
Symmetries & Conservations Laws – Exam Question – 8 Feb 2013 
SJH 

 

Answer all the questions.   Time 1.5 hours.   Total 20 marks. 

Hint: Roughly every key step or point corresponds to 0.5 marks. 

 

1) Exponentials of Operators [6 marks] 

 

F(α) = exp(iαA) B exp(−iαA), where A and B are operators, satisfying [A,B] = A 

 

� Find a simplified expression for F(α) by 

a) Expanding one of the exponentials as a power series. 

b) Considering derivatives. 

 

2) SU(2) Singlet [4 marks]  

 

� Write down an SU(2)spin singlet state for a quark-quark pair. 

Consider the rotation of the state about the y-axis through an angle θ. 

� Find the new state and comment. 
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3) A Group of Transformations [7 marks] 

 

Consider a set of transformations in the x-y plane {I, X, Y, R}: 

 I Identity 

 X Reflection in x=0 

 Y Reflection in y=0 

 R Rotation by 180
o 

 

� Identify the 2×2 matrices which correspond to these transformations. 

� Show that this set is a group under the operation “follows”. 

� When addressing the issues of Associativity, prove that this is valid for all square 

matrices of the same order. 

� Prove that all diagonal matrices of the same order commute, and hence that the group 

is Abelian. 

� Identify all subgroups. 
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4) Product of Groups [3 marks] 

 

This question looks scary, but actually it is pretty straightforward. It is effectively a simplified 

version of the studies we made of general SU(2) transformations on spin states for two spin-

½ particles (see also Question 2) – but expressed more formally. When we looked at SU(2) 

we didn’t explicitly refer to a product of groups, but that is effectively what we had. 

 

Consider the product of two groups: Z2⊗ Z2, where Z2 is the cyclic group of order 2 (this 

subscript “2” relates to the order of the group). 

Z2 could be represented by two transformations {g = i, f} operating on spin states χ: i leaves 

the spin unchanged; f flips the spin. 

If we have two spin states (labelled with subscripts 1 and 2), we can imagine a product 

operator g1×g2 belonging to Z2⊗Z2, operating on the combined spin state χ1χ2, where g1 only 

operates on χ1 and g2 only operates on χ2. 

 

Now consider the set of these products of two transformations. We could indicate this set by 

G = {i×i, f×i, i×f, f×f}, where × denotes the product of the members of the two groups. 

If • denotes the combination of two members of a group, with the operation “follows”, then 

transformations associated with the first particle are combined separately, and likewise for 

the transformations associated with the second particle:  

(g1′×g2′) • (g1×g2) corresponds to (g1′ • g1) × (g2′ • g2), 

which in turn can be written g1′′×g2′′. 

So for example (i×i) • (i×f) = (i•i) × (i•f) = i×f. 

 

� Find the 4×4 combination table for the members of the set G. 

There is an obvious Isomorphism between this group and the group in Question 3. 

� Identify the isomorphism and give some simple rationale as to how this can be 

understood. 

 

(In this question, distinguish carefully between the product of two groups, and the 

combination with an operation of members of a given group.) 


