Data acquisition and Trigger (with emphasis on LHC)

Monika Wielers (RAL)

- Introduction
 - Data handling requirements for LHC
- Design issues: Architectures
 - Front-end, event selection levels
- Trigger
- Future evolutions
- Conclusion

DAQ challenges at LHC

Challenge 1

- Physics Rejection power
- Requirements for TDAQ driven by rejection power required for the search of rare events

Challenge 2

- Accelerator Bunch crossing frequency
- Highest luminosity needed for the production of rare events in wide mass range

Challenge 3

Detector – Size and data volume

Unprecedented data volumes from huge and complex detectors

Challenge 1: Physics

- Cross sections for most processes at the LHC span ~10 orders of magnitude
- LHC is a factory for almost everything: t, b, W, Z...
- But: some signatures have small branching ratios (e.g. H→γγ, BR ~10⁻³)

Process	Production Rate 10 ³⁴ cm ⁻² s ⁻¹
inelastic	~1 GHz
bbbar	5 MHz
W →Iv	150 Hz
Z →Iv	15 Hz
ttbar	10 Hz
Ζ'	0.5 Hz
H(125) SM	0.4 Hz

L=10³⁴ cm⁻²s⁻¹: Collision rate: ~10⁹ Hz. event selection: ~1/10¹³ or 10⁻⁴Hz !

DAQ and Trigger, Nov 2, 2016

Challenge 1: Physics

- Requirements for TDAQ driven by the search for rare events within the overwhelming amount of "uninteresting" collisions
- Main physics aim
 - Measure Higgs properties
 - Searches for new particles beyond the Standard Model
 - Susy, extra-dimensions, new gauge bosons, black holes etc.

- Plus many interesting Standard Model studies to be done
- All of this must fit in ~1 kHz of data written out to storage
- - Good" physics can become your enemy!

Challenge 2: Accelerator

- Unlike e⁺e⁻ colliders, proton colliders are more 'messy' due to proton remnants
- Multiple collisions per bunch crossing
 - Currently ~20-30 overlapping p-p interactions on top of each collision (pileup) → >1000 particles seen in the detector!

DAQ and Trigger, Nov 2, 2016

Challenge 3: Detector

- Besides being huge: number of channels are O(10⁶-10⁸) at LHC, event sizes ~1 MB for pp collisions, 50 MB for pb-pb collisions in Alice
 - Need huge number of connections

- Some detectors need > 25ns to readout their channels and integrate more than one bunch crossing's worth of information (e.g. ATLAS LArg readout takes ~400ns)
- It's On-Line (cannot go back and recover events)
 - Need to monitor selection need very good control over all conditions

What do we need?

What do we need?

- Electronic readout of the sensors of the detectors ("front-end electronics")
- A system to collect the selected data ("DAQ")

DAQ and Trigger, Nov 2, 2016

What else do we need?

- A system to keep all those things in sync ("clock")
- Data belonging to the same bunch crossing must be processed together
- Particle time of flight, cable delays, electronic delays all

DAQ and Trigger, Nov 2, 2016

What do we need?

- Electronic readout of the sensors of the detectors ("front-end electronics")
- A system to collect the selected data ("DAQ")
- A system to keep all those things in sync ("clock")
- A trigger multi-level due to complexity

What do we need?

- Electronic readout of the sensors of the detectors ("front-end electronics")
- A system to collect the selected data ("DAQ")
- A system to keep all those things in sync ("clock")
- A trigger multi-level due to complexity
- A Control System to configure, control and monitor the entire DAQ

Let's look more at the trigger part...

DAQ and Trigger, Nov 2, 2016

Multi-level trigger system

LHC DAQ phase-space

- When LHC experiments were designed back in the 90'
 - Raw data storage capped at ~ 1 PB / year per experiment

Hardware Trigger (L0, L1)

- Custom electronics designed to make very fast decisions
 - Application-Specified Integrated Circuits (ASICs)
 - Field Programmable Gate Arrays (FPGAs)
 - Possible to change algorithms after installation
- Must cope with input rate of 40 MHz
 - Reduce rate from 40 MHz to ~100 kHz
 - Otherwise cannot process all events
 - Event buffering is expensive, too
- Use pipeline for holding data during L1 processing
 - Digital/analog custom front-end pipelines
 - Parallel processing of different inputs as much as possible
 DAQ and Trigger, Nov 2, 2016

Trigger Latency

L1 Trigger in ATLAS

- Calorimeter and muons only
- Simple algorithms on reduced data granularity
- Selection based on particle type, multiplicities and thresholds
- Reject the bulk of uninteresting collisions

ATLAS L1 calorimeter trigger

Hadron Electromagnetic

- Search Example: ATLAS e/γ trigger
 - Sum energy in calorimeter cells into EM and hadronic towers
 - Loop over grid and search in 4x4 towers for a local maximum 1x2 (2x1):

Cluster DAQ and Trigger, Nov 2, 2016

 Can do something similar for other particles: jets, tau or sum the energy of all towers: missing E_T

CMS L1 muon trigger

Curved p_r-dependent muon path requires fast pattern recognition

Central/Global Trigger

Now we have the information on the particle candidates found by L1 in the detector

- $\boldsymbol{*}$ We know type, location and $\boldsymbol{E}_{T}/\boldsymbol{p}_{T}$ threshold passed
- Can also look at topological information

E.g. lepton opposite ETmiss, invariant mass of 2 leptons...

Need to decide if this event is of any interest to us

This needs to be made quickly

DAQ and Trigger, Nov 2, 2016

Software Trigger: Higher Level Trigger (HLT)

- L1 selected a large rate (up to 100 kHz) of events that "might be interesting"
 - These events are not kept yet (rate too high for storage), but sent to the HLT for additional filtering
- Use network-based High Level Trigger computer farm(s)
 - commercially available HW organized in a farm

HLT Example: Muon

- Muons in CMS:
 - Reconstruct and fit tracks using only muon system
 - Continue if sufficient p_T
 - Combine tracker hits with muon system to improve p_T measurement
 - Keep the event if p_T is large enough
- Muons in ATLAS:
 - * At Level 2, using detector information from the region around the L1 muon candidate, assign muon p_T based on fast look up tables
 - Extrapolate to the collision point and find the associated track
 - Is the muon isolated in the tracker, calorimeters?
 - * Refine selection at L3 using offline-based reconstruction, recompute $\ensuremath{p_T}$
- More on HLT in next lecture

Higher Level Trigger

- Massive commercial computer farm
- Each CPU can process individual event or run multi-threaded
- Resources are still limited
 - Offline: Full reconstruction takes seconds (minutes)
 - Online latency: ms s (input rate dependent)
- Need to reduce rate to O(1 kHz)
 - Note, output rate mainly driven by offline resources (CPU / disk space)

The ATLAS Trigger/DAQ System

- Overall Trigger & DAQ architecture: 3 trigger levels
- Level-1:
 - 2.5 µs latency

100 kHz DAQ and Trigger, Nov 2, 2016

- HLT: run L2 and EF in one farm
- Average output rate: ~1 kHz (physics), ~2 kHz (calib/monitoring)
- Processing time: 0.2s on average
- Average event size 1.5 2 MB

The ATLAS Special Features

- On-demand event building seeded by Region of Interests
 - No need to analyse the whole event in HLT, just look at regions flagged at L1 (e.g. regions with e/γ, μ, τ, jet candidates
 - On average look only at ~5% of the data

- L2 and EF run on same CPU within one farm (new in 2015)
 - Provides efficient coupling between subsequent selection steps, reducing duplication of CPU usage and network transfer
 - Allows flexible combination of fast and detailed processing

The CMS Trigger/DAQ System

- Overall Trigger & DAQ architecture: 2 trigger levels
- DAQ & HLT decoupled via intermediate shared temp. storage
- Level-1:
 - 3.2 µs latency
 - 100 kHz output

- Event building at full L1 rate
- Average output rate: ~1 kHz
- Average event size 1.5 Mb
- Max. average CPU time: ~160 ms/event

The CMS Special Features

- 2 stage event building!
- 1st stage:
 - Combine fragments into superfragment in RU (Readout Unit) builder
 - Event building in builder units which then write events to transient files on RAM disk
- 2nd stage:
 - Serve complete events to trigger farm.
- DAQ and HLT decoupled via intermediate shared temporary storage (new in 2015)

FEDs

The LHCb Trigger/DAQ System

- Overall Trigger & DAQ architecture: 3 trigger levels
- Level-0:
 - 4 µs latency
 - I MHz output

DAQ and Trigger, Nov 2, 2016

DAQ/HLT

- L1: spot displaced high p_⊤ tracks, output 100-200 kHz
- L2: full event reconstruction
- Average output rate: 12.5 kHz,
- Average event size 50 kB ²⁸

The LHCb Special Features

- HLT decoupled from data flow via local temporary storage!
 - Using periods without beam boost CPU usage by 200 %
- Full offline-quality reconstruction available online
 - Alignments done at beg of fill, calib done per run
- Turbo Stream + Tesla Application:
 - Store full information of trigger candidates, remove most of detector raw data
 - Save more than 90% space
 - Ideal for very high signal yield [millions]
 - Very quick turn around [24 h]

The ALICE Trigger/DAQ System

Alice has different constraints

- Low rate: max 8 kHz pb+pb
- Very large events: > 40MB
- Slow detector (TPC ~ 100)

μs) DAQ and Trigger, Nov 2, 2016

- Overall Trigger & DAQ architecture: 4 trigger levels
- 3 hardware-based trigger, 1 software-based:
 - ✤ L0 L2: 1.2, 6.5, 100 µs latency
 - L3: further rejection and data compression
 ³⁰

The Alice Special Features

- Deal with huge events
 - 3 hardware level triggers
 - Heavy utilisation of hardware acceleration: FPGA + GPU
 - Use of data compression in trigger

Towards the Future

- Experiments upgrade every time the conditions provided by the accelerator change
 - Preparations start well in advance
 - The 4 LHC TDAQ systems are already planning major upgrades
 - ALICE & LCHb will upgrade for Run 3
 - CMS and ATLAS will mainly upgrade for Run 4

Guiding Principles

- Physics goals
- Accelerator conditions
- Technology reach
- Cost
- Rapidly evolving area

Alice

- Support for continuous read-out (TPC), as well as triggered readout
 - Read out the data of all interactions at a maximum rate of 50kHz (upon min bias trigger)
- One common online offline computing system: O2

LHCb

- (Triggerless) Read-out @ 40 MHz + full software trigger
- Data centre at the surface

CMS

Hardware-based track trigger

ATLAS

Hardware based track trigger after very first trigger level

Summary

- Challenge to design efficient trigger/DAQ for LHC
 - Very large collision rates (up to 40 MHz)
 - Very large data volumes (tens of MB per collision)
 - Very large rejection factors needed (>10⁵)
- Showed data acquisition used in LHC experiments
- Introduction to basic functionality of trigger
- We'll look in detail at the trigger aspects in the next lecture
 - That one will be less technical and more physics-oriented!

Backup

Trigger/DAQ parameters

TRUTTO PPC DIPOLE MAGNET	No.Leve	els 🍅 evel-0,1,2 Rate (Hz)	Event Size (Byte)	Readout Bandw.(GB/s)	HLT Out MB/s (Event/s)
HOS TC ABSCREET MICHANES MICHAE	4	_{Рb-Рb} 500 _{p-p} 10 ³	5x10 ⁷ 2x10 ⁶	25	1250 (10 ²) 200 (10 ²)
	3	LV-1 10⁵ LV-2 3x10 ³	1.5x10 ⁶	4.5	300 (2x10 ²)
	2	LV-1 10 ⁵	10 ⁶	100	~1000 (10²)
	2	LV-0 10 ⁶	3.5x10 ⁴	35	70 (2x10 ³)

DAQ and Trigger, Nov 2, 2016

TDAQ comparison

	ATLAS	CMS	LHCb	ALICE
"L1" Latency [μs]	2.5	3.2	4	1.2/6/88
Max "L1" output rate [kHz]	75	100	1000	~2
Frontend readout bandwidth [GBytes/s]	120	100	40	25
Max HLT avg. latency [ms] (upgrade with luminosity)	L2: 40 EF: 1000	50 (in 2010)	20	
Event building bandwidth [GBytes/s]	4	100	40	25
Trigger output rate [Hz]	~200	~300	~2000	~50
Output bandwidth [MBytes/s]	300	300	100	1200
Event size [MBytes]	1.5	1	0.035	Up to 20

Data handling requirements

Event rate

- I -	ON-Line		* [•	OFF-Lin	e
SHz		40			
	- Every second: obse				
	bunch crossings, each				
	several (>20) p-p intera				
	resulting in events with	1000's			
۱Hz	particles				
	 Identify and select si out of 10 trillion collision 				
	- Locally digitize, read	-			
kHz	transport and process	nunaleus of			
	TeraBits per sec	6	2		
	-				
			- Globally s	store, retrieve	and
Hz				ciently tens of	PetaBytes
nz	Collision rate	~ 10º Hz	of data per y	year	
		~ 10 ⁸ cells			
	Detector granularity	10 00110			
	Detector granularity Event size	~ 1 Mbyte			
	-				
nHz	Event size	~ 1 Mbyte ~ 1 in 10 ¹³			
nHz	Event size Selection power Readout bandwidth	~ 1 Mbyte ~ 1 in 10 ¹³			
nHz	Event size Selection power Readout bandwidth Storage event rate	~ 1 Mbyte ~ 1 in 10 ¹³ ~ Terabit/s			
nHz	Event size Selection power Readout bandwidth	~ 1 Mbyte ~ 1 in 10 ¹³ ~ Terabit/s ~ O(100Hz)			
	Event size Selection power Readout bandwidth Storage event rate	~ 1 Mbyte ~ 1 in 10 ¹³ ~ Terabit/s ~ O(100Hz)			
	Event size Selection power Readout bandwidth Storage event rate	~ 1 Mbyte ~ 1 in 10 ¹³ ~ Terabit/s ~ O(100Hz)	SBC	hour	year
ıHz	Event size Selection power Readout bandwidth Storage event rate Processing power	~ 1 Mbyte ~ 1 in 10 ¹³ ~ Terabit/s ~ O(100Hz) ~ TeraFlops	sec 10-0	hour 10 ³	year 10 ⁶ sec

DAQ and Trigger, Nov 2, 2016