2011 (L = 1.0 - 4.7 fb⁻¹) LHC pp vs = 8 TeV 10³ Theory Data 2012 (L = 5.8 fb⁻¹) 10² 1.0 fb⁻¹ 1.0 fb⁻¹ 4.7 fb⁻¹ 5.8 fb 10 4.6 fb⁻¹ 2.1 fb⁻¹ 4.7 fb⁻¹ 1 w z ww WZ Wt ΖZ tŤ t

- Shows cross section of many different processes at $\sqrt{s} = 7 \text{ TeV}$
- · Represents a probability that a process will occur
 - For a fixed luminosity, you can expect X events

Conclusion

Cross section

John Morris

Monte Carlo

What is MC? Why use MC? MC Generation Detector Sim

Reconstruction

Reconstruction Event Properties

MC Corrections

MC Correction Re-Weighting Tag & Probe Smearing Summary

Measurements

Cross section Luminosity Selection Backgrounds Efficiency Results

Uncertainties

Statistical Luminosity Experimental Modelling

Searches

Searches Higgs BSM

Purity & efficiency

What happens at the LHC

- 2 protons interact and a physics process occurs
- All processes that can occur, do occur
- The process you are interesting in is in there somewhere

Purity - reduced by background

- You will not only get the events you want
- · You will get other events as well, ones you don't want
- Purity is percentage of your events that are signal

 $Purity = \frac{Signal \text{ events in sample}}{All \text{ events in sample}}$

• Need MC to properly estimate purity

John Morris

Monte Carlo

What is MC? Why use MC? MC Generation Detector Sim

Reconstruction

Reconstruction Event Properties

MC Corrections

MC Corrections Re-Weighting Tag & Probe Smearing Summary

Measurements

Cross section

Luminosity Selection Backgrounds Efficiency Results

Uncertaintie

Statistical Luminosity Experimental Modelling

Searches

Searches Higgs BSM

Purity & efficiency

Efficiency - reduced by detector

- Efficiency is percentage of all signal events that you reconstruct $Efficiency = \frac{All \text{ events in sample}}{All \text{ generated signal events}}$
- Your process will have final states objects at all p_{T}
 - The $p_{\rm T}$ of pretty much all objects obeys an exponential
 - You will not be able to trigger objetcs at low p_{T}
 - You will not be able to reconstruct objects at low p_{T}
 - \Rightarrow Reduction in efficiency
- Your process will have final states objects at all η
 - Your detector will only cover a fixed range in η
 - \Rightarrow Reduction in efficiency

John Morris

Monte Carlo

What is MC? Why use MC? MC Generation Detector Sim

Reconstruction

Reconstruction Event Properties

MC Corrections

MC Correction Re-Weighting Tag & Probe Smearing Summary

Measurements

Cross section

Luminosity Selection Backgrounds Efficiency Results

Uncertainties

Statistical Luminosity Experimental Modelling

Searches

Searches Higgs BSM

Not so simple

- Naively a cross section is simply counting events
- It's not that easy!
- · Assumes that we only measure the process of interest
 - All processes occur \Rightarrow will will get some background
- Assumes that we have a perfect description of our detector
 - No holes / cracks
 - · Perfect efficiency for measuring particles
 - Perfect resolution
 - No background events
 - No dependence on MC models
- · We already know that we need to correct for these issues
- \Rightarrow Cross section calculation needs modification

Cross section

John Morris

Monte Carlo

What is MC? Why use MC? MC Generation Detector Sim

Reconstruction

Reconstruction Event Properties

MC Corrections

MC Corrections Re-Weighting Tag & Probe Smearing Summary

Measurements

Cross section

Luminosity Selection Background Efficiency Results

Uncertainties

Statistical Luminosity Experimenta Modelling

Searches

Searches Higgs BSM

Cross section

Modified Cross section formula

$$\sigma = \frac{N_{obs} - N_{bkg}}{\mathcal{L} \cdot \epsilon \cdot BR}$$

• Where:

- *N*_{obs} is the number of observed events
- N_{bkg} is the number of expected background events
- \mathcal{L} is the total integrated luminosity
- ϵ is the acceptance efficiency
- BR is the branching ratio

John Morris

Monte Carlo

What is MC? Why use MC? MC Generation Detector Sim

Reconstruction

Reconstruction Event Properties

MC Corrections

MC Corrections Re-Weighting Tag & Probe Smearing Summary

Measurements

Cross section Luminosity

Selection Backgrounds Efficiency Results

Uncertainties

Statistical Luminosity Experimental Modelling

Searches

Searches Higgs BSM

Need to know the LHC luminosity

$$\sigma = \frac{N_{obs} - N_{bkg}}{\mathcal{L} \cdot \epsilon \cdot BR}$$

$$\mathcal{L} = \frac{\mu n_b f_r}{\sigma_{inel}} = \frac{\mu^{meas} n_b f_r}{\epsilon \sigma_{inel}} = \frac{\mu^{meas} n_b f_r}{\sigma_{vis}}$$

- μ is the average number of interactions per bunch crossing
- *n_b* is the number of bunches colliding at the interaction point
- *f_r* is the machine revolution frequency
- $\sigma_{\textit{inel}}$ is the total inelastic cross section
- $\mu^{meas} = \epsilon \mu$ is the measured μ
- ϵ is the detector luminosity reconstruction efficiency
- σ_{vis} is the visible cross section

Luminosity

John Morris

Monte Carlo

What is MC? Why use MC? MC Generation Detector Sim

Reconstruction

Reconstruction Event Properties

MC Corrections

MC Correction Re-Weighting Tag & Probe Smearing Summary

Measurements

Cross section

Luminosity

Selection Backgrounds Efficiency Results

Uncertainties

Statistical Luminosity Experimental Modelling

Searches

Searches Higgs BSM

Luminosity determination

$$\sigma = rac{N_{obs} - N_{bkg}}{\mathcal{L} \cdot \epsilon \cdot BR}$$

Luminosity

- · Several methods used to determine the luminosity
- LUCID used for primary result, others are cross-checks
- Instantaneous luminosity decreases over time

John Morris

Monte Carlo

What is MC? Why use MC? MC Generation Detector Sim

Reconstruction

Reconstruction Event Properties

MC Corrections

MC Correction Re-Weighting Tag & Probe Smearing Summary

Measurements

Cross section

Luminosity Selection Backgrounds Efficiency

Uncertainties

Statistical Luminosity Experimental Modelling

Searches

Searches Higgs BSM

Conclusion

ATLAS Luminosity

$$\sigma = \frac{N_{obs} - N_{bkg}}{\mathcal{L} \cdot \epsilon \cdot BR}$$

- ATLAS only records a percentage of what the LHC delivers
 - Sub-detectors not all working
 - Transition time from "Stable Beams" to recording
- Absolute luminosity known to $\approx 4\%$

62 / 105

H 5

Cross section

- ∢ ≣ ▶

John Morris

Monte Carlo

What is MC? Why use MC? MC Generation Detector Sim

Reconstruction

Reconstruction Event Properties

MC Corrections

MC Corrections Re-Weighting Tag & Probe Smearing Summary

Measurements

Cross section Luminosity Selection Backgrounds

Results

Uncertainties

Statistical Luminosity Experimenta Modelling

Searches

Searches Higgs BSM

1.41.1.1.17.1.1.1

Cross section Example

Let's work through a $t\bar{t}$ cross section measurement

- Top quark decays $t \rightarrow bW$
- W decays either W
 ightarrow q ar q or W
 ightarrow I
 u
- 3 classifications of event:
 - W
 ightarrow q ar q and W
 ightarrow q ar q Fully hadronic
 - W
 ightarrow q ar q and W
 ightarrow l
 u Semileptonic
 - $W \rightarrow l \nu$ and $W \rightarrow l \nu$ Dilepton

John Morris

Monte Carlo

What is MC? Why use MC? MC Generation Detector Sim

Reconstruction

Reconstruction Event Properties

MC Corrections

MC Corrections Re-Weighting Tag & Probe Smearing Summary

Measurements

Cross section Luminosity Selection Backgrounds

Efficiency Results

Uncertainties

Statistical Luminosity Experimenta Modelling

Searches

Searches Higgs BSM

Focus on the semileptonic classification

Cross section Example

- Final state:
 - 1 lepton e or μ . Don't use τ as it looks like a jet
 - Missing $E_{\rm T}$ from the neutrino
 - 4 jets
 - 2 of these jets are from *b*-quarks
 - Require that we have 1 jet tagged with a *b*-tagging algorithm

John Morris

Monte Carlo

What is MC? Why use MC? MC Generation Detector Sim

Reconstruction

Reconstruction Event Properties

MC Corrections

MC Corrections Re-Weighting Tag & Probe Smearing Summary

Measurements

Cross section Luminosity Selection

Efficiency Results

Uncertainties

Statistical Luminosity Experimental Modelling

Searches

Searches Higgs BSM

Event selection

Need to apply an event selection

- LHC experiments record millions of events
 - We are looking for a specific process
 - We want to select only the events of our process
- Use only good data
 - · Only use data where all components have given a green light
 - Red light if a sub-detector isn't working properly
- Trigger : Require that event passes a electron or muon trigger
- Place p_{T} and η requirements on the lepton and jets
 - Only look at areas of the detector we can measure well
- Place quality cuts on the lepton and jets
 - · Reconstruction algorithms usually class object quality
 - Only use "good" objects reject "bad" objects
- Require missing $E_{\rm T}$ for the neutrino
- Require at least 1 jet is *b*-tagged

John Morris

Monte Carlo

What is MC? Why use MC? MC Generation Detector Sim

Reconstruction

Reconstruction Event Propertie

MC Corrections

MC Correction Re-Weighting Tag & Probe Smearing Summary

Measurements

Cross section Luminosity Selection Backgrounds Efficiency

Uncertainties

Statistical Luminosity Experimenta Modelling

Searches

Searches Higgs BSM

Observed events

Number of observed events

$$\sigma = \frac{N_{obs} - N_{bkg}}{\mathcal{L} \cdot \epsilon \cdot BR}$$

- N_{obs} is relatively simple
- Apply event selection to the data
- Count how many events we observe

John Morris

Monte Carlo

What is MC? Why use MC? MC Generation Detector Sim

Reconstruction

Reconstruction Event Properties

MC Corrections

MC Corrections Re-Weighting Tag & Probe Smearing Summary

Measurements

Cross section Luminosity Selection

Backgrounds

Efficiency Results

Uncertainties

Statistical Luminosity Experimental Modelling

Searches

Searches Higgs BSM

Background events

Number of background events

$$\sigma = rac{N_{obs} - N_{bkg}}{\mathcal{L} \cdot \epsilon \cdot BR}$$

• N_{bkg} is not so simple

- How many background events have passed our selection?
- For the $t\bar{t}$ process, backgrounds are:

1

- Single Top Contains a t quark, W-boson and b-jet
- W+Jets Contains a W-boson and sometimes a b-jet
- Z+Jets Sometimes a lepton is reconstructed as a jet
- DiBoson events WW, WZ, ZZ can pass the selection
- QCD Multijets
- b-tagging algorithms have "fake-rates" and often tag light jets
- Backgrounds are estimated using MC and data-driven methods

John Morris

Monte Carlo

What is MC? Why use MC? MC Generation Detector Sim

Reconstruction

Reconstruction Event Properties

MC Corrections

MC Correction Re-Weighting Tag & Probe Smearing Summary

Measurements

Cross section Luminosity Selection

Backgrounds

Efficienc Results

Uncertainties

Statistical Luminosity Experimental Modelling

Searches

Searches Higgs BSM

Background events

Number of background events

$$\sigma = \frac{N_{obs} - N_{bkg}}{\mathcal{L} \cdot \epsilon \cdot BR}$$

MC estimation of the background

- MC is used to estimate the number of background events
- Have to trust MC cross section calculation
- Have to trust MC generation process and detector simulation
- Simply count number of MC events expected:
 - · Normalised MC events to data Luminosity
 - Put MC samples through event selection
- Done for single top, Z+Jets and DiBoson processes

John Morris

Monte Carlo

What is MC? Why use MC? MC Generation Detector Sim

Reconstruction

Reconstruction Event Properties

MC Corrections

MC Correction Re-Weighting Tag & Probe Smearing Summary

Measurements

Cross sectio Luminosity Selection

Backgrounds

Efficiency Results

Uncertainties

Statistical Luminosity Experimental Modelling

Searches

Searches Higgs BSM

Background events

Number of background events

$$\sigma = rac{N_{obs} - N_{bkg}}{\mathcal{L} \cdot \epsilon \cdot BR}$$

Data-driven estimation of the background

0

- There are processes where we don't trust the MC
- *W*+Jets process:
 - Very difficult to calculate
 - · Large theoretical uncertainties in normalisation
 - · Large theoretical uncertainties in heavy flavour composition
 - What proportion of jets are light, c, b?
- QCD Multijet processes:
 - Standard Model processes involving light quarks and gluons
 - Dominates all events at the LHC
 - We do not trust the MC

John Morris

Monte Carlo

What is MC? Why use MC? MC Generation Detector Sim

Reconstruction

Reconstruction Event Properties

MC Corrections

MC Correction Re-Weighting Tag & Probe Smearing Summary

Measurements

Cross section Luminosity Selection

Backgrounds

Efficiency Results

Uncertainties

Statistical Luminosity Experimenta Modelling

Searches

Searches Higgs BSM

Background events

Data-driven background estimation example

- Split phase space into 4 regions
- Use 2 variables
- Muon isolation variable
- Missing $E_{\rm T}$ of event

- Assume that QCD background is the same in all 4 regions
 - Big assumption \Rightarrow large uncertainties
- Count events in regions A,B & C
- Extrapolate to number of events expected in signal region D
- This is just 1 method used
 - Typically use several methods, all with different assumptions
 - Use difference of methods as a systematic

John Morris

Monte Carlo

What is MC? Why use MC? MC Generation Detector Sim

Reconstruction

Reconstruction Event Properties

MC Corrections

MC Correction Re-Weighting Tag & Probe Smearing Summary

Measurements

Cross section Luminosity Selection Backgrounds Efficiency Results

Uncertainties

Statistical Luminosity Experimental Modelling

Searches

Searches Higgs BSM

Acceptance Efficiency

$$\sigma = \frac{N_{obs} - N_{bkg}}{\mathcal{L} \cdot \epsilon \cdot BR}$$

Acceptance Efficiency

- If X number of signal events were generated
- How many make it into our final selection?
- Events fail to make the selection cuts because:
 - Events fails to fire a trigger
 - Inefficient reconstruction algorithms
 - Final state objects:
 - Have too low p_{T} to pass cuts
 - Are outside of detector volume η
 - Go into cracks or broken bits of detector
- The acceptance efficiency is calculated on the signal $t\bar{t}$ MC
 - We rely on the MC for our measurement
 - We must have high level of trust in MC

John Morris

Monte Carlo

What is MC? Why use MC? MC Generation Detector Sim

Reconstruction

Reconstruction Event Properties

MC Corrections

MC Corrections Re-Weighting Tag & Probe Smearing Summary

Measurements

Cross section Luminosity Selection Backgrounds Efficiency Results

Uncertainties

Statistical Luminosity Experimental Modelling

Searches

Searches Higgs BSM

Branching Ratio

Branching Ratio

$$\sigma = \frac{N_{obs} - N_{bkg}}{\mathcal{L} \cdot \epsilon \cdot BR}$$

- Branching ratio is process dependant
- Determined by theoretical calculation
- In the case of $t\bar{t}$, there are 3 decay types:
 - W
 ightarrow q ar q and W
 ightarrow q ar q Fully hadronic
 - W
 ightarrow q ar q and W
 ightarrow l
 u Semileptonic
 - $W \rightarrow l \nu$ and $W \rightarrow l \nu$ Dilepton
- For the semileptonic case BR = 0.543
John Morris

Monte Carlo

What is MC? Why use MC? MC Generation Detector Sim

Reconstruction

Reconstruction Event Properties

MC Corrections

MC Correction Re-Weighting Tag & Probe Smearing Summary

Measurements

Cross section Luminosity Selection Backgrounds Efficiency Results

Uncertainties Statistical

Luminosity Experimenta Modelling

Searches

Searches Higgs BSM

Control plots

Does the MC describe the data?

- · Shows the number of jets after all event selection
- Simulation histograms are stacked on top of each other
- Uncertainty is shown with hatched area
- MC does a good job of describing data

Conclusion

John Morris

Monte Carlo

What is MC? Why use MC? MC Generation Detector Sim

Reconstruction

Reconstruction Event Properties

MC Corrections

MC Correction Re-Weighting Tag & Probe Smearing Summary

Measurements

Cross section Luminosity Selection Backgrounds Efficiency Results

Uncertainties

Statistical Luminosity Experimental Modelling

Searches

Searches Higgs BSM

Control plots

Does the MC describe the data?

- Shows the leading (highest p_{T}) jet p_{T} and η
- Data / Prediction plot shown underneath
- Ideally this would be at unity, not always the case
- Keep in mind the uncertainty band and statistical uncertainties

John Morris

Monte Carlo

What is MC? Why use MC? MC Generation Detector Sim

Reconstruction

Reconstruction Event Properties

MC Corrections

MC Correction Re-Weighting Tag & Probe Smearing Summary

Measurements

Cross section Luminosity Selection Backgrounds Efficiency Results

Uncertainties

Statistical Luminosity Experimental Modelling

Searches

Searches Higgs BSM

Control plots

(人間) とうり くうり

Does the MC describe the data?

- Shows the muon from the W-boson p_{T} and η
- Data / Prediction plot shown underneath
- · Statistical fluctuations mean that a few points will be away
- from unity and outside the uncertainty band

John Morris

Monte Carlo

What is MC? Why use MC? MC Generation Detector Sim

Reconstruction

Reconstruction Event Properties

MC Corrections

MC Correction Re-Weighting Tag & Probe Smearing Summary

Measurements

Cross section Luminosity Selection Backgrounds Efficiency Results

Uncertainties

Luminosity Experimenta Modelling

Searches

Searches Higgs BSM

Conclusion

Control plots

Does the MC describe the data?

- Shows the Missing $E_{\rm T}$ and W-boson transverse mass
- MC needs to describe data across a broad range of distributions
- A good analysis should have many control plots
- A good rule is to plot every variable you cut on

John Morris

Monte Carlo

What is MC? Why use MC? MC Generation Detector Sim

Reconstruction

Reconstruction Event Properties

MC Corrections

MC Correction Re-Weighting Tag & Probe Smearing Summary

Measurements

Cross section Luminosity Selection Backgrounds Efficiency Results

Uncertainties

Statistical Luminosity Experimenta Modelling

Searches

Searches Higgs BSM

Pulling it all together

• Count events for each process and make a yield table

	Muon Channel
Data	14940
tīt (MC)	9084
Single top (MC)	980
Z+Jets (MC)	780
Diboson (MC)	59
Multijet (DD)	1310
W+Jets (DD)	2880
Backgrounds	6009
$tar{t}+Backgrounds$	15093
$t\overline{t}$ acceptance ϵ	0.0215

 $\sigma_{t\bar{t}} = 164.2 pb$

- *N_{obs}* = 14940, *N_{bkg}* = 6009
- $\epsilon = 0.0215$, BR = 0.543, $\mathcal{L} = 4.66 f b^{-1}$

Cross section

(日) (同) (日) (日)

John Morris

Monte Carlo

What is MC? Why use MC? MC Generation Detector Sim

Reconstruction

Reconstruction Event Properties

MC Corrections

MC Corrections Re-Weighting Tag & Probe Smearing Summary

Measurements

Cross section Luminosity Selection Backgrounds Efficiency Results

Uncertainties Statistical Luminosity Experimenta Modelling

Searches

Searches Higgs BSM

Can we publish yet?

$$\sigma_{t\bar{t}} = \frac{N_{obs} - N_{bkg}}{\mathcal{L} \cdot \epsilon \cdot BR} = 164.2pb$$

We have a result!

- This result is currently unusable not even close to publication
- What is the uncertainty?
 - $\sigma_{t\bar{t}} = 164.2 \pm 1.0 pb$ fantastic result! World leading
 - $\sigma_{t\bar{t}} = 164.2 \pm 150.0 pb$ Never mind, will struggle to publish

Now the real work begins

- The uncertainty on your measurement is critical
 - More important than central value
- Crudely speaking
 - Small uncertainty = Good measurement
 - Large uncertainty = Bad measurement

John Morris

Monte Carlo

What is MC? Why use MC? MC Generation Detector Sim

Reconstruction

Reconstruction Event Properties

MC Corrections

MC Correction Re-Weighting Tag & Probe Smearing Summary

Measurements

Cross section Luminosity Selection Backgrounds Efficiency Results

Uncertainties

Statistical

Experimenta Modelling

Searches

Searches Higgs BSM

Evaluating uncertainties

Determining your measurements' uncertainty

- There are, broadly speaking, 4 main categories of uncertainty
- Let's go through them individually
- Statistical
 - Determined entirely by how many signal events you have
- Luminosity
 - We only know it to $\approx 4\%$
- Experimental
 - Background estimation
 - Uncertainties from re-weighting MC
 - Uncertainties from smearing MC
- Theoretical modelling uncertainties
 - Generator, PDF, parton shower, ISR/FSR
 - Introduced in 1st lecture

John Morris

Monte Carlo

What is MC? Why use MC? MC Generation Detector Sim

Reconstruction

Reconstruction Event Properties

MC Corrections

MC Correction Re-Weighting Tag & Probe Smearing Summary

Measurements

Cross section Luminosity Selection Backgrounds Efficiency Results

Uncertainties

Statistical Luminosity Experimenta Modelling

Searches

Searches Higgs BSM

Offset Method

Adding uncertainties in quadrature

- Imagine we have 3 uncertainties, α_A , α_B and α_C
- Add uncertainties in quadrature
- Systematics tend to be asymmetrical
 - $\bullet \ \Rightarrow$ Calculate \uparrow and \downarrow contributions separately

$$\alpha_{tot} = \sqrt{\alpha_A^2 + \alpha_B^2 + \alpha_C^2} = \sqrt{\sum_i^N \alpha_i^2}$$

Offset method of combining uncertainties

- We are going to want to combine many different uncertainties
- We normally use the offset method to do this
- Change something and recalculate the final result
- Difference in results is the uncertainty

$$\alpha_{A} = \sigma_{t\bar{t}}^{Syst \ A} - \sigma_{t\bar{t}}^{Nominal}$$

80 / 105

イロト イポト イヨト イヨト

John Morris

Monte Carlo

What is MC? Why use MC? MC Generation Detector Sim

Reconstruction

Reconstruction Event Properties

MC Corrections

MC Correction Re-Weighting Tag & Probe Smearing Summary

Measurements

Cross section Luminosity Selection Backgrounds Efficiency Results

Uncertainties

Statistical

Luminosity Experimenta Modelling

Searches

Searches Higgs BSM

Statistical uncertainty

Statistical uncertainty

- Determined by number of data events you have
- $\alpha = \sqrt{N_{events}}$
- In our tt cross section
 - $N_{obs} = 14940 \Rightarrow \alpha_{N_{obs}} = \sqrt{14940} = 122.2$
 - Recalculate cross section using $N_{obs} \pm \alpha_{N_{obs}}$
 - $\sigma_{t\bar{t}}^{\textit{Stat}\uparrow} = 166.4 pb$ $\sigma_{t\bar{t}}^{\textit{Stat}\downarrow} = 162.0 pb$
- The statistical uncertainty is
 - $\alpha_{Stat\uparrow} = 166.4 164.2 = 2.2pb$
 - $\alpha_{Stat\downarrow} = 162.0 164.2 = -2.2pb$
- Our updated measurement is now:

$$\sigma_{t\bar{t}} = 164.2 \pm 2.2 \, (\text{Stat.})$$

81 / 105

イロト 不同 トイヨト イヨト

John Morris

Monte Carlo

What is MC? Why use MC? MC Generation Detector Sim

Reconstruction

Reconstruction Event Properties

MC Corrections

MC Corrections Re-Weighting Tag & Probe Smearing Summary

Measurements

Cross section Luminosity Selection Backgrounds Efficiency Results

Uncertaintie

Luminosity Experimental Modelling

Searches

Searches Higgs BSM

Luminosity uncertainty

Luminosity uncertainty

$$\sigma = rac{N_{obs} - N_{bkg}}{\mathcal{L} \cdot \epsilon \cdot BR}$$

• The Luminosity at ATLAS is only known to $\approx 4\%$

(

- Has a direct impact on the cross section
- Vary the luminosity and recalculate the cross section $\int_{-L}^{Lumi\uparrow} 152.7\pi h = \int_{-Lumi\downarrow}^{Lumi\downarrow} 175.7\pi h$
 - $\sigma^{Lumi\uparrow}_{t\bar{t}} = 152.7 pb$ $\sigma^{Lumi\downarrow}_{t\bar{t}} = 175.7 pb$
- Our updated measurement is now:

$$\sigma_{t\bar{t}} = 164.2 \pm 2.2 \, (\text{Stat.}) \pm 7.0 \, (\text{Lumi.})$$

• As $\sqrt{2.2^2 + 7.0^2} = 7.3$, adding in quadrature gives $\sigma_{t\bar{t}} = 164.2 \pm 7.3 \text{ (Stat.} \oplus \text{Lumi.)}$

John Morris

Monte Carlo

What is MC? Why use MC? MC Generation Detector Sim

Reconstruction

Reconstruction Event Properties

MC Corrections

MC Corrections Re-Weighting Tag & Probe Smearing Summary

Measurements

Cross section Luminosity Selection Backgrounds Efficiency Results

Uncertainties Statistical

Luminosity Experimental

Modelling

Searches

Searches Higgs BSM

Experiment uncertainties

Mis-modelling of the detector

- Background estimations can have significant uncertainties
- We know that data and MC do not agree out-of-the-box
- Event re-weighting:
 - Correct MC efficiencies to match data efficiencies
 - Applied to most (if not all) reconstructed objects
 - Applied to Pile-up and missing $E_{\rm T}$
- 4-vector smearing:
 - Correct MC resolutions to match data resolutions
 - Applied to most (if not all) reconstructed objects
- Each and every re-weighting/smearing has an uncertainty
- Each uncertainty needs to be accounted for in final result
- Varies between measurements according to event selection
- Clearly, different experiments will apply different re-weightings

John Morris

Monte Carlo

What is MC? Why use MC? MC Generation Detector Sim

Reconstruction

Reconstruction Event Properties

MC Corrections

MC Correction Re-Weighting Tag & Probe Smearing Summary

Measurements

Cross section Luminosity Selection Backgrounds Efficiency Results

Uncertaintie

Statistical Luminosity Experimental

Modelling

Searches

Searches Higgs BSM

Background uncertainties

Background estimation uncertainties

$$\sigma = rac{\textit{N}_{obs} - \textit{N}_{bkg}}{\mathcal{L} \ . \ \epsilon \ . \ BR}$$

- Data-driven methods tend to have large uncertainties
 - Don't trust the MC for these processes

(

- Use several different data-driven techniques
- Uncertainty often taken as difference of methods
- In the case of the $t\overline{t}$ cross section
 - QCD Multijet estimation = 1310 ± 130 events
 - W+Jets estimation = 2880 \pm 350 events
- Recalculate cross section for \uparrow and \downarrow cases
 - That's 4 more calculations from this page
- Calculate difference from the nominal result
- Add differences together in quadrature

John Morris

Monte Carlo

What is MC? Why use MC? MC Generation Detector Sim

Reconstruction

Reconstruction Event Properties

MC Corrections

MC Correction Re-Weighting Tag & Probe Smearing Summary

Measurements

Cross section Luminosity Selection Backgrounds Efficiency Results

Uncertainties

Statistical

Experimental

Modelling

Searches

Searches Higgs BSM

Experiment uncertainties

• All further uncertainties effect ϵ

$$\sigma = \frac{N_{obs} - N_{bkg}}{\mathcal{L} \cdot \epsilon \cdot BR}$$

Re-weighting and smearing

- All re-weighting routines should also provide uncertainties
 - If not, bug the author
 - If you are the author make sure you provide uncertainties
- Simply a case of re-running over your MC N times
 - Where N is the total number of possible variations \uparrow and \downarrow
 - Use different weights each time to reflect different uncertainties
 - Recalculate cross section
 - · Calculate difference from the nominal result
 - Add differences together in quadrature

John Morris

Monte Carlo

What is MC? Why use MC? MC Generation Detector Sim

Reconstruction

Reconstruction Event Properties

MC Corrections

MC Correction Re-Weighting Tag & Probe Smearing Summary

Measurements

Cross section Luminosity Selection Backgrounds Efficiency Results

Uncertaintie

Statistical Luminosity Experimental Modelling

Searches

Searches Higgs BSM

Theoretical uncertainties

Theoretical modelling uncertainties

- Theoretical understanding (or lack of it) of what is happening
- See 1st lecture for introduction to
 - Calculation of matrix element
 - Parton Density Function (PDF) of the proton
 - Parton showing and hadronisation
 - Initial and final state radiation (ISR/FSR)
- Typically evaluated by using different signal MC samples
 - $\alpha_{\textit{Theo.}}$ is often not simply the difference from the nominal
 - · For some prescriptions you take half the difference
 - Let's look at the PDF for a complicated case
- Should be common across experiments
 - Reality is that ATLAS and CMS do things differently
 - Working group set up
 - Expect convergance in 20XY

John Morris

Monte Carlo

What is MC? Why use MC? MC Generation Detector Sim

Reconstruction

Reconstruction Event Properties

MC Corrections

MC Correction Re-Weighting Tag & Probe Smearing Summary

Measurements

Cross section Luminosity Selection Backgrounds Efficiency Results

Uncertainties

Statistical Luminosity Experimental Modelling

Searches

Searches Higgs BSM

PDF uncertainties

The PDF4LHC prescription

- Test 3 different PDF sets
 - CTEQ (Nominal), MSTW and NNPDF
- Each PDF set gives an event weight, based on EventNumber
- The first weight is the PDF nominal value, followed by n different tests varying a PDF eigenvector $\pm 1\sigma$
- Uncertainties are calculated differently for each PDF set
- Total uncertainty is $\frac{1}{2}$ the envelope
- Nominal cross section does not enter systematic

	PDF Set		
	CTEQ	MSTW	NNPDF
N Weights	53	41	101
N PDF eigenvectors varied $\pm 1\sigma$	26	20	50
Uncertainty method	Symmetric	Asymmetric	Standard
	Hessian	Hessian	Deviation

John Morris

Monte Carlo

What is MC? Why use MC? MC Generation Detector Sim

Reconstruction

Reconstruction Event Properties

MC Corrections

MC Corrections Re-Weighting Tag & Probe Smearing Summary

Measurements

Cross section Luminosity Selection Backgrounds Efficiency Results

Uncertainties

Statistical Luminosity Experimenta Modelling

Searches

Searches Higgs BSM

Conclusion

PDF uncertainties

The PDF4LHC prescription

• If:

- $X_0 = \text{Nominal PDF cross section (first weight, not our <math>\sigma_{t\bar{t}}$)
- $X_i^{\pm} = \text{PDF}$ eigenvector test *i*, varying the eigenvector by $\pm 1\sigma$
- \bar{X} = Mean of all PDF eigenvectors (Used for NNPDF)
- N = AII PDF eigenvectors. This does not include the first value

• Then :

• CT10
$$\alpha = \frac{1}{2} \sqrt{\sum_{i=1}^{N/2} (X_i^+ - X_i^-)^2}$$

• MSTW
$$\alpha^{\uparrow} = \sqrt{\sum_{i=1}^{N} (X_i - X_0)^2}$$
 : if $(X_i - X_0) > 0$

• MSTW $\alpha^{\downarrow} = \sqrt{\sum_{i=1}^{N} (X_i - X_0)^2}$: if $(X_i - X_0) < 0$

• NNPDF
$$\alpha = \sqrt{\frac{1}{N-1}\sum_{i=1}^{N} \left(\bar{X} - X_i\right)^2}$$

John Morris

Monte Carlo

What is MC? Why use MC? MC Generation Detector Sim

Reconstruction

Reconstruction Event Properties

MC Corrections

MC Correction Re-Weighting Tag & Probe Smearing Summary

Measurements

Cross section Luminosity Selection Backgrounds Efficiency Results

Uncertainties

Statistical Luminosity Experimental Modelling

Modelling

Searches

Searches Higgs BSM

- CTEQ = 170.5 ± 5.0 pb
 - $MSTW = 168.0^{+2.6}_{-2.2} \text{ pb}$
 - NNPDF = 166.8 ± 1.7 pb

PDF uncertainties

- Envelope Up = 175.5 pb
 - Envelope Down = 165.1 pb
- $\frac{1}{2}$ Envelope = 5.2 pb (3.07%)

・ロ 、 ・ (日)、 く 注 、 く 注 、 う え (つ) 89 / 105

John Morris

Monte Carlo

What is MC? Why use MC? MC Generation Detector Sim

Reconstruction

Reconstruction Event Properties

MC Corrections

MC Corrections Re-Weighting Tag & Probe Smearing Summary

Measurements

Cross section Luminosity Selection Backgrounds Efficiency Results

Uncertainties

Statistical Luminosity Experimental Modelling

Searches

Searches Higgs BSM

Combining electron and muon channels

- Do not want a electron results and a muon result
- · Want to combine the channels together
- Relatively simple to do:
 - · Add event yields from electron and muon channels
- Must do this for each systematic
 - Takes into account correlations

Combining channels

John Morris

Monte Carlo

What is MC? Why use MC? MC Generation Detector Sim

Reconstruction

Reconstruction Event Properties

MC Corrections

MC Corrections Re-Weighting Tag & Probe Smearing Summary

Measurements

Cross section Luminosity Selection Backgrounds Efficiency Results

Uncertainties

Statistical Luminosity Experimental Modelling

Searches

Searches Higgs BSM

Full systematic table

	Relative cross section uncertainty [%]			
Source	e+jets	$\mu+jets$	Combined	
Statistical Uncertainty	± 1.5	± 1.3	±1.0	
Object selection				
Lepton energy resolution	+0.4 /-0.3	+0.2 /-0.1	+0.2 /-0.1	
Lepton reco, ID, trigger	+2.4 /-2.5	+1.5 /-1.5	+1.7 /-1.8	
Jet energy scale	+3.8 /-4.3	+3.2 /-3.6	+3.5 /-3.8	
Jet energy resolution	± 0.2	± 0.5	± 0.2	
Jet reconstruction efficiency	± 0.06	± 0.06	± 0.06	
Jet vertex fraction	+1.2 /-1.4	+1.2 /-1.4	+1.2 /-1.4	
$E_{\mathrm{T}}^{\mathrm{miss}}$ uncertainty	± 0.06	± 0.08	± 0.07	
SMT muon reco, ID	± 1.3	\pm 1.3	±1.3	
SMT muon $\chi^2_{ m match}$ efficiency	± 0.6	± 0.6	± 0.6	
Background estimates				
Multijet normalisation	\pm 5.2	\pm 3.9	\pm 4.4	
W+jet normalisation	\pm 5.2	\pm 5.7	\pm 5.5	
Other bkg normalisation	\pm 0.2	\pm 0.2	\pm 0.1	
Other bkg systematics	+1.6 /-1.5	+2.5 /-2.0	+2.2 /-1.8	
Signal simulation				
$b ightarrow \mu X$ Branching ratio	+2.9 /-3.0	+2.9 /-3.1	+2.9 /-3.1	
ISR/FSR	\pm 2.4	\pm 0.9	\pm 1.5	
PDF	\pm 3.2	\pm 3.0	\pm 3.1	
NLO generator	\pm 3.2	\pm 3.2	\pm 3.2	
Parton shower	\pm 2.2	\pm 2.2	± 2.2	
Total systematics	± 11.2	±10.2	± 10.5	
Integrated luminosity	± 3.8	± 3.8	± 3.8	

- * ロ > * 個 > * 注 > * 注 >

- DQ (

э

John Morris

Monte Carlo

What is MC? Why use MC? MC Generation Detector Sim

Reconstruction

Reconstruction Event Properties

MC Corrections

MC Corrections Re-Weighting Tag & Probe Smearing Summary

Measurements

Cross section Luminosity Selection Backgrounds Efficiency Results

Uncertainties

Statistical Luminosity Experimental Modelling

Searches

Searches Higgs BSM

The final result

- Combining the electron and muon channels
- The final cross section for $t\bar{t}$ at $\sqrt{s} = 7 \text{ TeV}$ is

 $\sigma_{t\bar{t}} = 165 \pm 2(\text{Stat.}) \pm 17(\text{Syst.}) \pm 7(\text{Lumi.}) \text{ pb}$

- The theoretical calculation is $\sigma^{Theo.}_{t\bar{t}} = 167^{+17}_{-18} \label{eq:scalar}$
- Majority of measurement is evaluating systematics
- · Uncertainty tells you the precision of a measurement

Final result

John Morris

Monte Carlo

What is MC? Why use MC? MC Generation Detector Sim

Reconstruction

Reconstruction Event Properties

MC Corrections

MC Correction Re-Weighting Tag & Probe Smearing Summary

Measurements

Cross section Luminosity Selection Backgrounds Efficiency Results

Uncertainties

Statistical Luminosity Experimenta Modelling

Searches

Searches Higgs BSM

Searches & Exclusions

Searches & Exclusions

- Cross sections are a basic measurement
 - They are still very involved and complex
 - Must be measured
 - We have to understand the Standard Model before we search for physics beyond the Standard Model
- The *LHC* is a discovery machine
- Designed to search for the Higgs and BSM physics
 - Exciting PhD topics with plenty of work that needs doing
- We search for new physics and there are 2 options:
 - Discovery!!
 - 2 No discovery exclude a theory within certain limits
- Option 2 is by far the most common

John Morris

Monte Carlo

What is MC? Why use MC? MC Generation Detector Sim

Reconstruction

Reconstruction Event Properties

MC Corrections

MC Corrections Re-Weighting Tag & Probe Smearing Summary

Measurements

Cross section Luminosity Selection Backgrounds Efficiency Results

Uncertainties

Statistical Luminosity Experimental Modelling

Searches

Searches Higgs BSM

Searches & Exclusions

Methods for searching for new physics

- Bump hunting
 - Plot invariant mass distributions
 - Understand the backgrounds
 - · Look for a localised excess of events a bump
 - Statistical analysis
 - \Rightarrow New particle \Rightarrow Higgs candidate
- Gradient searches
 - Plot mass or $p_{\rm T}$ distributions
 - Understand the backgrounds
 - Study gradient of distribution
 - Deviation from SM prediction could indicate
 - Quark compositness quark sub-structure
 - Extra dimensions
 - TeV gravity

John Morris

Monte Carlo

What is MC? Why use MC? MC Generation Detector Sim

Reconstruction

Reconstruction Event Properties

MC Corrections

MC Correction Re-Weighting Tag & Probe Smearing Summary

Measurements

Cross section Luminosity Selection Backgrounds Efficiency Results

Uncertainties

Statistical Luminosity Experimenta Modelling

Searches

Searches Higgs BSM

Search for the Higgs boson

- This is not a definitive Higgs analysis
 - Only a quick overview
- ATLAS Higgs search combines results from 5 channels
 - $H \rightarrow ZZ \rightarrow 4\ell$
 - $H \rightarrow \gamma \gamma$
 - $H \rightarrow WW \rightarrow e \nu \mu \nu$
 - $H \rightarrow bb$
 - $H \rightarrow \tau \tau$
- · Combined with advanced statistical techniques
 - More complex than cross section $e + \mu$ combination
- Combined result provides greater significance to the result
 - No individual channel provides a $\sigma = 5.0$ discovery
 - But the combination.....

95 / 105

John Morris

Monte Carlo

What is MC? Why use MC? MC Generation Detector Sim

Reconstruction

Reconstruction Event Properties

MC Corrections

MC Correction Re-Weighting Tag & Probe Smearing Summary

Measurements

Cross section Luminosity Selection Backgrounds Efficiency Results

Uncertainties

Statistical Luminosity Experimenta Modelling

Searches

Searches Higgs BSM

Search for the Higgs boson $H \rightarrow \gamma \gamma$

Higgs

イロト イポト イヨト イヨト

- · Weighted data from 2011 and 2012 shown with background
- Invariant mass of 2 photons
- Clear bump observed around 125 GeV
 - Is is statistically significant? Not by itself

96 / 105

John Morris

Monte Carlo

What is MC? Why use MC? MC Generation Detector Sim

Reconstruction

Reconstruction Event Properties

MC Corrections

MC Correction Re-Weighting Tag & Probe Smearing Summary

Measurements

Cross section Luminosity Selection Backgrounds Efficiency Results

Uncertainties

Statistical Luminosity Experimenta Modelling

Searches

Searches Higgs BSM

Conclusion

Search for the Higgs boson $H \rightarrow 4\ell$

- Data from 2011 and 2012 shown with background
- Invariant mass of 4 leptons
- Bump observed around 125 GeV
 - Only a few events, but are they significant? Not by themselves

John Morris

Monte Carlo

What is MC? Why use MC? MC Generation Detector Sim

Reconstruction

Reconstruction Event Properties

MC Corrections

MC Correction Re-Weighting Tag & Probe Smearing Summary

Measurements

Cross section Luminosity Selection Backgrounds Efficiency Results

Uncertainties

Statistical Luminosity Experimenta Modelling

Searches

Searches Higgs BSM

Higgs boson - Combining results

- Global signal strength
 - $\mu = 0$ corresponds to background-only hypothesis
 - $\mu = 1$ corresponds to SM Higgs + background hypothesis
- Combined result appears to be in excess of SM Higgs
 - Uncertainties are still to large
 - Result is consistent with SM Higgs hypothesis

John Morris

Monte Carlo

What is MC? Why use MC? MC Generation Detector Sim

Reconstruction

Reconstruction Event Properties

MC Corrections

MC Correction Re-Weighting Tag & Probe Smearing Summary

Measurements

Cross section Luminosity Selection Backgrounds Efficiency Results

Uncertainties

Statistical Luminosity Experimenta Modelling

Searches

Searches Higgs BSM

Higgs boson - Combined p₀ result

- *p*₀ is the probability that the background can produce a fluctuation greater or equal to the excess observed in data
- Dotted line shows SM Higgs + background hypothesis
- In range 122-131 GeV, $p_0 = 1.7 \times 10^{-9}$ corresponding to $\sigma = 5.9$
 - $\sigma = 5.0$ is the de-facto standard for discovery in physics

John Morris

Monte Carlo

What is MC? Why use MC? MC Generation Detector Sim

Reconstruction

Reconstruction Event Properties

MC Corrections

MC Correction Re-Weighting Tag & Probe Smearing Summary

Measurements

Cross section Luminosity Selection Backgrounds Efficiency Results

Uncertainties

Statistical Luminosity Experimenta Modelling

Searches

Searches Higgs BSM

Higgs Excluding the Higgs boson via *CL*s

- CL_s is a method used to exclude theories
- "It is our duty to be sceptical i.e. to try to falsify or exclude and this is not the same as, but rather complementary to, the determination of confidence intervals" - A.L. Read (2000)
- All Higgs masses below the blue dotted line are excluded at 95%

John Morris

Monte Carlo

What is MC? Why use MC? MC Generation Detector Sim

Reconstruction

Reconstruction Event Properties

MC Corrections

MC Correction Re-Weighting Tag & Probe Smearing Summary

Measurements

Cross section Luminosity Selection Backgrounds Efficiency Results

Uncertainties

Statistical Luminosity Experimenta Modelling

Searches

Searches Higgs BSM

Recent Higgs results

ATLAS Higgs results

- Mass of new particle $M_H = 126 \pm 0.4\,\mathrm{(Stat.)} \pm 0.4\,\mathrm{(Syst.)}$ GeV
- Signal strength parameter $\mu = 1.4 \pm 0.3$ is consistent with SM Higgs hypothesis
- $p_0 = 1.7 \times 10^{-9}$ corresponding to $\sigma = 5.9$
- New particle decays to pairs of vector bosons whose net electric charge is zero \Rightarrow It's a neutral boson
- Observation in diphoton $(H \rightarrow \gamma \gamma)$ disfavours spin-1 hypothesis
- More data needed

CMS Higgs results

- Mass of new particle $M_H = 125.3 \pm 0.4 \, ({
 m Stat.}) \pm 0.5 \, ({
 m Syst.})$ GeV
- Local excess observed with $\sigma = 5.0$
- Observation in diphoton $(H
 ightarrow \gamma \gamma)$ disfavours spin-1 hypothesis
- More data needed

John Morris

Monte Carlo

What is MC? Why use MC? MC Generation Detector Sim

Reconstruction

Reconstruction Event Properties

MC Corrections

MC Correction Re-Weighting Tag & Probe Smearing Summary

Measurements

Cross section Luminosity Selection Backgrounds Efficiency Results

Uncertainties

Statistical Luminosity Experimental Modelling

Searches

Searches Higgs BSM

Beyond the standard model

Higgs isn't the only game in town

- ATLAS and CMS are involved in many searches
- Super Symmetry (SUSY)
 - Many many different models
 - ≈ 1.3 models per SUSY theorist (some have more than 1)
- Extra dimensions
 - How many extra dimensions?
 - What are their scale?
 - How strong is gravity in these dimensions?
- Additional Bosons Z' and W'
- Additional Quarks b' and t'
- Quark compositness
- All analysis are producing exclusion plots

John Morris

Why use MC? MC Generation

MC Corrections Re-Weighting Tag & Probe Smearing

Modelling

BSM

SUSY Exclusions

ATLAS SUSY Searches* - 95% CL Lower Limits (Status: HCP 2012)

MSUGRA/CMSSM : 0 lep + i's + F-		
MSUGRA/CMSSM : 1 lep + i's + E-		
Pheno model : 0 len + i's + F-	(155.8 th) 8 TAY (ATL 8.5 CONF. 2013-108) 118 TAY 0 (MSS. (mG) < 2 TAY (MSS. 2)	LAS
Pheno model : 0 lep + i's + F-	(#53.01) STAVIATIAS-CONF-2012-1001 138 TeV 0 (MOISS (mOIS - 2 TeV Entry)) Prei	liminary
Gluino med $\bar{x}^{\pm}(\bar{a} \rightarrow a \bar{a} \bar{x}^{\pm}): 1 \text{ len } + i's + E$	(=4.7 th ² .7 Tay (1200 4600) 900 Gay (0.00 Ga	-
CMSB (I NI SP) : 2 lon (OS) + i's + F	(#4.7 th ⁻¹ ,7 Tay 1208 4648) 124 Tay 0 mass (Jan S 15)	
SMSB (τ NLSP): 1-2 τ + 0-1 lep + is + $F^{T,miss}$	1 = 4 7 th ⁻¹ 7 Tay (1316 1314) 1 20 Tay (1998 5 20)	
GGM (bino NLSP) : yy + E ^{T,miss}	Last 0 ¹ ,7 Tev (1209 0753) 107 TeV (1 mass (m ³)) - 50 GeV/	0.4-1
GGM (wino NLSP) : $\gamma + lep + E^{T miss}$	Lot = (2.1 - 13)	.0) 10
GGM (higgsino-bino NLSP) ; $\gamma + b + E^{T,miss}$		8 TeV
GGM (higgsing NLSP) : Z + jets + F	(#54.0%) a Tev (ATLAS-CONE-2012-152) 690 GeV (0 mASS (mH) > 200 GeV)	0 10 4
Gravitino I SP : 'monoiet' + E-	$f_{12}^{(1)} = 50^{-2} = 50^{-2} = 10^{-2} =$	
$\tilde{a} \rightarrow b \bar{b} \bar{x}^0$ (virtual b): 0 len + 3 b-i's + E	$(\pi 128 \text{ try}^3 \text{ try})$ A Try (ATLAS, CONF-2012.144) 124 Try \tilde{Q} (MASS, $(m \gamma^2) < 200 \text{ GeV}$)	
a strain (virtual t) : 2 lon (SS) + is + E	1 = 5 = 0 ⁺¹ = Tay (at 1 = 5 - 0 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 =	
g strip (virtualit): 2 lop + i's + E	1 11 0 0 ⁻¹ 5 Tayl (41) 45 CONE 2013 (51) BED GAY 0 Marcs (m ^C) < 300 Gay) 8 TeV 1	results
a star (virtualit) : 0 lon + multi lo + E		
g→tty (virtualt): 0 lop + 2 b in + 5		results
g-stry, tvirtual(), 0 lep + 3 b-j s + C r miss		
bb b vtil 2 lon + 10 + E		
tt (ven light) the bit 2 len + E		
tt (light) t shut 1/2 lon + b int + F		
tt (modium) t stro : 2 lon + b iot + E	$L = 1.0^{-1}$ Try (120) 2102 123 123 10 1000 111125 (10(7) - 50 000) = 0.1	
It (medium), $t \rightarrow t\chi$, 2 lep + b-jet + $E_{T,miss}$	246-305 GeV (THISSS (M)() = 0)	
$iii (heavy), i \rightarrow i\chi_0$. Thep + b-jet + E _{T miss}		
tt (neavy), t (2, 10 tep + b-jet + ET miss	244,10,7 (1206,144) 310-403 (407,147,147,147,147,147,147,147,147,147,14	
triplatural comoby . 2(
$I_{L}I_{L}, \rightarrow I\chi$: 2 lep + $E_{T,miss}$		
$\pi^{\pm} 0^{0} \chi_{1} \chi_{2} \chi_{1} \rightarrow W(W) \rightarrow W\chi_{1} 2 \log \pi E_{T,miss}$		
$\chi_1 \chi_2 \rightarrow 1_{\downarrow 0} ((vv), (v), (v)) (vv)$. 3 lep $+ E_{T,miss}$	Let us a seven the second sec	
$\chi \chi \rightarrow w \chi \chi \chi$, step $\tau E_{T,miss}$		
Direct X, pair prod. (AWBB) . long-lived X		
Stable g R-hadrons : low p, py (full detector)	244,10,716/[1211.1397] 390 (64 g) (1135	
Stable t R-hadrons : low p, py (full detector)		
GMSB : stable t	244.16 / 16/ [1211.1597] 300 GeV (TitleSS (5 4 mp < 20)	
$\chi \rightarrow qq\mu (RPV) : \mu + heavy displaced vertex$	L=4416_7 TeV [210.7451] 700 GeV q TRaSS (0.3×10 <a<sub>215 <1.5×10 , 1mm < cr < 1 m, g decoupled)</a<sub>	
LFV : $pp \rightarrow v_t + X, v_t \rightarrow e + \mu$ resonance	L=4.6 b, 7 teV [Presiminary] 1.61 teV V_{q} [fields $(\lambda_{211}^{+0.00}, \lambda_{112}^{+0.00}, \lambda_{112}^{+0.00})$	
LFV : $pp \rightarrow v_+X, v \rightarrow e(\mu)+\tau$ resonance	L=4615.7 TeV [Presiminary] 1.10 TeV V THASS (x ₃₁₁ =0.10, x ₁₀₂₀ =0.05)	
bilinear RFV GWSSWI. Tiep + 7 js + E _{7 miss}	L=4.76 , 71eV [ATLAS-CON-2012-160] 1.2 (eV q - g (Hass (ct _{LB} + 1 mm)	
$\chi_1 \chi_2 \chi_2 \rightarrow v v \chi_1, \chi_2 \rightarrow e e v_{\mu}, e \mu v_2 : 4 i e p + E_{T,miss}$	L=13.0 fb ; 8 TeV [ATLAS-CONF-2012-153] 700 GeV (X)> 300 GeV (X)> 300 GeV (X)> 0)	
$l_{1}l_{1}, l_{1} \rightarrow l\chi_{1}, \chi_{1} \rightarrow eev_{\mu}, e\mu v_{\mu}: 4 lep + E_{T,miss}$	L=13.0 fb ; 8 fev [ATLAS-CONP-2012-153] 450 GeV 1111355 $(m \chi_{1}) > 100 \text{ GeV}, m(l_{1}) = m(l_{1}), \lambda_{121} \text{ or } \lambda_{122} > 0$	
g → qqq : 3-jet resonance pair	L=4.6 fb ; 7 feV [1210.4613] 0080 GeV g m355	
interaction (D5 Dirac x): 'monoiet' + E	L=4.6 fb ⁻ , 7 TeV [1210.4826] 100-287 GeV SGIUON TRASS (Incl. limit from 1110.2893)	
T,miss	L=10.5 fb*, 8 TeV [ATLAS-CONF-2012-147] 704 GeV [M* \$Calle (m _z < 80 GeV, limit of < 687 GeV for (28)	
	10-1 1 10	

*Only a selection of the available mass limits on new states or phenomena shown. All limits quoted are observed minus 1 a theoretical signal cross section uncertainty

MSUGRA/CMSSM: 1 Pheno model : 0 Pheno model : 0 Gluino med. $\bar{\chi}^{\pm} (\bar{q} \rightarrow q \bar{q} \bar{\chi}^{\pm})$: 1 GMSB (Î NLSP) : 2 lep (C GMSB (T NLSP) : 1-2 t + 0-1 GGM (bino NL GGM (wino NLSP) GGM (higgsino-bino NLSP GGM (higgsing NLSP) ; Gravitino LSP : 'r

ĝ→qqq:3-je Scalar gluon : 2-je WIMP interaction (D5, Dirac x) : 'r

5d

gen.

EW

Lang-lived

Mass scale [TeV]

John Morris

Why use MC? MC Generation

Reconstruction

Re-Weighting Tag & Probe Smearing

Cross section

Modelling

Searches BSM

	Large ED (ADD) : monojet + E _{T,niss}	L=4.7 fb
62	Large ED (ADD) : diphoton & dilepton, m	1=4.6 fb
0	UED : diphoton + E	L=4.8 fb
1JSI	S ¹ /Z, ED : dilepton, m	L=4.9-5.0
юu	RS1 : diphotoň & dilepton, m	L=4.7-5.0
ii)	RS1 : ZZ resonance, m	L=1.0 fb
a	RS1 : WW resonance, m _{T,kin}	L=4.7 fb
xt	RS $g \rightarrow \pi$ (BR=0.925) : $\pi \rightarrow 1$ +jets, $m_{\pi,\text{boosted}}$	L=4.7 fb'
ш	ADD BH (M _{TH} /M _D =3) : SS dimuon, N _{ch, part}	L=1.3 fb'
	ADD BH (M _{TH} /M _D =3) . leptons + jets, 2p Quantum black hole : dijet E (m)	L=1.0 fb
	quantum black hole . uljet, P (m)	L=4.7 fb
77	and CL: ee & uu m	L=4.8 fb
0	uutt CL: SS dilenton + iets + F.	1-49-5.0
	Z' (SSM) : m	(=5.9.6.1
	Z' (SSM) : m_	L=4.7 fb
,	W' (SSM) ; m ₁₋₁	L=4.7 fb
>	$W' (\rightarrow tq, g_p=1): m_{tn}^{m_{tn}}$	L=4.7 fb
	$W'_R (\rightarrow tb, S'SM) : m_n$	L=1.0 fb
	W* : m _{Tela}	L=4.7 fb
\sim	Scalar LQ pair (β=1) : kin. vars. in eejj, evjj	L=1.0 fb
3	Scalar LQ pair (β=1) : kin. vars. in μμjj, μvjj	L=1.0 fb
	Scalar LQ pair (β=1) : kin. vars. in ττjj, τvjj	L=4.7 fb
ks	4 th generation : t't'→ WbWb	L=4.7 fb
JB	4" generation : D'D'(1 153) → WtWt	L=4.7 fb
dn	Top portport: TT \downarrow # + A A (dilepton M)	L=2.0 fb
≥	Top parallel : $T1 \rightarrow t1 + A_0A_0$ (dilepton, M_{T2})	L=4.7 fb
e l	Vector-like quark : NC m	L=4.6 fb
	Excited guarks : y-iet resonance, m	1-4.6 10
in cit	Excited quarks : dijet resonance m.	1=13.0.0
щã	Excited lepton : I-y resonance, m	L=13.0 ft
	Techni-hadrons (LSTC) : dilepton, martin	L=4.9-5.0
	Techni-hadrons (LSTC) : WZ resonance (vIII), m	L=1.0 fb
5	Major. neutr. (LRSM, no mixing) : 2-lep + jets	L=2.1 fb
the	W _R (LRSM, no mixing) : 2-lep + jets	L=2.1 fb
0	H_{L}^{cc} (DY prod., BR($H^{dc} \rightarrow II$)=1): SS ee (µµ), m	L=4.7 fb
	H^{m} (DY prod., BR($H^{m} \rightarrow eu$)=1); SS eu, m	1 = 4 7 (0)

Other Exclusions

ATLAS Exotics Searches* - 95% CL Lower Limits (Status: HCP 2012)

	CT T T T T T T T T T T T T T T T T T T			
Large ED (ADD) : monojet + ET mine	L=4.7 fb ⁻¹ , 7 TeV [1210.4491]	4.37 TeV	M _p (δ=2)	
Large ED (ADD) : monophoton + E	L=4.6 fb ⁻¹ , 7 TeV [1209.4625]	1.93 TeV M _☉ (δ=2)		
e ED (ADD) : diphoton & dilepton, manual	L=4.7 fb ⁻¹ , 7 TeV [1211.1150]	4.18 TeV	M_s (HLZ δ =3, NLO)	AILAS
UED : diphoton + E T miss	L=4.8 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-072]	1.41 TeV Compact. scal	e R ⁻¹	Preliminary
S ¹ /Z, ED ; dilepton, m.	L=4.9-5.0 fb ⁻¹ , 7 TeV [1209.2535]	4.71 Te	M _{ox} ~ R ⁻¹	
RS1 : diphoton & dilepton, manual	L=4.7-5.0 fb ⁻¹ , 7 TeV [1210.8389]	2.23 TeV Gravito	n mass $(k/M_{p_1} = 0.1)$	
RS1 : ZZ resonance, m	L=1.0 fb ⁻¹ , 7 TeV [1203.0718]	845 GeV Graviton mass (k/Mp	= 0.1)	
RS1 : WW resonance, m _{7.k/r}	L=4.7 fb ⁻¹ , 7 TeV [1208.2880]	1.23 TeV Graviton mass ($k/M_{Pl} = 0.1$ Ldt =	(1.0 - 13.0) fb ⁻¹
$g_{KK} \rightarrow tt (BR=0.925) : tt \rightarrow I+jets, m_{Theosterl}$	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-136]	1.9 TeV g _{KX} mass	J	- 7 0 T-V
D BH (M _{TH} /M _D =3) : SS dimuon, N _{ch. part.}	L=1.3 fb ⁻¹ , 7 TeV [1111.0080]	1.25 TeV M _D (δ=6)		s = 7, o lev
D BH $(M_{TH}/M_D=3)$: leptons + jets, Σp_T	L=1.0 fb ⁻¹ , 7 TeV [1204.4646]	1.5 TeV M _D (δ=6)		
Quantum black hole : dijet, F, (m)	L=4.7 fb ⁻¹ , 7 TeV [1210.1718]	4.11 TeV	$M_D(\delta=6)$	
qqqq contact interaction : $\chi(m)$	L=4.8 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-038]		7.8 TeV A	
qqll Cl : ee & μμ, mੈ	L=4.9-5.0 fb ⁻¹ , 7 TeV [1211.1150]		13.9 TeV A (cons	structive int.)
uutt CI : SS dilepton + jets + E _{T.miss}	L=1.0 fb ⁻¹ , 7 TeV [1202.5520]	1.7 TeV A		
Z' (SSM) : m _{ee/µµ}	L=5.9-6.1 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-129]	2.49 TeV Z' ma	ss	
Z' (SSM) : m _{rr}	L=4.7 fb ⁻¹ , 7 TeV [1210.6604]	1.4 TeV Z' mass		
W' (SSM) : m _{1.e/a}	L=4.7 fb ⁻¹ , 7 TeV [1209.4446]	2.55 TeV W' ma	ass	
$W' (\rightarrow tq, g_p=1) : m_{tq}$	L=4.7 fb ⁻¹ , 7 TeV [1209.6593] 4	30 GeV W' mass		
$W'_R (\rightarrow tb, SSM) : m_{tb}$	L=1.0 fb ⁻¹ , 7 TeV [1205.1016]	1.13 TeV W mass		
W* : m _{Tela}	L=4.7 fb ⁻¹ , 7 TeV [1209.4446]	2.42 TeV W* ma	ISS	
lar LQ pair (β=1) : kin. vars. in eejj, evjj	L=1.0 fb ⁻¹ , 7 TeV [1112.4828]	660 Gev 1 ^{ed} gen. LQ mass		
ılar LQ pair (β=1) : kin. vars. in μμjj, μvjj	L=1.0 fb ⁻¹ , 7 TeV [1203.3172]	685 Gev 2 rd gen. LQ mass		
alar LQ pair (β=1) : kin. vars. in ττjj, τvjj	L=4.7 fb ⁻¹ , 7 TeV [Preliminary]	538 GeV 3 rd gen. LQ mass		
4 th generation : t't'→ WbWb	L=4.7 fb ⁻¹ , 7 TeV [1210.5468]	656 GeV t' mass		
4 [™] generation : b'b'(T _{sr3} T _{5r3})→ WtWt	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-130]	670 GeV b' (T a) mass		
New quark b' : b'b' \rightarrow Zb+X, m _{2b}	L=2.0 fb ⁻¹ , 7 TeV [1204.1265] 40	Gev b' mass		
partner : TT \rightarrow tt + A ₀ A ₀ (dilepton, M ₁₂)	L=4.7 fb ⁻¹ , 7 TeV [1209.4186]	483 GeV T mass (m(A ₀) < 100 GeV)		
Vector-like quark : CC, mivg	L=4.6 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-137]	1.12 TeV VLQ mass (charg	e -1/3, coupling $\kappa_{qQ} = v/m_Q$)
Vector-like quark : NC, m _{liq}	L=4.6 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-137]	1.08 TeV VLQ mass (charge	$\ge 2/3$, coupling $\kappa_{q0} = v/m_0$)	
Excited quarks : y-jet resonance, m	L=2.1 fb ⁻¹ , 7 TeV [1112.3580]	2.46 TeV q* ma	SS	
Excited quarks : dijet resonance, m	L=13.0 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-148]	3.84 TeV	q* mass	
Excited lepton : I-y resonance, m	L=13.0 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-146]	2.2 TeV I* mass	$(\Lambda = m(I^*))$	
echni-hadrons (LSTC) : dilepton, mee/up	L=4.9-5.0 fb ⁻¹ , 7 TeV [1209.2535]	850 GeV ρ_{γ}/ω_{T} mass $(m(\rho_{\gamma}/\omega_{T})$	$-m(\pi_T) = M_{VV}$	
ons (LSTG) : WZ resonance (VIII), m	L=1.0 fb ⁻¹ , 7 TeV [1204.1648]	483 GeV ρ_{T} mass $(m(\rho_{T}) = m(\pi_{T}) + m_{W}$,	$m(a_{T}) = 1.1 m(\rho_{T}))$	
. neutr. (LRSM, no mixing) : 2-lep + jets	L=2.1 fb ⁻¹ , 7 TeV [1203.5420]	1.5 TeV N mass (m(V	/ _R) = 2 TeV)	
W _R (LRSM, no mixing) : 2-lep + jets	L=2.1 fb ⁻¹ , 7 TeV [1203.5420]	2.4 TeV W _R ma	ass (m(N) < 1.4 TeV)	
Y prod., BR(H \rightarrow II)=1): SS ee (µµ), m	L=4.7 fb ⁻¹ , 7 TeV [1210.5070] 40	9 Gev H ² mass (limit at 398 GeV for µ	μ)	
(DT prod., BR($H^- \rightarrow e\mu$)=1): SS $e\mu$, $m_{e\mu}$	L=4.7 fb ⁻¹ , 7 TeV [1210.5070] 375	Gev H ^{2*} mass		
Color octet scalar : dijet resonance, mj	L=4.8 fb", 7 TeV [1210.1718]	1.86 TeV Scalar res	onance mass	
	10"	1	10	10 ²
			Mac	s scale [Te\/]
			IVIAS	

*Only a selection of the available mass limits on new states or phenomena shown

イロト イポト イヨト イヨト э

John Morris

Monte Carlo

What is MC? Why use MC? MC Generation Detector Sim

Reconstruction

Reconstruction Event Properties

MC Corrections

MC Corrections Re-Weighting Tag & Probe Smearing Summary

Measurements

Cross section Luminosity Selection Backgrounds Efficiency Results

Uncertainties

Statistical Luminosity Experimental Modelling

Searches

Searches Higgs BSM

Summary of what I hope you have learnt

- Simulating physics collisions is complex, difficult but necessary
- · Simulating detectors is complex, difficult but necessary
 - We do a very good job
 - We can't get the simulation 100% accurate
- We can correct MC performance to match data performance
 - · Re-weight MC to match MC efficiencies to data
 - Smear MC 4-vectors to match MC resolutions to data
- · Cross section analysis is actually quite involved
- Systematic uncertainties are most of a measurement
- Higgs (probably) exists and SUSY (probably) doesn't

Conclusion