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Chapter 1

Introduction: matter and
forces

Elementary particles are divided into two big classes: fermions, the constituents
of matter, and bosons, force carriers. Fermions are further divided into leptons
and quarks, the difference being that the latter do feel the strong nuclear inter-
action, and are forced by confinement to combine with other quarks to combine
hadrons. Leptons and quarks are combined into doublets. Charges and masses
of the known leptons and quarks are listed in the following:

1.1 Leptons

Charge = 0
Charge = 1

(

νe
e

)

0.5MeV

(

νµ
µ

)

0.1GeV

(

ντ
τ

)

1.8GeV

Even if leptons do not experience the strong force, they do experience the
electromagnetic and weak forces.

1.2 Quarks

Charge = 2/3
Charge = −1/3

(

u
d

)

0.3GeV
0.3GeV

(

c
s

)

1.5GeV
0.5GeV

(

t
b

)

180GeV
5GeV

The u, d, s are “constitutional” masses which one can infer from the masses
of the corresponding hadronic systems. However it is thought that most if this
mass is ”effective” ie generated dynamically by the strong interaction. Intrinsic
masses are hard to define, and thought to be ∼ 4MeV (u, d) and 100MeV (s).

• We do not understand why particles have their masses
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6 CHAPTER 1. INTRODUCTION: MATTER AND FORCES

• They are all fermions (spin−1/2)

• The u and d quarks combine to form the hadorns we know

• The above is believed to constitute about 4% of the mass-energy of the
universe

Forces are mediated by bosons (integer spin) and can be thought to arise
from local gauge invariance.

1.3 Gravity

This is by far the weakest force and is thought to be mediated by spin−2 gravi-
tons.

It is important on an astronomical scale because of the large masses multi-
plying the intrinsic weakness of the force.

Gravity is universal and there are no cancellations (ie no negative causes).
Gravitational radiation should arise when masses oscillate, giving quadrupole

radiation. Gravitational radiation would create a ripple in space-time. Indirect
detections exist from observations by Hulse and Taylor over a seventeen year
period of a binary system of two neutron stars. The change in the period of
the binary system can only be accounted for by the emission of gravitational
radiation, winning the Nobel Prize in 1993.

1.3.1 The Planck mass

Suppose two pointlike masses m are created by quantum fluctuations out of the
vacuum. One mass can exist for a time δt given by:

δǫδt ≤ h̄

mc2δt ∼ h̄

⇒ δt ∼ h̄

mc2

Range r = cδt

=
h̄

mc

At this separation the gravitational potential VG is given by:

Vg =
Gm2

r

=
Gm3c

h̄

If VG becomes comparable with the energymc2 the relativistic effects become
important, but there is no theory of quantum gravity.
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So
Gm3c

h̄

1

mc2
∼ 1

So mPlanck ≃
√

h̄c

G

≃ 1019GeV

Similarly:

Planck length: 2 × 10−35m

Planck time: 10−44s

Without quantum gravity we cannot discuss the evolution of the universe at
epochs around and before the Planck time.

1.3.2 Dark matter

Dark matter is believed to constitute about 25% of the matter-energy content
of the universe. This comes from evidence from velocity rotation curves in a
galaxy.

The radial velocity of a star is measured using the doppler shift and is plotted
as a function of the distance from the centre of the galaxy, r.

Centripetalforce = Gravitationalforce

For r < R :

∆mv2(r)

r
=

G∆mMr<R

r2

v2(r) =
GMr<R

r

=
G

r
Ms

( r

R

)2

=
GMsr

2

R3

So v(r) ∝ r for r < R

For r > R :

∆mv2(r)

r
=

GMs∆m

r

v2(2) =
GMs

r

So v(r) ∝ 1√
r

for r > R

The observed discrepency is hypothesised to be the result of dark matter.
It is thought that there is a halo of dark matter surrounding the galaxy with a
matter distribution which yields the observed discrepency.
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1.3.3 Candidates for dark matter

Neutrinos There is now evidence that neutrinos have mass. However the
masses are small and neutrinos are therefore relativistic particles, so this
is hot dark matter which does not stay around long enough to provide
gravitational binding.

Brown dwarves (Massive cool hadronic objects - MaCHOs) Brown dwarves
are like small stars which are not massive enough for nuclear burning so
they appear dark. There cannot be too many brown dwarves since there
would then be too much baryonic matter which is incompatible with cur-
rent understanding of the abundance of hydrogen, helium and deuterium
in the early universe. The elements were generated in the first ≃ 900s.
To search for brown dwarves it is necessary to look at many stars in eg
a large Magellic cloud. If a brown dwarf passes across the line of sight
of one of the stars then through gravitational lensing the light intensity
from the star will increase and decrease in a characteristic way. Brown
dwarves have been observed but not in sufficient numbers to account for
the amount of dark matter.

Supersymmetric particles There are several names for such particles. In
the context of dark matter a common name is Weakly Interacting Massive
Particles (WIMPs). Alternatives include Lightest Symmetrical Particles
(LSPs) and candidates thereof (neutralinos, gravitinos etc).

The current standard model of cosmology gives 5% of the matter observed,
25% dark matter and 70% dark energy. Where does this sub-division come
from?

A survey of Type I supernovae indicates that the universe is accelerating
for z ≥ 0.8(z = δλ/λ). The type I supernovae are like ”standard candles” in a
binary system in which matter flows from one of the stars to another and creates
a thermonuclear explosion. This constitutes the standard candle and therefore
the distance can be determined. The doppler shift gives the recessional velocity.
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1.3.4 Anisotropies in the cosmic microwave background
and the history of the universe

The universe is now thought to be ∼ 14 × 109 years old. After about 350, 000
years the temperature had dropped to about 3000K, at which point electrons
and protons could combine to form hydrogen. At this epoch, photons decoupled
from matter. Subsequently this black body spectrum cooled to 2.7K, which is
what is observed today. This was first observed in 1965 by Perzies and Wilson,
receiving the Nobel Prize in 1978. The cosmic microwave background radiation
is uniform tp 1 part in 105 in all directions.

Big bang nucleosynthesis occured in the first 900s. Electroweak symmetry
breaking took place at 10−12s or E ∼ 100GeV . The energy released by this
symmetry breaking drives cosmic inflation which explains the flatness of the
universe and the horizon problem. Grand unified theory symmetry breaking
occues at 1015GeV .

Anisotropies were originally measured by the COBE sattelite and by other
experiments, most recently WMAP and Boomerang.

The power spectrum gives strong evidence for:

• a flat universe

• inflation

• ratio of dark energy : dark matter of 70% : 25%

1.4 The weak force

The weak force is mediated by massive vector bosons:

W± MW ∼ 80.4GeV

Z0 MZ ∼ 91.2GeV

The instrinsic strength of the force, gW , is of the same order as the electro-
magnetic force, but the massive force carriers make it appear weak and short
ranged.
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For electromagnetism the strength is:

e2

q2

where q is the propagator momentum.
For the weak force the strength is:

g2
W

q2 +M2
W

Some examples of weak interactions include:

n → p e− ν̄e

νe n → p e−

ν̄e p → n e+

ν̄e u → d e+

Pure leptonic weak processes include:

µ− → e− ν̄e νµ

e− ν̄e → µ− ν̄µ

1.5 The electromagnetic interaction (QED)

The electromagnetic force is mediated by the massless photon, which has an
infinite range. The coupling constant, e, is quantised (0,±1/3,±2/3,±1) and is
not too strong, so perturbation theory works.

The strength of the force is characterised by α:

α =
e2

h̄c
=

e2
Coulomb

4πǫ0h̄c
=

e2
HL

4πh̄c

where eCoulomb is the Coulomb charge and eHL is the Heaviside-Lorentz
charge.

In particle physics e is measured in Heaviside-Lorentz units where h̄ = c = 1.

Therefore α =
e2

4π
≃ 1

137.04

1.5.1 The physical meaning of α

α expresses the energy of an e+e− pair materialising for a short time in the
vacuum as a fraction of the rest mass energy mec

2:
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α ∼ e2

c∆t

1

mec2

∆t∆E ∼ h̄

∆t ∼ h̄

mec2

So α ∼ e2

c

mec
2

h̄

1

mec2

=
e2

h̄c

1.6 The strong force (QCD)

Since the 1950s, it was knwon that the ∆++(uuu) particle state existed at
1238MeV , formed in π+p scattering:

π+ p
∆++(1238)→ π+ p

In the simple quark model there are 3 up quarks, each with psin−1/2 in the
same direction. Also in 1965 the Ω− was discovered which consists of 3 strange
quarks each with spin−1/2 in the same direction. These appeared to violate
the Pauli exclusion principle.

The solution was introduce 3 colour charges with the strong force mediated
by massless gluons which carry colour. The force is not of infinite rane because
the strength increases with separation, leading to confinement.

1.7 Local gauge invariance

The weak, electromagnetic and strong forces all appear to arise from requiring
local gauge invariance. This means that the Lagrangians are invariant with
respect to a local gauge transformation and equations of motion derived from
the Lagrangian are invariant with respect to local gauge transformation.

Quantum states can be multiplied by a phase factor:

ψ′(x, t) → eiqχ(x)ψ(x, t)

If χ(x, t) depends on space and time then the above expression is a local
gauge transformation. To allow this the electromagnetic field, Aµ must trans-
form in a specific way.

In weak interactions this is not as simple. The Lagrangian contains four
massless bosons (W i, B). To allow for local gauge invariance, weak isospin and
weak hypercharge matrices are required which combine with the massless vector
fields to form the gauge transformation. Symmetry breaking occurs such that
W 1
µ and W 2

µ yield W± and W 3
µ and Bµ mix to yield Aµ and Z0. This then

unifies the electromagnetic and weak interactions via the Higgs mechanism.
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1.8 Grand unification (GUTs)

The GUT attemps to unify the electromagnetic, weak and strong forces. The
coupling constants evolve with energy due to loop processes.

The couplings are expected to merge at ∼ 1015GeV according to some mod-
els, but the couplings do not come together at this energy. The evolution of g1,
g2, g3 could coincide if supersymmetrical particles exist. This would then yield
a grand unified group, G, or SU(5) which is a combination of the three groups
describing the three forces. Here gauge bosons exist which would allow quarks
to turn into leptons. This would also allow protons to decay:

p→ e+ π0

This decay has been extensively searched for but not observed. Current lower
limits on the lifetime of the proton are of the order τp > 1030 years, excluding
the minimal grand unified theories.



Chapter 2

Experimental concepts

2.1 Experimental possibilities

In reality there are rather few experiemental possibilities:

• Scatter one particle off another and observe the reaction

• Generate a particle and observe subsequent decay processes

• Observe neutrino oscillations

• Measure a particle’s properties eg charge, lifetime

2.2 Cross sections

The cross section, σ, is an imaginary area surrounding a “target” particle
through which an incident particle must pass for a particular interaction to
take place.

To calculate a cross section:

• Assume NB particles per incident beam bunch

• Assume the beam illuminates an area A of the target which is of length l
and density ρ

The number of target particles that are illuminated by the beam is:

NT =
lAρNA
m

where m is the molecular mass of the target nuclei and NA is Avagadro’s
constant.

Each of the particles is imagined to have an area σ surrounding it. The
probability that one beam particle interacts in the area A is:

13
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P (Interaction) =
lAρNA
m

σ

A

=
lρσNA
m

The total number of interactions is then:

NI =
lρNANBσ

m

Going to infinitesimal quantities, NI and l are replaced by dNI and dl re-
spectively. In order to calculate the number of interactions per second in a
general collider it is necessary to make the expression symmetrical with respect
to the beam and target:

• Assume the particle densities in the beam and target are ρB and ρT re-
spectively

• Assume the interactions are occuring in a volume V with a cross-sectional
area A

• Assume the beam travels with a relative speed u

The number of target particles in the volume V is ρTV , so the probability of
one beam particle interacting in the area A is ρTV σ/A. In 1s there are uAρB
particles, so the number of interacions in a fixed target experiment is:

⇒ dn

dt
= uσV ρBρT

In a collider there are n bunches containing NB particles rotating at u ∼
c. A second beam rotates in the opposite direction. The probability of an
interaction is σNB/A in one bunch of the second beam where A is the cross-
section interaction region. In 1s f bunches (where f is the rotation frequency)
pass through the bunch in the second beam:

⇒ dNI
dt

=
fNBNBnσ

A
= Lσ

where the luminosity, L, is given by:

L =
nN2

Bf

A

L =
1

σ

dNI
dt

(2.1)

(1) is the formal definition of the luminosty. The unit of cross-section is the
barn, where 1bn = 10−28m2 and the units of L are bn−1s−1. The instantaneous
luminosity can be quoted in inverse picobarns per second and the integrated
luminosity can be quoted in inverse picobarns (or femtobarns, or nanobarns).
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2.2.1 Scattering pions and nucleons

Pions and nucleons interact strongly. According to an old empiric model of
the strong interaction, two protons may exchange a π0 to form a ∆++ which
subsequently decays to a proton and π0.

The cross sections for various kinds of interactions are:

σpp > σnp ≫ σγp ≫ σγγ

Calorimeters are built according to the radiation lenght (for electromagnetic
showers) and interction length (for hadronic showers). Both quantities are dif-
ferent for different materials eg high-energy electrons (> GeV ) lose the same
fraction of energy in 18cm of water as in 2.8mm of lead. Particles not producing
showers still lose energy by ionisation, which is expressed as dE/dx, which is
largely a function of the velocity of the particle, but is roughly constant above
a given velocity.

2.3 Natural units and conversion factors

In quantum mechanics the expressions for energy and momentum can be ex-
pressed as:

Eν = hf = h̄ω Planck’s law
pν = h/λ = h̄k De Broglie’s relation

Travelling quantum waves are of the form:

ψ = Aei(kx−ωt)

= Aei/h̄(px−Et)

And for light c = fλ = ω/k.
It is conventient to set h̄ = c = 1. Consider the units of ch̄:

[ch̄] = [L][T−1][E][T ]

= [L][E]

c = 3 × 108ms−1

h̄ = 6 × 10−25GeV s

ch̄ = 1.97 × 10−16GeV m

Thus setting c = h̄ = 1 gives 1 = 1.97 × 10−16GeV m.
Other useful conversion factors include:

1
(GeV )2

= 3.89 × 10−32m2 = 0.389mb
1

GeV = 6.6 × 10−5s
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Chapter 3

Some experiments of the
past 50 years

Until the 1950s particle physics was mainly studied by observing cosmic rays
in cloud chambers and nuclear emulsion. After 1945 nucleon-nucleon scattering
experiements were carried out at cyclotrons and energies became high enough
for pions to be produced. Then pion-nucleon scattering was studied.

In 1952 π+ p
∆++

→ π+ p

Also, photons could be produced from electron beams:

γ p
∆+

→ γ γ p (via ∆+ → p π0)

although the rate of production via γ processes is much lower because of the
strength of the electromagnetic coupling.

Other processes were also observed:

π+ → µ+ νµ

µ+ → e+ ν̄µ νe

where the latter process is a purely leptonic process and so provoked much
theoretical interest.

In 1956 parity violation in the weak interaction was discovered, and Lee and
Young received the Nobel Prize for suggesting the theoretical frameworn, and en
experiement studying the β decay of polarised Cobalt 60 nuclei. An anistropy
was discovered in the electron spectroscopy with respect to the 60Co nuclear
spin.

60Co→60 Ni ∗
(

e−
)

L

(

ν̄e

)

R

By the 1960s kaon beams were generated at synchotrons and this confirmed
the property of strangeness that was observed in cosmic ray experiments: some

17
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particles were produced by the strong force and decayed by the weak force. This
fenomenon was attributed to a third quark, called of course “strange”. It also
established (in the experimentalists’ eyes) the quark substructure of hadrons ie
hadrons were made of qq̄ pairs (mesons) and qqq triplets (baryons) where q is a
u, d or s quark. Theorists regarded the evidence for strangeness as establishing
the SU(3) flavour symmetry, which is now known to have been accidental. This
symmetry arises because the constituent masses of u and d quarks are about the
same and the mass of the s quark is somewhat heavier, but still much smaller
than that of the next quark, the charm.

3.1 Mesons and baryons

Consider qq̄ systems consisting of u and d quarks. The strong isospin doublet
is:

2 =

(

u
d

)

I3 = ±1/2
I = 1/2

Assume that the strong isospin is conserved (which is accidental, but works
as the u and d quarks have nearly the same mass.) This doublet is combined
with the antiquark doublet which is:

2̄ =

(

−d̄
ū

)

1/2

−1/2

In this form the raising and lowering operators act on the 2 doublet in the
same way for the 2̄ antiquark doublet. The minus sign on d̄ arises because of a
rotation in isospin space:

(

u
d

)′

= e−iπτz/2

(

u
d

)

= I
(

cos
π

2
− i

τ

2
sin

π

2

)

(

u
d

)

⇒
(

u
d

)′

=

(

0 −1
1 0

)(

u
d

)

=

(

−d
u

)

u′ → −d
d′ → u

Suppose 2̄ had been defined as:

2̄ =

(

d̄
ū

)
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Then the transformation would be:

d̄′ → −ū
ū′ → d̄

The 2̄ system therefore transforms in the same way as a the 2 system:

(

−d̄
ū

)

=

(

0 −1
1 0

)(

−d̄
ū

)

=

(

−ū
−d̄

)

−d̄′ → −ū
ū′ → −d̄

Now 2 and 2̄ can be combined to form a representation of the π mesons:

( u d )
(

−d̄
ū

)

(

−ud̄
uū

−dd̄
dū

)

π+ = −ud̄
π− = dū

π0 =
1√
2

(

uū− dd̄
)

There is an isospin doublet to represent the antiquarks in SU(2) and not in
any other SU(n). In SU(3) flavour symmetry:

3 =





u
d
s





3̄ =





ū
d̄
s̄





To construct the qq̄ states in SU(3):

( u d s )




ū
d̄
s̄





(

uū
ud̄
us̄

dū
dd̄
ds̄

sū
sd̄
ss̄

)

The non diagonal elements are easily identified as the following particles:
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sū = K− us̄ = K+

ds̄ = K̄0 sd̄ = K0

ud̄ = π+ dū = π−

There is also a symmetric state:

η1 :
1√
3

(

uū+ dd̄+ ss̄
)

This is called the SU(3) singlet state. The final neutral state is:

η8 :
1√
6

(

uū+ dd̄− 2ss̄
)

This is constructed to be orthogonal to the π0 and the singlet state.

3.2 Neutrino experiments

3.2.1 The Gargamelle experiment

Using the CERN Proton Synchrotron, protons were extracted from the accel-
erator and impinged on a thin Beryllium target within a neutrino horn. In the
targets πs and Ks were created and the horn partially selected either positive
or negative charges. The partially focussed π+ beam decayed to µ+νµ. An
iron shield filtered out the remaining hadrons and muons. Measurements of
the muon tracks enabled the neutrino spectrum to be determined. The neutrios
then passed into the large heavy liquid bubble chamber, Gargamelle. Scattering
via the exchange of the W± was expected, but scattering via the Z0 was also
observed, in the form of nfinal states without production of muons. That result
means that weak interactions can also proceed via neutral currents, and it was
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the first stronf proof of the validity of the electroweak unification.

3.2.2 Underground experiments

Solar neutrinos are produced primarily by the following reaction:

p p→ d e+ νe

even if the energy of these neutrinos is very small, and they are only de-
tectable using very sensitive detectors where the single atom conversions are
counted. Other nuclear reactions in the sun can produce more energetic neu-
trinos, observable by more traditional high-energy physics techniques. Atmo-
spheric neutrinos are produced primarily by proton bombardment of the upper
atmosphere:

p N → π+/K+ H
→֒ µ+ νµ

→֒ e+ ν̄µ νe

Naively, it is expected that the production rate would be:

νe
νµ

∼ 1

2
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The ratio has been measured by Superkamikande to be closer to 1, demon-
strating that νµ neutrinos were missing and also measured an azimuthal vari-
ation. ie the experiment measured the number of neutrinos N(νµ) and N(νe)
from the atmosphere (above) and the other side of the Earth (below.) About
half from the other side of the Earth were lost, suggesting that that neutrinos
oscillated into ντ . The oscillations imply that neurinos have mass and as such
must have a velocity β < 1.

A large water Cerenkov detector was used to look for the processes:

νµ N → µ− H

νe N → e− H

Both muons and electrons were detected by ∼ 5, 000 phototubes by consid-
ering their characteristic signals for Cerenkov light. The muon signal rings are
sharp whereas those for electrons are diffuse.

3.2.3 Solar neutrinos

In the experiment by Ray Davis mainly ”high” energy (14MeV ) neutrinos were
used from a process:

p 7Be → 8Be γ
→֒ 8Be e+ νe

The reaction considered was:

ν37
e Cl → e− 37Ar

The neutrinos were impinging on a tank of C2Cl4. There were not as many
such reactions as expected according to the Standard Model.

To detect low energy neutrinos, tanks of Gallium were used:

νe Ga→ Ge e−

These processes were also observed at a lower than expected rate.
In the Sudbury Neutrino Observatory (SNO) a tank of heavy water (D20)

was used. The following reaction was detected:

νe n→ e− p

Again, a deficit of electron neutrinos was observed. Around 1/3 of the ex-
pected signal was observed. Combined with the results from Superkamiokande
this explains the solar neutrino problem where ∼ 1/3νe are observed and ∼
2/3νe oscillate into νµ and ντ .

The results at SNO were further confirmed when salt (NaCl) was added to
the water, increasing the sensitivity to νµ and ντ :



3.3. COLLIDING BEAM AND SOME FIXED TARGET EXPERIMENTS23

νe/µ/τ n → νe/µ/τ nscattered

Then 37Cl n → 38Be γ

This was then consistent with the expected solar flux.

Further neutrino oscillation experiments are ongoing at reactors (a good
source of copious low energy neutrinos from b decay) and at accelerators such
as MINOS.

3.3 Colliding beam and some fixed target exper-
iments

There are various different types of colliding beams which have different prop-
erties and can probe different phenomena. They can be classified into three
types:

e+e− Purely leptonic beams give rise to ”clean” output and also have a con-
troled centre of mass energy. There is a large discovery potential, however
there are limits due to synchrotron radiation, so future developments will
lead to linear colliders.

NN(pp) Purely hardonic beams are not as clean and do not have a well defined
centre of mass energy. However there is a large discovery potential due to
the possibility of much higher energies.

lN A mixed pair of beams allows probing of the partons.

3.3.1 Lepton-nucleon colliders

In the late 1960s and the early 1970s deep inelastic scattering experiments using
lepton beams of electrons, neutrinos and also muons were used to probe the
structure of the proton and neutron. It looked as if scattering occured on
pointlike objects in the nucleon and around 50% of the nucleon interacted in
this way. The remaining 50% was made up of gluons. This was the beginnings
of quantum chromodynamics (QCD).

At HERA, this has been advanced further in ep collisions. Electrons (or
positrons) of energies at 27.5GeV collide with protons at 920GeV , yielding a
centre of mass energy of around 320GeV . There are two multipurpose colliding
beam experiments which measure a wide range of phenomena such as proton
and photon structure; many other aspects of QCD; electroweak physics and
searches for effects beyond the Standard Model (eg leptoquarks).
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The structure of the proton has been measured over a vast kinematic range
compared to the first measurements in the 1960s.

x is the proton’s momentum fraction carried by the struck quark. Q2 is the
four momentum transfer, essentially related to the wavelength of the probing
photon. A high value for Q2 implies a high resolving power.

This gives us precise knowledge of the structure of matter which is one of
the fundamental goals of physics. Also practically many colliders use protons
(eg LHC) so it is useful for understand the structure of what is being collided.

Demonstration of the unification of the electroweak force is shown by:

The processes became the “same” at M2
W,Z ∼ 104GeV 2.

3.3.2 e+e− colliders

There have been a multitude of e+e− experiments with a centre of mass enery
of a few GeV to over 200GeV . There is planning for a linear e+e− collider up
to 1TeV .

The charm quark was discovered in 1974 at SLAC (and in a p Be experi-
ment at BNL) via the detection of the decay of the bound state, the J/ψ meson.
mJ/ψ ≃ 3.1GeV .

In 1979 the gluon was discovered by the experiments at the PETRA collider
in DESY at

√
s = 35GeV . Although e+e− is a clean leptonic enviornment, it

can provide a powerful probe of QCD eg discovery of the gluon through the
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oserbvation of 3−jet events
Most simply one would expect a srtaightforward process with back to back

jets of equal energy. However, in the detector three jets were seen (one of the
quarks radiated a gluon.)

In 1989 the Large Electron-Positron (LEP) collider turned on, embarking on
a new era of precision physocs (running at the mass of the Z0 boson.) Initial
LEP running was at the Z0 peak ≃ 91GeV , and then moved through 2MW ≃
160GeV and finally to just over 200GeV , looking for the Higgs boson. There
were four multipurpose experiments. The experiments were most famous for
the precision measurements of electroweak parameters such as MZ and MW .
The measurement of the cross-section as a function of

√
s was fundamental in

measuring MZ and constraining the number of light neutrinos.

MZ = 91.1876 ±0.0024GeV

MW = 80.403 ±0.029GeV

In the absence of direct measurements, precise determination of known pa-
rameters constrain new physics phenomena eg Higgs boson. In its final throws
LEP also searched for the Higgs boson via Higgstrahlung, where a virtual Z0

results in a real Z0 and Higgs boson.
The centre of mass energy was constantly increased as the necessary energy,

E had to satisfy E > MH +MZ , but the Higgs boson was not observed.
Limits of circular e+e− machines are being reached due to the rate of energy

loss due to synchrotron radiation.
The next planned major collider is the International Linear Collider (ILC).

This would complement the LHC because of the cleanliness of the signal. This
can act as a ”factory” for eg tt̄ production, Higgstrahlung etc.

3.3.3 Hadron-hadron colliders

Due to the hadronic structure and multitude of final states, these colliders are
generally more complicated than e+e− colliders. However, they are usually the
energy frontier and thereby produce discoveries and measurements of known
phenomena over a large kinematic range.

The discovery of the b quark took place in 1977 by obvserving the production
and decay of the Υ mesons via µ+µ− in p Be collisions at Fermilab.

(picture of cross-section)
The invariant mass of the µ+µ− pair was was observed and a resonance was

apparent.
The W± and Z0 bosons were discovered in 1984 at the SppS collider at

CERN. Leptonic decays of the W± and Z0 were searched for, as they give a
lower background relative to hadronic decays (

√
s = 540GeV ).

The t quark was discovered by CDF and D0 at
√
s = 1800GeV in 1995.

There are high jet energies measures over nine orders of magnitude in the
cross-section. This allows physicsts to
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• verify and understand QCD

• look for new physics at the highest energies (eg quark substructure)



Chapter 4

Review of non-relativistic
quantum mechanics

4.1 Schroedinger picture and probability cur-
rent

For a free particle of mass m the classical energy-momentum relation is:

E =
p2

2m

In quantum mechanics, p and E become differential operators:

E → i
∂

∂t
p → −i∇

(h̄ = 1)

These operate on the wavefunction:

(−i)2
2m

∇2ψ = i
∂

∂t
ψ

−1

2m
∇2ψ = i

∂ψ

∂t
(4.1)

ψ⋆ × (2) :
−1

2m
ψ⋆∇2ψ = iψ⋆

∂ψ

∂t
(4.2)

Complex conjugate of (2):
−1

2m
∇2ψ⋆ = −i∂ψ

⋆

∂t
(4.3)

ψ × (4) :
−1

2m
ψ∇2ψ⋆ = −iψ ∂ψ

⋆

∂t
(4.4)

27
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(3) − (5) = i

(

ψ⋆
∂ψ

∂t
+ ψ

∂ψ⋆

∂t

)

=
−1

2m

(

ψ⋆∇2ψ − ψ∇2ψ⋆
)

So i

(

ψ⋆
∂ψ

∂t
+ ψ

∂ψ⋆

∂t

)

=
−1

2m

(

ψ⋆∇2ψ − ψ∇2ψ⋆
)

or
∂

∂t
(ψ⋆ψ) +

i

2m

(

ψ∇2ψ⋆ − ψ⋆∇2ψ
)

= 0

∂

∂t
(ψ⋆ψ) +

i

2m
∇ · (ψ∇ψ⋆ − ψ⋆∇ψ) = 0

∂

∂t

∫

V

(ψ⋆ψ) dV +
i

2m

∫

V

∇ · (ψ∇ψ⋆ − ψ∇ψ) dV = 0 (4.5)

(6) resembles a conservation equation of the form:

∂ρ

∂t
+ ∇ · J = 0

where:

J =
i

2m

(

ψ∇ψ⋆ − ψ⋆∇ψ
)

ρ = |ψ|2

The divergence theorem then gives:

i

2m

∫

S

(ψ∇ψ⋆ − ψ⋆∇ψ) · n̂dS =
i

2m

∫

V

(ψ∇ψ⋆ − ψ⋆∇ψ) dV

As an example, consider ρ and J for a plane quantum wave:

ψ = Nei(px−Et)

ρ = |ψ|2

= ψ⋆ψ

= Nei(px−Et)N⋆e−i(px−Et)

= NN⋆

= |N |2

So: ρ = |N |2

J =
i

2m
(ψ∇ψ⋆ − ψ∇ψ)

=
i

2m
{Nei(px−Et)∇N⋆e−i(px−Et) −N⋆e−i(px−Et)∇Nei(px−Et)}

=
i

2m
{NN⋆ei(px−Et)eiEt (−ip) e−ipx −N⋆e−i(px−Et)Ne−iEt (ip) eipx}
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=
i

2m
{NN⋆ (−ip) −N⋆N (ip)}

=
|N |2
2m

p× 2

=
p

m
|N |2

In the Schroedinger picture the operators are time independent whereas
the wavefunctions are time dependent. In classical mechanics the “operators”
(momentum and energy) are time dependent. The Heisenberg picture gives a
formulation which gives time dependent operators.

4.2 The Heisenberg picture

Starting from the Schroedinger equation:

i
∂

∂t
ψ(r, t) = Hψ(r, t)

Also recall that the expectation of an observable, A, represented by the
operator Â is given by:

〈Â〉 =

∫

ψ⋆(r, t)Aψ(r, t)d3r

Solving the Schroedinger equation:

i
∂ψ(r, t)

∂t
= Hψ(r, t)

i
∂ψ(r, t)

ψ(r, t)
= H∂t

i

∫ t

0

∂ψ(r, t)

ψ(r, t)
=

∫ t

0

H∂t′

⇒ ln[ψ(r, t)] − ln[ψ(r, 0)] = −iHt

So
ψ(r, t)

ψ(r, 0)
= e−iHt

⇒ ψ(r, t) = ψ(r, 0)e−iHt

Condsider the expectation of A:

〈Â〉 =

∫

ψ⋆(r, 0)eiHtÂψ(r, 0)e−iHtd3r

Define AH = eiHtÂe−iHt

dAH
dt

= iHeiHtĀe−iHt − eiHtÂ(iH)e−iHt

= i(HÂ− ĀH)

= i[H, Â]



30CHAPTER 4. REVIEW OF NON-RELATIVISTIC QUANTUM MECHANICS

In the interaction picture the time dependent perturbations are given by:

H = H0 +H ′

where H0 is unperturbed and H ′ is an interaction perturbation.

Define H0
I = eiH0tH ′e−H0t

This gives:

dH ′
I

dt
= i[H0,H

′]

4.3 The harmonic oscillator

This is a mechanical system which can be used to introduce the concept of
creation annihilation operators.

H =
p2

2m
+

1

2
mω2q2

The potential energy arises because of a force proportonal to q:

Recall F = −kq

= m
d2q

dt2

ω =

√

k

m

V = −
∫

Fdq

=

∫

kqdq

=
kq2

2

k = mω2

So V =
mω2q2

2

Consider the creation and annihilation operators:

Let â =
1√
2

(√
mωq̂ +

i√
mω

p̂

)

â† =
1√
2

(√
mωq̂ − i√

mω
p̂

)
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Consider the commutator given by [q̂, p̂] = i:

[â, â†] =
1√
2
√

2

(

mω[q̂, q̂] +
i√
mω

[p̂, q̂]
√
mω

−i
√
mω[q̂, p̂]

1√
mω

+
1

mω
[p̂, p̂]

)

=
1

2
(i(−i) − i(i))

= 1

So [â, â†] = 1

The Hamiltonian can be written as:

H =

(

â†â+ āā†
)

2
ω (4.6)

To demonstrate (7):

â†â =
1√
2

(√
mωq̂ − i√

mω
p̂

)

1√
2

(√
mωq̂ +

i√
mω

p̂

)

=
1

2

(

mωq̂2 +
p̂2

mω
+ 2i (q̂p̂− q̂q̂)

)

ââ† =
1

2

(

mωq̂2 +
p̂2

mω
+ i (p̂q̂ − q̂p̂)

)

So â†â+ ââ† = mωq̂2 +
p̂2

mω

Recall H =
p2

2m
+
mω2q2

2

then H =

(

p2

mω
+mωq2

)

ω

2

which leads to (7).
(7) may also be written as:

H =
(

â†â+ 1/2
)

ω

using [â, â†] = 1

â† can be considered as a creation operator:

[H, â] = [
(

â†â+ 1/2
)

ω, â]
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=
(

â†ââ+ ââ†â
)

ω

= [â†, â]âω

= −âω
Similarly [H, â†] = â†ω

Consider a state |n〉 such that:

H|n〉 = En|n〉
The energy of â†|n〉 is given by:

Hâ†|n〉 =
(

â†ω + â†H
)

|n〉
=

(

â†ω + â†En
)

|n〉
= (En + ω) â†|n〉

Similarly Hâ|n〉 = (En − ω) â|n〉
So the energy of the state â†|n〉 is ω greater then that of state |n〉. Similarly,

the energy of the state â|n〉 is ω smaller than that of state |n〉.
There must be a state containing no quantum mechanical oscillations such

that:

â|0〉 = 0

Applying the creation and annihilation operators to the ground state gives:

â†|0〉 = |1〉
(

â†
)2

√
2

|0〉 = |2〉

Generally |n〉 =

(

â†
)n

√
n!

|0〉

Applying the Hamiltonian operator to the ground state gives:

H|0〉 =
(

â†â+ 1/2
)

ω|0〉
=

ω

2
|0〉

Applying H to â†|0〉 gives:

Hâ†|0〉 =
(

â†ω + â†H
)

|0〉
= â† (ω +H) |0〉
= â†

(

ω +
ω

2

)

|0〉

= (1 + 1/2)ωâ†|0〉
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Therefore the energy of the system is ω greater than that of the state |0〉.
In general:

Hnâ
†|0〉 = (n+ 1/2)ωâ†|0〉

But H =
(

â†â+ 1/2
)

ω

⇒ â†â|0〉 = n|0〉 = |n〉

So â†â is the number operator and the energy is given by En = (n+ 1/2)ω.
The number operator then acts as:

|n〉 =
1√
n!

(

â†
)n |0〉

|n+ 1〉 =
1

√

(n+ 1)!

(

â†
)n+1 |0〉

=
1

√

(n+ 1)!
â† (â)

n |0〉

=
1

√

(n+ 1)!
â†
√
n!|n〉

⇒ â†|n〉 =
√
n+ 1|n+ 1〉

â|n〉 =
√
n|n− 1〉

It is now possible to conceive of a primitive field theory which can create or
annihilate quanta of the appropriate field eg electromagnetism.

4.4 The anharmonic oscillator

This model will describe how to put interactions into a field theory. An inter-
action will move quanta from a state to higher or lower states.

For the anharmonic oscillator:

H =
p2

2m
+
mω2x2

2
+ λx3

= H0 + λH ′

4.4.1 Rayleigh-Schroedinger perturbation theory

H = H0 + λH ′

where H0|n〉0 = E0
n|n〉0

En = E0
n + λE1

n + λ2E2
n + · · ·

and |n〉 = |n〉0 + λ|n〉1 + λ|n〉2 + · · ·
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Note that |n〉1, |n〉2 etc are orthogonal to |n〉0.

Since H = H0 + λH ′ :

H|n〉 = (H0 + λH1)
(

|n〉0 + λ|n〉1 + λ2|n〉2
)

= E|n〉
=

(

E0
n + λE1

n + λ2E2
n

) (

|n〉0 + λ|n〉1 + λ2|n〉2
)

λ0 terms: H0|n〉0 = E0
n|n〉

λ1 terms: H0|n〉1 −E0
n|n〉1 +H1|n〉0 − E1

n|n〉0 = 0

ie
(

H0 − E0
n

)

|n〉1 +
(

H1 − E1
n

)

|n〉0 = 0

Premultiplying by 0〈n| :

0〈n|H0 − E0
n|n〉1 +0 〈n|H1 − E1

n|n〉0 = 0

⇒0 〈n|H1 − E0
n|n〉 = 0

⇒ 〈E1
n〉 = 0〈n|H1|n〉0

Premultiplying the expression for λ1 terms by 0〈m| (orthogonal to |n〉0):

0〈m|H0|n〉1 −0 〈m|E0
n|n〉1 +0 〈m|H1|n〉0 −0 〈m|E1

n|n|〉0 = 0

⇒0 〈m|E0
m − E1

n|n〉1 +0 〈m|H1|n〉0 − 0〈m|n〉0E1
n = 0

So 0〈m|E0
m − E0

n|n〉1 +0 〈m|H2|n〉0 = 0

So 0〈n〉1 =
0〈m|H1|n〉0
E0
m − E0

n

Therefore |n〉 = |n〉0 + λ|n〉1 + · · ·

= |n〉0 + λ
∑

m

|m〉0
0〈m|H1|n〉0
E0
m − E0

n

using the identity:

|n〉1 =
∑

m

|m〉00〈m|n〉1

Calculating the value of λx3:
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â =

√

mω

2
q̂ − i√

2mω
p̂

â† =

√

mω

2
q̂ +

i√
2mω

p̂

(

â+ â†
)

=
√

2mωq̂

So q̂ =
1√

2mω

(

â+ â†
)

q̂3 =
1

(2mω)
3/2

(

â+ â†
)3

So the term becomes:

λ

(2mω)
3/2

∑

m

|m〉0
0〈m|

(

â+ â†
)3 |n〉0

E0
m − E0

n

Looking at 0〈m|
(

â+ â†
)

|n〉0:

0〈m|
(

â+ â†
)

|n〉0 = 0〈m|
(

â+ â†
)2 (

â+ â†
)

|n〉0

= 0〈m|
(

â2 + ââ† + â†â+ â†2
) (

â+ â†
)

|n〉0

using [ā, ā†] = 1 and ā†ā = n

Also: â†|n〉 =
√
n+ 1|n+ 1〉

=
√
n|n− 1〉

λx3 =0 〈m|[
√

n(n− 1)(n− 2)|n− 3〉0

+
√

(n+ 1)(n+ 2)(n+ 3)|n+ 3〉0

+(3 + 2n)
√
n|n− 1〉0

+(1 + 3n)
√
n+ 1|n+ 1〉0]

4.5 The Lagrangian

Physical systems evolve such that the action:

s =

∫

L(q, q̇)dt

is extremised (usually minimised.) ie the system follows a path from t1 to
t2 such that the integral of the Lagrangian over t is minimised.
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This is an alternative formulation of classical mechanics eg Newton’s law:

F =
d

dt
(mv)

(Picture of action graph)

If s =

∫ t2

t1

L(q, q̇)dt

then δs =

∫ t2

t1

(

∂L

∂q
δq +

∂L

∂q̇
δq̇

)

dt

Now δq̇ = δ
dq

dt
=

d

dt
(δq)

So δs =

∫ t2

t1

[

∂L

∂q
δq +

∂L

∂q̇

d

dt
(δq)

]

dt

Integration by parts gives:

δs =

∫ t2

t1

[

∂L

∂q
δq + − d

dt

∂L

∂q̇
δq

]

dt+

[

∂L

∂q̇

]t2

t1

= 0

But δq(t2) = δq(t1) = 0

⇒ ∂L

∂q
δq − d

dt

∂L

∂q̇
δq = 0

or
∂L

∂q
− d

dt

∂L

∂q̇
= 0 (The Euler-Lagrange equation)

For the harmonic oscillator:

L =
mq̇2

2
− mω2q2

2
∂L

∂q̇
= mq̇

∂L

∂q
= mω2q

d

dt

∂L

∂q̇
=
∂L

∂q

⇒ mq̈ = mω2q

giving Newton’s second law.
In quantum mechanics, dynamical variables (eg momentum) are operators,

and in general do not commute.
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Specifically [q̂, p̂] = i

where p̂ is the generalisation:

p̂ =
∂L

∂q̇

The Heisenberg equation of motion for an operator Â is:

dÂ

dt
= i[H, Â]

The Hamiltonian, defined in terms of the Lagrangian is:

H = p̂ · ˆ̇q − L

In the classical operator:

L =
m ˆ̇q2

2
− mω2q̂2

2
∂L

∂ˆ̇q
= p̂

So H = p̂q̂ − L

= p̂q̂ − mˆ̇q
2

2
+
mω2q̂2

2

= p̂
p̂

m
− p̂2

2m
+
mω2

2
q̂2

So H =
p̂2

2m
+
mω2

2
q̂2

4.5.1 The Dirac δ function

The Dirac δ function may be thought of as a function of height 1/∆x and width
∆x around a value of x = x0 in the limit ∆x→ 0.

(Picture of delta function)

Area =

∫

δ(x− x0)dx = 1

δ(x− x0) =

{

0 x 6= x0

1 x = 0

Consider the function f(x) to be split into elements ∆x wide:
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∫

f(x)dx =
∑

i

f(xi)∆x

∫

f(x)δ(x− x0)dx =
∑

i

f(xi)δ(xi − x0)

For the bin xi 6= x0 it is clear that δ(xi − x0) = 0, but when xi = x0,
δ(xi − x0) = 1/∆x.

⇒
∫

f(x)δ(x− x0)dx = lim
x→0

f(x0)
1

∆x
∆x

⇒
∫

f(x)δ(x− x0)dx = f(x0)

Some useful expressions and functions limit to the Dirac δ function:

δ(x) = lim
ǫ→0

1

ǫ
for − ǫ/2 < x < ǫ/2

δ(x) = lim
ǫ→0

1

π

ǫ

x2 + ǫ2
(Breit-Wigner resonance)

Consider the Breit-Wigner resonance:

I =

∫ ∞

−∞

1

π

ǫ

x2 + ǫ2
dx

x = ǫ tan θ

dx = ǫ sec2 θ

I =
1

π

∫ π/2

π/2

ǫǫ sec2 θ

ǫ2(1 + tan2 θ)
dθ

= 1

So it appears that the Breit-Wigner function approaches the Dirac δ function
in the appropriate limit. At x = 0 the function has a value 1/πǫ. At x = ±ǫ the
function reaches the half maximum, 1/2πǫ. Γ/2 = ǫ where Γ is the full width
at half height and is more commonly used in the Breit-Wigner function.

Another form of the Dirac δ function is:

δ(x− x0) =

∫ ∞

−∞

1

2π
eik(x−x0)dk

Consider Fourier analysis of the above form. Recall that for a well behaved
function of x between −L/2 and L/2 the function can be expressed as a Fourier
series with wavelengths λ = L, L2 , L3 · · ·



4.5. THE LAGRANGIAN 39

f(x) =

∞
∑

x=−∞

ane
i2πnx/L

To find an integrate both sides:

∫ L/2

−L/2

dxf(x)e−12πnx/L =

∫ L/2

L/2

andx

⇒ an =
1

L

∫ L/2

−L/2

dxf(x)e−12πnx/L

Consider limL→ ∞

f(x) =
∞
∑

−∞

ane
i2πnx/L∆n

where ∆n is the interval and ∆n = 1

Define k =
2πn

L

dk = 2π
∆n

L

f(x) =

∞
∑

−∞

ane
ikx L

2π
dk

=
1

2π

∫ ∞

−∞

eikxg(k)dk

where g(k) = Lan

g(k) =

∫ ∞

−∞

f(x)e−ikxdx

f(x) =
1

2π

∫ ∞

−∞

g(k)eikxdk

Substituting g(k) into the expression for f(x):

f(x) =
1

2π

∫ ∞

−∞

∫ ∞

−∞

f(x′)e−ikx
′

eikxdkdx′

=

∫ ∞

−∞

f(x′)dx′
∫ ∞

−∞

1

2π
eik(x−x

′)dk

So δ(x− x′) =
1

2π

∫ ∞

−∞

eik(x−x
′)dk

Some properties of the Dirac δ function:
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1. δ(ax) = δ(x)/a Proof:

Let ax = y

⇒ adx = dy

So

∫ ∞

−∞

δ(ax)dx =

∫ ∞

−∞

δ(y)
dy

a

=
1

a

2. δ(x) = δ(−x) ⇒ δ(x) is an even function.

3. f(x) and f ′(x) For a function f(x):

δ(f(x)) =
∑

i

δ(x− ai)
(

df
dx

)

x=ai

where ai satisfy f(ai) = 0

At each place where f(x) = 0, then:

f(x) = f(ai) + (x− ai)
df

dx
+ · · ·

f(ai) = 0

So the δ function has non-zero contributions from each of the roots ai of
the form:

δ(f(x)) =
∑

i

δ

(

(x− ai)

(

df

dx

)

x=ai

)

=
∑

i

δ(x− ai)
(

df
dx

)

x=ai

4.5.2 The Heaviside step function

θ(τ) =

{

1 τ > 0
0 τ < 0

dθ

dτ
= δ(τ)

=
1

2π

∫ ∞

−∞

e−iωτdω
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⇒ θ =
1

2π

∫ ∞

−∞

∫

−∞

∞e−iωτdωdτ

=
1

2π

∫ ∞

−∞

e−iωτ

−iω dω

θ =
−1

2πi

∫ ∞

−∞

e−ωτdω

ω + iǫ

Using Cauchy’s theorem gives:

∮

C

f(z)dz

z − a
= 2πif(a)

So θ =
−1

2πi

(

−2nie(−iτ)(−iǫ)
)

= e−ǫτ

For ǫ→ 0, θ = 1
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Chapter 5

Relativity

An understanding of special relativity is necessary to properly understand much
of particle physics. Four vectors are defined by:

xµ = (t, r) xµ = (t,−r)
pµ = (E, p) pµ = (E,−p)

Scalar products are given by:

x · x = xµxµ = t2 − x2

p · p = pµpµ = E2 − p2 = m2

Also xµ = gµνx
ν , xν = gνµxµ.

where:

gµν =









1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1









gµνg
µν =

∑

µ

∑

ν

gµνg
µν

=
∑

µ

gµµg
µµ

=
∑

µ

g2
µµ

= 4

Recall that from quantum mechanics:

E = i ∂∂t p = −i∇
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But pµ = (E, p)

= i

(

∂

∂t
,−∇

)

So pµ = i∂µ

where ∂µ =

(

∂

∂t
,−∇

)

=
∂

∂xµ

and ∂µ =

(

∂

∂t
,∇
)

=
∂

∂xµ

Forming the De L’ambertian operator:

∂µ∂µ = 2
2 =

(

∂2

∂t2
,−∇2

)

5.0.3 Lorentz transformations

A Lorentz transformation relates the coordinates in one frame to the coordinates
of another frame. By convention the lorentz transformation takes place along
the (mutually parallel) x axis, with velocity v. x′ tranforms as:

t′ = γ(t− vx1)

x′1 = γ(−vt+ x1)

x′2 = x2

x′3 = x3

γ =
1√

1 − v2

The product pµqµ is invariant under a Lorentz transformation.

5.0.4 The light cone

Let xµ denote the four vector (x0, x) and suppose light is emitted at yµ = (y0, y).
Consider the difference between xµ and yµ:

s2 = (xµ − yµ)2 = (x0 − y0)
2 − (x− y)2

If the above is zero then:

(x0 − y0) = (x− y)2
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This is the equation of a light beam and defines a light cone. If s2 > 0
then the separation is time-like and the events are in the forward light cone and
causally related. If s2 < 0 then the separation is space-like and the events have
no causal connection.

(Picture of light cone)

5.0.5 Relativistic kinematics

Usually, one of two processes is considered, either A→ B+C (decay) or A+B →
C + D (scattering). For a decay the centre of mass energy is the mass of the
particle A. For scattering:

s = (pµA + pµB)2 = (pµc + pµD)2

For a fixed target experiment B is at rest:

s = (EA + EB)2 − (p
A

+ p
B

)2

= (EA +mB)2 − P 2
A

= m2
A +m2

B + 2mBEA

If EA ≫ mA,mB then:√
s ≃

√

2EAmB

5.0.6 Centre of mass frame

s = (pµA + pµB)
2

=
(

ECMS
A + ECMS

B

)2 −
(

pCMS
A + pCMS

B

)2

=
(

ECMS
A

)2
+ 2ECMS

A ECMS
B +

(

ECMS
B

)2

So
√
s = ECMS

A + ECMS
B

At Tevatron EP = Ep̄ = 980GeV , so
√
s ≃ 2TeV .

At HERA Ep = 920GeV , Ee = 27.5GeV , so
√
s = 318GeV .

To transform between the centre of mass frame and the laboratory frame it
is necessary to determine β and γ:

β =
Three momentum part of four vector

Energy part of four momentum

=
|p
A
| + |p

B
|

EA + EB

γ =
Energy part of four momentum

Centre of mass energy

=
|p
A
| + |p

B
|

√
s
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The energy and momentum of a particle in the centre of mass frame can be
determined using invariance rather than Lorentz transformations:

pµA + pµB =
(√
s, 0
)

in the centre of mass frame

pAµ (pµA + pµB) =
(

ECMS
A , pCMS

A

)

·
(√
s, 0
)

⇒ pAµ (pµA + pµB) = ECMS
A

√
s

m2
a + pAµp

µ
B = ECMS

A

√
s

Recall s = (pµA + pµB) (pAµ + pBµ)

= pA · pA + pB · pB + 2pµA · pBµ

So pAµp
µ
B =

s−m2
A −m2

B

2

So ECMS
A =

2m2
A + s−m2

A −m2
B

2
√
s

⇒ ECMS
A =

s+m2
A −m2

B

2
√
s

And similarly for the other energies.

(

pCMS
A

)2
=

(

ECMS
A

)2 −m2
A

So
(

pCMS
A

)2
=

(

s+m2
A −m2

B

2
√
s

)2

−m2
A

=

(

s+m2
A −m2

B

)2

4s
−m2

A

=
s2 +

(

m2
A −m2

B

)2
+ 2sm2

A − 2sm2
B − 4sm2

A

4s

=
s2 +

(

m2
A −m2

B

)2 − 2s
(

m2
A +m2

B

)

4s

=
[s− (mA +mB)

2
][s− (mA −mB)

2
]

4s
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5.0.7 Mandelstan variables

s = (pA + pB)
2

t = (pA − pC)
2

= (pB − pD)
2

= −Q2 = q2

u = (pA − pD)
2

= (pC − pB)
2

s+ t+ u = m2
A +m2

B +m2
C +m2

D

Proof: s+ t+ u = (pA + pB)
2

+ (pA − pC)
2

+ (pA − pD)
2

= p2
A + P 2

B + 2pBpA + p2
A + p2

C − 2pApC + p2
A + p2

D − 2pApD

= 3m2
A +m2

B +m2
C +m2

D + 2 (pBpA − pApC − pApB)

= 3m2
A +m2

B +m2
C +m2

D + 2pA (pB − pC − pD)

But pA + pB = pC + pD

⇒ pB − pC − pD = −pA
So s+ t+ u = m2

A +m2
B +m2

C +m2
D

5.1 Relativistic spin−0 particles

5.1.1 The Klein-Gordon equation

The quantum wavefunction for a free scalar particle propagating in the x−direction
is:

φ ∼ ei(px−Et)

∼ eip
µxµ

Repeating the procedure that yielded the Schroedinger equation, but using:
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E2 = p2 +m2 (rather than E = p2/2m) (5.1)

E → i ∂∂t
p → −i∇

}

(5.2)

Combining (8) and (9) and transforming in an equation acting on φ gives:

−∂
2φ

∂t2
= −∇2φ+m2φ (5.3)

Or 2
2φ = m2φ

(10) is the Klein-Gordon equation (or the relativistic Schroedinger equation.
The complex conjugate of (10) is:

−∂
2φ⋆

∂t2
= −∇2φ⋆ +m2φ⋆ (5.4)

φ⋆ × (10) = −φ⋆ ∂2φ
∂t2 = −φ⋆∇2φ+m2φ⋆φ (5.5)

φ× (11) = −φ∂2φ⋆

∂t2 = −φ∇2φ⋆ +m2φφ⋆ (5.6)

−i ((12) − (13)) = i
(

φ⋆ ∂
2φ
∂t2 − φ∂

2φ
∂t2

)

= i
(

φ⋆∇2φ− φ∇2φ⋆
)

⇒ i
∂

∂t

[

φ⋆
∂φ

∂t
− φ

∂φ⋆

∂t

]

− i∇[φ⋆∇φ− φ∇φ⋆] = 0

or
∂ρ

∂t
+ ∇ · j = 0

ρ = i

(

φ⋆
∂φ

∂t
− φ

∂φ⋆

∂t

)

J = i (φ⋆∇φ− φ∇φ⋆)

Consider the form of ρ for φ = Neip·x:

φ = Nei(px−Et)

ρ = i

(

φ⋆
∂φ

∂t
− φ

∂φ⋆

∂t

)

= i
(

N⋆e−i(px−Et) (−iE)Nei(px−Et) −Nei(px−Et) (iE)N⋆e−1(px−Et)
)

= i[N⋆N (−iE) −NN⋆ (ie)]

= 2N⋆NE

So ρ = 2EN⋆N
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Similarly j = 2N⋆Np.

This appeared disastrous because E2 = p2 + m2 lead to negative energy
solutions (ie E− = −

√

p2 +m2) which lead nagative probability densities, ρ <
0. Note that ρ, being proportional to E may have been antiticipated. Under a
Lorentz boost of speed v the volume element undergoes a contraction:

d3r → γd3r

Therefore to keep ρd3r invariant ρ must transform as a time-like component:

ρ→ γρ

5.1.2 The perceived distaster of the Klein-Gordon equa-
tion

The problem faced is that the Klein-Gordon equation can give ρ < 0. There are
two steps to remove this problem which works for scalar particles. In 1934 Pauli
and Weisskopf derived the Klein-Gordon equiation by multiplying j =

(

ρ, j
)

by
the charge of the particle, so qjµ becomes jµ

em
:

jµ
em

= −ie (φ⋆∂µφ− φ∂µφ⋆)

where −e is the charge on the scalar electron. Now ρ = j0em is a charge
densiity and not a probability density, so ρ can be negative.

5.1.3 The Feynmann-Stueckelberg interpretation of E < 0
solutions

The approach taken by Feynmann and Stueckelberg is that the negative energy
solutions describe a negative energy particle propagating backwards in time
or equivalently, a positive energy antiparticle propagating forwards in time.
Consider an electron of energy E, momentum p and charge −e:

j
em

(e−) = −2eN⋆N(E, p)

For a positron the charge is e:

j
em

(e+) = 2eN⋆N(E, p)

which is equivalent to:

j
em

(e−) = −2eN⋆N(−E,−p)

which is the same as j
em

but with (−E,−p) so the emission of a positron of
energy E is the same as the absorption of an electron with energy −E. These
ideas can describe many particle interactions. Consider double scattering in an
interaction volume:
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At time t1 and position r1 the electron scatters at I and then at a later time
t2 and position r2 scatters at II. All particles go forwards in time.

(Second diagram of double scattering process)
At the earlier time t1 and position r1 an electron-positron pair is created.

The electron leaves the volume and the positron propagates forwards in time to
t2 and r1 where it annihilates with an electron.

Both of the above diagrams have the same initial and final state, but the
first involves just one electron while the second involves three particles. They
would both have to be included when calculating the probability of that process
occuring.



Chapter 6

Calculating amplitudes

6.1 Possible approaches

• Make the Born approximation relativistic, which is the Feynmass-Stueckelberg
approach. This is not so easy to make systematic and is rather ad hoc.
This method motivates the propagator.

• Make non-relativistic perturbation theory relativistic, as in Halzen and
Martin. This is not systematic and does not motivate the propagator.

• Canonical field theory enables a more systematic approach, but it takes
more time.

• The path integral approach is systematic but mathematically more chal-
lenging.

6.2 Propagator approach

The basic idea behind the propagator approach is to know the quantum wave
(which is called ψ(r′, t′)) given the wavefunction at initial coordinates ψ(r, t).

ψ(r′, t′) = i

∫

G(r′, t′, r, t)ψ(r, t)d3r for t′ > t

where G is a Green’s function.
The wave at r has been propagated by G to r′. Consdier the scattering

process. An incident particle described by the plane quantum wave φ(r, t) is
incident on a potential V (r, t). Schroedinger’s equation should describe what
happens. Recall:

(H0 + V )ψ = i
∂ψ

∂t
i∂ψ(r, t) −H0ψ(r, t)dt = V (r, t)ψ(r, t)dt

51
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Suppose the potential acts at r1 and t1 for a short time interval ∆t1:

⇒ i

∫

∂ψ(r1, t1) −
∫ t1+∆t1

t1

H0ψ(r, t1)dt1 =

∫ t1+∆t1

t1

V (r1, t1)ψ(r1, t1)dt1

∆ψ(r1, t1) = −iV (r1, t1)ψ(r1, t1)∆t1

where H0 does not contribute significantly.

∆ψ(r1, t1) ∼ −iV (r1, t1)φ(r1, t1)∆t1

where ψ(r1, t1) = φ(r1, t1) + ∆ψ(r1, t1)

∆ψ(r′, t′) = i

∫

d3r1G0(r
′, t′; r1, t1)∆ψ(r1, t1)

= i

∫

d3r1G0(r
′, t′; r1, t1)(−i)V (r1, t1)φ(r1, t1)∆t1

ie ψ(r′, t′) = φ(r′, t′) +

∫

d3r1G0(r
′, t′; r1, t1)V (r1, t1)φ(r1, t1)∆t1

ψ(r′, t′) = φ(r′, t′) +

∫

d4x1G0(x
′; 1)V (1)φ(1)

where V (1) = V (r1, t1) etc and x′ is now a 4 vector.

Now applying a potential at (r2, t2) for ∆t2 generates the wavefunction:

ψ(r′, t′) = φ(r′, t′) +

∫

d3r1G0(x
′; 1)V (1)φ(1)∆t1

+

∫

d3r2G0(x
′; 2)V (2)φ(2)∆t2

+

∫ ∫

d3r1d
3r2G0(x

′; 2)V (2)G0(2; 1)V (1)φ(1)∆t1∆t2

Integrating over ∆t1, ∆t2 gives:

ψ(r′, t′) = φ(r′, t′)+

∫

d4x1G0(x
′; 1)V (1)φ(1)+

∫ ∫

d4x1d
4x2G0(x

′; 2)V (2)G0(2; 1)V (1)φ(1)

Now it is necessary to evaluate G0. In particular G0(2; 1) ie the G0 for the
intermediate states:

ψ(r′, t′) = i

∫

t′>t

d3rG(x′;x)ψ(r, t)

This can be written in a form valid for all times (using the Heaviside step
function centred at τ = t′):
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θ(t′ − t)ψ(x′) = i

∫

d3rG(x′;x)ψ(x)

θ(t′ − t) =

{

1 t′ > t
0 otherwise

Applying the Schroedinger equation to both sides:

LHS :

[

i
∂

∂t
−H(x′)

]

θ(t′ − t)ψ(x′)

= iδ(t′ − t)ψ(x′) + θ(t′ − t)i
δ

δt
ψ(x′) −H(x′)θ(t′ − t)ψ(x′)

= iδ(t′ − t)ψ(x′)

RHS : i

∫

d3r

[

i
∂

∂t′
−H(x′)

]

G(x′;x)ψ(x)

Consider a particle in the absence of a potential ie V = 0, then solve explicitly
for the free particle propagator.

RHS : i

∫

d3r

[

E − p2

2m

]

G0(x
′;x)ψ(x)

Transforming to four-momentum space via a Fourier transform:

RHS : i

∫

d3p

(2π)3
dE

2π

(

E − p2

2m

)

G0(E; p)eip(r
′−x)e−iE(t′−t)ψ(x)

LHS : iδ(t′ − t)ψ(x′)

= iδ(t′ − t)

∫

d3rψ(x)δ3(r′ − r)

= iδ4(x′ − x)ψ(x)

LHS = RHS so:

iδ4(x′ − x)ψ(x) = i

∫

d3p

(2π)3
dE

2π

(

E − p2

2m

)

G0(E; p)eip(x
′−x)e−E(t′−t)ψ(x)

⇒ δ4(x′ − x)ψ(x) =

∫

d4p

(2π)4
eip(x

′−x)e−iE(t′−t)ψ(x)

where G0 =
1

E − p2

2m

for E 6= p2

2m

As E = p2/2m the value of G0 becomes undefined. The simple model cannot
account for the singularity, so a new term in introduced:
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G0 → G0 =
1

E − p2

2m + iǫ

The free particle propagator for real or virtual particle in momentum space
is the inverse of the free particle Schroedinger equation. Assume that in momen-
tum space the free propagators of the Klein-Gordon equation, Dirac equation
and Proca equation are all obtained by inverting the appropriate equation.
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Spinless e
−µ− scattering

7.1 Electrodynamics of spinless particles

(Picture of scattering process)
Consider spinless electrons scattering off spinless muons. Starting with the

Klein-Gordon equation and including the electromagnetic interaction will lead
to a simple model of scattering. In electrodynamics the motion of a particle
of charge −e in an electromagnetic potential Aµ(= (A0, A)) is obtained by the
substitution:

pµ → pµ + eAµ

So pµp
µ = m2 → (pµ + eAµ) (pµ + eAµ) = m2

In quantum mechanics this is:

(i∂µ + eAµ) (i∂µ + eAµ)φ = m2φ

−∂µ∂µφ+ ie∂µA
µφ+ ieAµ∂

µφ+ e2AµA
µφ = m2φ

⇒ (∂µ∂
µ +m2)φ = ie∂µA

µφ+ ieAµ∂
µφ+ e2AµA

µφ

= −V φ

where V is the electromagnetic perturbation and the minus sign is required
to that there is the same relateive sign to the p2/2m term in the Schroedinger
equation.

The transition amplitude is:

Tfi = −i
∫

d4xφ⋆f (x)V (x)φi(x)

= −i
∫

d4xφ⋆f (x)(−ie)(∂µAµ +Aµ∂
µ)φi(x)

55
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where the second order term is neglected.
Transforming the first term so that the derivative acts on φ⋆f :

Tfi =

∫

φ⋆f∂µ (Aµφ2) d4x+ · · ·

I =

∫

φ⋆f∂µ (Aµφ2) d4x

∫

u
dv

dx
dx = uv −

∫

v
du

dx
dx

So let u = φ⋆f
dv

dx
= ∂µ (Aµφi)

So I =

[

φ⋆fA
µφi

]∞

−∞

−
∫

d4x
(

∂µφ
⋆
f

)

Aµφi

So Tfi = −e

∫

d4x
(

φ⋆fAµ∂
µφi − ∂µφ

⋆
fA

µφi
)

= −i
∫

d4xAµjfiµ

where jfiµ = −ie
(

φ⋆f (∂µφi) −
(

∂µφ
⋆
f

)

φi
)

At the top vertex the particle A is described by:

φA(x) = NAe−ipAx

Similarly, particle C is described by:

φC(x) = NCe−ipCx

⇒ jCAµ (x) = −ie
[

N⋆
CeipCxNAe−ipAx (−ipA)µ −N⋆

CeipCx (ipC)µNAe−ipAx
]

= −ieN⋆
CNAei(pC−pA)x (−ipA − ipC)µ

= −eN⋆
CNA (pA + pC)µ ei(pC−pA)x

and similarly for jBDµ
For Aµ, using Maxwell’s equations:

2
2Aµ(x) = jµ(x) (7.1)

The solution is found by inspection and the field Aµ arises because of the
field from the current at the lower vertex:

jµDB = −eN⋆
DNB (pB + pD)

µ
ei(pD−pB)x

By inspection the substitution
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Aµ =
−gµνjDBν

q2

satisfies (14) where q = pD − pB .
Substituting this into (14) gives:

∂µ∂
µ

(−1

q2

)

jµDB =
−1

q2
jµDB

[

− i (pD − pB)
]2

=
1

q2
jµDBq

2

So the expression for Aµ satisfies (14).

Tfi = −i
∫

d4xjCAµ (x)Aµ

= −i
∫

d4x (−e)N⋆
CNA (pA + pC)µ ei(pC−pA)x

(−1

q2

)

(−e)N⋆
DNB (pB + pD)

µ
ei(pD−pB)x

=
ie2

q2

∫

N⋆
CNAN

⋆
DNB (pA + pC)µ (pD + pB)

µ
ei(pC+pD−pA−pB)xd4x

7.2 Definition of the cross section

The cross section is imagined to take place in an intercation volume V and the
normalisation is such that there are 2E particles of each kind (A, B, C, D) in
this volume.

If φA = NAeipAx

then

∫

ρd3r =

∫

2Eφ⋆AφAd3r

= 2EN⋆
ANAV

= 2E

where NA =
1√
V

Tfi is the amplitude of transmission from an initial state i to a final state f .
The number of transitions per unit time per unit volume, Wfi is given by:

Wfi =
TfiT

⋆
fi

Unit time and volume

The cross section is then given by:
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σ = Wfi

(

number of final states

initial flux

)

TfiT
⋆
fi =

e4

q4

∫ ∫

1

V 4

[

(pA + pC)µ (pB + pD)
µ
]2

ei(pC+pD−pA−pB)xe−i(pC+pD−pA−pB)x′

d4xd4x′

Wfi =
e4

q4V 4

[

(pA + pC)µ (pB + pD)
µ
]2

δ4 (pC + pD − pA − pB)
2π4TV

TV

=
e4

q4V 4

[

(pA + pC)µ (pB + pD)
µ
]2

δ4 (pC + pD − pA − pB) 2π4

=
e4

q4
2π4

V 4

[

(pA + pC)µ (pB + pD)
µ
]2

δ4 (pC + pD − pA − pB)

Consider the number of final states. Each particle in the final state has
a three momentum between p

C
and p

C
+ d3p

C
, and p

D
and p

D
+ d3p

D
and

energies between EC and EC + dEC , and ED and ED + dED. The number
of final states per unit volume is determined by constraints imposed by the δ
function. These particles are imagined to be travelling in waves, which enter
and leave the interaction volume, V . The propagator particle only exists within
the interaction volume, so it must have the wavefunction of a particle in an
infinite square well, leading to quantisation of the transfer momentum.

Suppose the entrance is at x = 0 and the exit is as x = Lx, then:

pxLx = 2πnx nx ∈ N

and similarly for y and z.
The momentum separation, ∆px is given by:

(px + ∆px)Lx = 2π (nx + 1)

⇒ ∆px =
2π

Lx

Therefore the number of final states is:

Nf =
dpx
2π

dpy
2π

dpz
2π

LxLyLz

=
V

(2π)
3 d3p

There are 2E particles in V , so the normalised number of states is:

Nf =
V

(2π)
3
2E

d3p

Summing over states in C and D:
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NCD
f =

V d3pC

(2π)
3
EC

V d3pD

(2π)
2
ED

The flux factor is ρAρBuAB where ρi is the desnity of particles in V and
uAB is the relative velocity of particles A and B.

uAB = uA − uB

⇒ flux =
2EA
V

2EB
V

uAB

=
2EA
V

2EB
V

(

pA
EA

− PB
EB

)

=
4EAEB
V 2

(

pAEB − EApB
EAEB

)

=
4

V 2
(pAEB − pBEA)

In the centre of mass system pA = pB , so:

flux =
4

V 2
pA (EA + EB)

=
4

V 2
pA

√
s

Combining all the terms into the cross section formula gives:

dσ =
e4

q4
(2π)

4

V 4

[

(pA + pC)µ (pB + pD)
µ
]2

δ4 (pC + pD − pA − pB)

×V d3pC
2EC

1

(2π)
3

V d3pD
2ED

1

(2π)
3

V 2

4pA
√
s

The Lorentz invariant phase space, dQ is given by:

dQ =
V

2EC

d3pC

(2π)
3

V

2ED

d3pD

(2π)
3 (2π)

4
δ (pC + PD − pA − pB)

In the centre of mass system:

dQ = (2π)
4
δ
(√
s− (EC + ED)

)

δ3 (pC + pD)
d3pC
2EC

1

(2π)
3

d3pD
2ED

1

(2π)
3V

2

The degree of the differential can be reduced by integrating over d3pD:

dQ = (2π)
4
δ
(√
s− (EC + ED)

) d3pC

2E (2π)
3

1

2ED (2π)
3V

2
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The integration over d3pC is given by:

∫

d3pC =

∫

2πpC sin θpCdθdpC

=

∫

p2
CdpC (2π sin θdθ)

=

∫

p2
CdpCdΩ

so dQ =
V 2

(4π)
2 δ
(√
s− (EC + ED)

) 1

4ECED
p2
CdpCdΩ

In the centre of mass system:

√
s = (EC + ED)

=
√

p2
C +m2

C +
√

p2
D +m2

D

=
√

p2
C +m2

C +
√

p2
C +m2

D

⇒ d
√
s =

2pCdpC

2
√

p2
C +m2

C

+
2pCdpC

2
√

p2
C +m2

D

= pCdpC

(

1
√

p2
C +m2

C

+
1

√

p2
D +m2

D

)

= pCdpC

(

1

EC
+

1

ED

)

= pC

(

ED + EC
EDEC

)

dpC

=
pC

√
sdpC

ECED

⇒ dQ =
V 2

4π2
δ(
√
s− (EC + ED))

1

4
dΩ

1

ECED
p2
CdpC

=
V 2

4π2
δ
(√
s− (EC + ED)

) 1

4
dΩ

pC√
s

√
s

=
V 2

16π2
dΩ

dpC√
s

⇒ dσ =
e4

q4
1

V 4

[

(pA + pC)µ (pB + pD)
µ
]2

dQ
V 2

4pA
√
s

=
e4

q4
1

V 4

[

(pA + pC)µ (pB + pD)
µ
] V 2

4pA
√
s

V 2

16π2
dΩ

pC√
s

dσ

dΩ
=

e4

q4
1

64π2

[

(pA + pC)µ (pB + pD)
µ
]2

pC

pAs
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The number of final states divided by the flux factor in two body processes
is used in many calculations and is:

1

64π2s

pC
pA

Consider the cross-section for the massless limit, mi → 0 or Ei ≫ mi.

q2 = (pA − pC)
2

=
(

EA − EC , pA − p
C

)2

For m→ 0 |p
A
| ≃ EA etc

⇒ q2 = (EA − EC)
2 −

(

p
A
− p

C

)2

= E2
A + E2

C − 2EAEC −
(

p
A
− p

C

)2

= −2EAEC + 2p
A
· p
C

= −2EAEC (1 − cos θ)

So q4 = 4E2
AE

2
C (1 − cos θ)

2

[

(pA + pC)µ (pB + pD)
µ
]2

=
[

pA · pB + pA · pD + pB · pC + pC · pD
]2

Using pA =
(

|p|, p
)

pB =
(

|p|,−p
)

pC =
(

|p|, p′
)

pD =
(

|p|,−p′
)

With |p| = |p′|

⇒
[

(pA + pC)µ (pB + pD)
µ
]2

=
(

6p2 + 2p2 cos θ
)2

⇒
(

dσ

dΩ

)

eµ

=
e4

64π4s

(

3 + cos θ

1 − cos θ

)2

7.2.1 Note on decay

Consider the number of states per flux factor for the decay A→ B C.
The number of states is as before:

1

16π2

pCV
2

mA
dΩ

Due to the choice of normalisation there are 2Em particles per state in the
centre of mass frame in a volume V :

ρ =
2mA

V
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The flux factor is:

F =
1

16π2

pCV
2

mA
dΩ

V

2mA

=
1

32π2

pC
m2
A

V 3dΩ

The decay rate is:

dΓ

dΩ
= |Tfi|2

1

32π2

pC
m2
A

V 3dΩ

This factor is universal for decays if the decay is istropic:

dΩ → 4π

dΓ → Γ

For the decay of A:

dNA
dt

= ΓNA

ie NA(t) = NA(0)e−Γt and Γ−1 is the mean lifetime.



Chapter 8

Relativistic spin−1
2

particles
(Dirac equation)

8.1 Non-relativistic description

There are two spin states, up ( 1
2 ) and down (− 1

2 ). In spin space there are spin
operators given by:

s̄ =
h̄

2
σ̄

where σ̄ are the so-called Pauli matrices. The spin algebra is the same as
that of orbital angular momentum.:

L2 = l(l + 1)h̄2

In angular spin momentum:

S2 = s(s+ 1)h̄2

The Pauli matrices are:

σ̄x =

(

0 1
1 0

)

σ̄y =

(

0 −i
i 0

)

σ̄z =

(

1 0
0 −1

)

where Ī = σ̄2
x = σ̄2

y = σ̄2
z

63
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The communtation relations are:

[s̄x, s̄y] = ih̄s̄z

ie

[

h̄

2
σ̄x,

h̄

2
σ̄y

]

= i

(

h̄

2

)2

σ̄z

Or generally:

[

σ̄i, σ̄j

]

= 2iǫijkσ̄k

where ǫijk is the antisymmetric tensor.

ǫijk =

{ 0 if any index is repeated
1 for 123, 231, 312
−1 for 132, 321, 213

Also: σ̄iσ̄j + σ̄j σ̄i = 2δij Ī. This is the anticommutation relation.

⇒ σ̄iσ̄j = δij Ī + iǫijkσ̄k

Consider σ̄iAσ̄jBj = AiBjδij + iǫijkσ̄kAiBj
then (σ̄ ·A) (σ̄ ·B) = A ·B + iσ̄ · (A×B)

= A ·B + i

∣

∣

∣

∣

∣

σ̄x σ̄y σ̄z
Ax Ay Az
Bx By Bz

∣

∣

∣

∣

∣

Suppose A = B = p, then:

(

σ̄ · p
) (

σ̄ · p
)

= |p|2

The gyromagnetic ratio of a particle can be (correctly) determined if the
expression for the energy is:

E = V +

(

σ̄ · p
) (

σ̄ · p
)

2m

as opposed to:

E = V +
p2

2m

and the electromagnetic coupling is included.
Experimentally the gyromagnetically ratio is g = 2.00232 and the Dirac

equation gives g = 2.
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8.2 The Dirac equation

To avoid the problem of negative probability in the negative energy if the Klein-
Gordon equation, Dirac proposed an equation linear in ∂

∂t :

Hψ =
(

ᾱ · p+ βm
)

ψ

where ᾱ and β are 4 × 4 matrices and solutions for ψ are multi-component
objects. The formulation must be consistent with E2ψ =

(

p2 +m2
)

ψ.

If Eψ = (αipi + βm)ψ

then E2ψ = (αipi + βm) (αjpj + βm)ψ

=
(

αiαjpipj + (αiβ + βαj) pim+ β2m2
)

ψ

=

((

αiαj + αjαi
2

pipj + α (αiββαj) pim+ β2m2

))

ψ

⇒ ᾱiᾱj + ᾱjᾱi = 2δij Ī

ᾱβ̄ + β̄ᾱ = 0̄

β̄2 = Ī

• α and β are Hermitian matrices: ᾱ = ᾱ†, β̄ = β̄†.

• ᾱ2
i = Ī

• α and β are traceless

The proof that α and β are traceless is as follows:

ᾱiβ̄ = −β̄ᾱi

Postmultiplying by β̄ gives:

ᾱiβ̄
2 = −β̄ᾱiβ̄

ᾱiĪ = −β̄ᾱiβ̄

Taking the trace:

Tr (ᾱi) = −Tr
(

β̄ᾱiβ̄
)

Moving the elements cyclically:

Tr (ᾱi) = −Tr
(

β̄2ᾱi
)

= −Tr (ᾱi)

So Tr (ᾱi) = 0
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A common choice for ᾱ and β̄ is:

ᾱi =

(

0 σ̄i
σ̄i 0

)

β̄ =

(

Ī 0
0 −Ī

)

where σ̄i are the Pauli matrices and Ī is the identity matrix.

8.2.1 The covariant form of the Dirac equation

Eψ =
(

ᾱi · p+ βm
)

ψ

E → i
∂

∂t
p → −i∇

⇒ i
∂

∂t
ψ = −iᾱ · ∇ψ + βmψ

Premultiplying by β:

iβ
∂ψ

∂t
= −iβᾱ · ∇ψ + β2mψ

So iβ
∂ψ

∂t
= −iβᾱ · ∇ψ +mψ

Let γ0 = β

γk = βα

iγ0 ∂ψ

∂t
+ iγk∇ψ −mψ = 0

(

iγ0 ∂

∂x0
+ iγk

∂

∂xk
−m

)

= 0

(iγµ∂µ −m)ψ = 0

where γµ =
(

γ0, γk
)

∂µ =

(

∂

∂x0
,∇
)

γ0 is Hermitian, since β is Hermitian. However, γk is not Hermitian:

(

γk
)†

= −γk

γk = βαk

(γ)
†

=
(

βαk
)†
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=
(

αk
)†
β†

= αkβ

= −βαk

= −γk

(

γ0
)2

= Ī as β2 = Ī

(

γk
)2

= γkγk

= βαkβαk

= −βαkαkβ
= −ββ
= −I

8.2.2 Adjoint Dirac equation and conserved current

Since the Dirac equation is a matrix equation, to obtain the adjoint equation it
is necessary to take the Hermitian conjugate and not the complex conjugate.

(iγµ∂µ −m)ψ = 0 (8.1)

or

(

iγ0 ∂

∂t
+ iγk

∂

∂xk
−m

)

ψ = 0

Taking the Hermitian conjugate:

−i∂ψ
†

∂t
γ0 − i

∂ψ†

∂xk
(

−γk
)

−mψ† = 0

Postmultiply by γ0:

−i∂ψ
†

∂t
+ i

∂ψ†

∂xk
γkγ0 −mψ†γ0 = 0

γ0γk = −γkγ0

⇒ −i∂ψ
†

∂t
− i

∂ψ†

∂xk
γ0γk −mψ†γ0 = 0

Defining the adjoint as:

ψ̄ = ψ†γ0

gives:

−i∂ψ̄
∂t
γ0 − i

∂ψ̄

∂xk
γk −mψ̄ = 0

or i∂µψ̄γ
µ +mψ̄ = 0 (8.2)
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Consider ψ̄×(15)+(16)×ψ:

ψ̄ × (15) = ψ̄iγµ∂µψ − ψ̄mψ = 0

(16) × ψ = i∂µψ̄γ
µψ +mψ̄ψ = 0

So iψ̄γµ∂µψ + i∂µψ̄γ
µψ = 0

⇒ ∂µ
(

ψ̄γµψ
)

= 0

So the expression for jµ:

jµ = ψ̄γµψ

satisfies the continuity equation.
jµ is identified as the probability and flux densities ρ and j.
The probability density is:

ρ = j0

= ψ̄ψ

= ψ†γ0γ0ψ

= ψ†ψ

= |ψ|2

Hence ρ is always positive. For the electromagnetic interaction the charge
current density is:

jµ = −eψ̄γµψ

8.2.3 Free particle solutions of the Dirac equation

Consider solutions of the form:

ψ = u(p)e−ipx

Substitute ψ into the Dirac equation:

(iγµ∂µ −m)u(p)e−ipx = 0

(iγµ (−ipµ) −m)u(p)e−ipx = 0

(γµpµ −m)u(p)e−ipx = 0

So (γµpµ −m)u(p) = 0

Define γµpµ = 6 p
So (6 p−m)u(p) = 0

To obtain solutions for u(p), write the above in terms of the α and β matrices:
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(

γ0E − γkpk −m
)

u(p) = 0

Premultiplying by γ0:

(

(

γ0
)2
E − γ0γkpk − γ0m

)

u(p) = 0
(

IE − αkpk − βm
)

u(p) = 0

For a particle at rest, p = 0:

(IE − βm)u(p) = 0

⇒ m

(

I 0
0 −I

)

u(p) =

(

I 0
0 I

)

Eu(p)

Solutions exist if:
∣

∣

∣

∣

∣

(m− E)I 0
0 −(m+ E)I

∣

∣

∣

∣

∣

= 0

or in longhand:

∣

∣

∣

∣

∣

∣

∣

∣

m− E 0 0 0
0 m− E 0 0
0 0 −m− E 0
0 0 0 −m− e

∣

∣

∣

∣

∣

∣

∣

∣

= 0

[

(m− E) (m+ E)
]2

= 0

So there are four eigenvalues corresponding to E = ±m in two coincident
pairs. This means that negative energy solutions still exist. u1, u2 are associated
with positive energy solutions and u3, u4 are associated with negative energy
solutions.

Consider the solutions when p 6= 0. From
(

ᾱ · p+ βm
)

u = 0:

[

(

0 σ
σ 0

)

· p+

(

I 0
0 −I

)

m

]

(

uA
uB

)

= E

(

uA
uB

)

This yields:

σ̄ · puB +muA = EuA (8.3)

σ̄ · puA −muB = EuB (8.4)
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From (17) uA =
σ̄ · puB
E −m

From (18) uA =
σ̄ · puA
E +m

For E > 0 :

uA =

(

1
0

)

(spin up)

or

uA =

(

0
1

)

(spin down)

So u1 = N









1
0
σ̄·p

E+m

0









u2 = N









0
1
0
σ̄·p

E+m









where N is a normalisation constant.
For E < 0:

uA =
σ̄ · p
E −m

uB

=
σ̄ · p

−|E| −m
uB

= −
σ̄ · p

|E| +m
uB

So u3 = N









− σ̄·p

|E|+m

0
1
0









u4 = N









0

− σ̄·p

E+m

0
1








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In summary all the above comes from:

(6 p−m) = 0

with the propagation factor e−ipx.
Now associate negative energy solutions (u3, u4) such that they describe

positron solutions propagating backwards in time with the propagation factor
eipx:

u(3,4)(−p)e−i(−p)x = v(2,1)(p)eipx

⇒ v2 =









σ̄·p

E+m

0
1
0









(spin down)

v1 =









0
σ̄·p

E+m

0
1









(spin up)

The original equation for an electron of energy −E and momentum −p is:

(− 6 p−m)u(−p) = 0

⇒ ( 6 p+m) v(p) = 0

8.2.4 Orthogonality and normalisation of spinors

ψ1 = N









1
0
σ̄·p

E+m

0









e−ipx

ψ2 = N









0
1
0
σ̄·p

E+m









e−ipx

For orthogonality:

∫

ψ†
1ψ2d

3x = 0

⇒ N⋆N

(

10

(

σ̄ · p
)†

E +m
0

)









0
1
0
σ̄·p

E+m









= 0
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So ψ1 and ψ2 are orthogonal to each other. Similarly ψ3 and ψ4 are orthog-
onal to each other.

In order to normalise to 2E particles in a volume V :

∫

ψ†
1ψ1d

3x = 2E

⇒
∫

N⋆N

(

1 0

(

σ̄ · p
E +m

)†

0

)









1
0
σ̄·p

E+m

0









d3x = 2E

⇒
∫

N⋆N

[

1 +

(

σ̄ · p
E +m

)2
]

d3x = 2E

where
(

σ̄ · p
)†

= σ̄ · p

σ̄y =

(

0 −i
i 0

)

⇒
(

σ̄y · py
)2

=

(

0 −ipy
ipy 0

)2

=

(

p2
y 0
0 p2

y

)

= p2
y Ī

So

∫

N⋆N

(

1 +
p2

(E +m)
2

)

d3x = 2E

⇒ N⋆N

(

(E +m)
2

+ E2 −m2

(E +m)
2

)

d3x = 2E

=

∫

N⋆N
2E

E +m
d3x

So
N⋆NV

E +m
= 1

⇒ N =

√

E +m

V

8.2.5 Spin

Neither the orbital angular momentum nor the spin angular momentum com-
mute with the Dirac Hamiltonian, but J = L + S does commute. To find an
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operator other than J that commutes with the Dirac Hamiltonian recall the
Dirac equation:

H

(

uA
uB

)

=
(

ᾱ · p+ βm
)

(

uA
uB

)

ᾱ · p+ βm is the Dirac Hamiltonian.

H

(

uA
uB

)

= E

(

uA
uB

)

=

(

mĪ σ̄ · pĪ
σ̄ · pĪ −mĪ

)(

uA
uB

)

By inspection, the Dirac Hamiltonian commutes with σ̄ · pĪ:
(

mĪ σ̄ · pĪ
σ̄ · pĪ −mĪ

)(

σ̄ · pĪ 0
0 σ̄ · pĪ

)

−
(

σ̄ · pĪ 0
0 σ̄ · pĪ

)(

mĪ σ̄ · pĪ
σ̄ · pĪ mĪ

)

=

(

0 0
0 0

)

Define the helicity operator as:

H =
1

2
σ̄ · p̂ =

1

2

σ̄ · p
|p|

The helicity is the projection of the spin along the direction of motion and
its eigenvalues are ± 1

2 . H = 1
2 corresponds to positive helicity and H = −1

2
corresponds to negative helicity.

Suppose a particle has a momentum p where:

p̂ = sin θ cosφî+ sin θ sinφĵ + cos θk̂

σ̄ · p̂ = σ̄x · p̂x + σ̄y · p̂y + σ̄z · p̂z

=

(

0 1
1 0

)

sin θ cosφ+

(

0 −i
i 0

)

sin θ sinφ+

(

1 0
0 −1

)

cos θ

So
1

2
σ̄ · p̂

(

uA
uB

)

=
1

2

(

cos θ sin θe−iφ

sin θeiφ − cos θ

)(

uA
uB

)
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So the eigenvalue equation is:

1

2

(

cos θ sin θe−iφ

sin θeiφ − cos θ

)(

uA
uB

)

= λ

(

uA
uB

)

∣

∣

∣

∣

∣

cos θ − 2λ sin θe−iφ

sin θeiφ − cos θ − 2λ

∣

∣

∣

∣

∣

= 0

(− cos θ − 2λ) (cos θ + 2λ) − sin2 θ = 0

− cos2 θ + 4λ2 − sin2 θ = 0

⇒ λ = ±1

2

8.2.6 The γ5 matrix

The γ5 matrix is used to simplify notation:

γ5 = iγ0γ1γ2γ3

γ5 has many properties:

(

γ5
)†

= γ5

(

γ5
)2

= Ī

γ5γµ + γµγ5 = 0

n Dirac-Pauli representation:

γ0 =

(

Ī 0̄
0̄ Ī

)

γk =

(

0̄ σ̄k
σ̄k 0̄

)

γ5 =

(

0̄ Ī
Ī 0̄

)

Consider the effect of γ5 operating upon the Dirac equation (dropping the
bars that signify matrices):

γ5

(

uA
uB

)

=

(

0 I
I 0

)

(

χ
(

σ·p
E+m

)

χ

)

where χ =

(

1
0

)

γ5

(

uA
uB

)

=

( (

σ·p
E+m

)

χ

χ

)
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For high energies, or in the limit m→ 0, E ∼ p:

γ5

(

uA
uB

)

≃
(

σ · p̂χ
χ

)

=

(

σ · p̂χ
Iχ

)

=

(

σ · p̂χ
(σ · p̂)2 χ

)

= σ · p̂
(

χ
σ · p̂χ

)

= σ · p̂
(

χ
(

σ· p
E+m

)

χ

)

= σ · p̂
(

uA
uB

)

So γ5

(

uA
uB

)

=

(

σ · p̂ 0
0 σ · p̂

)(

uA
uB

)

So in the limit m→ 0, γ5 becomes the helicity operator.
Operators can then be defined as follows:

PR =
1

2

(

1 + γ5
)

PL =
1

2

(

1 − γ5
)

These operators are then respectively the left and right-handed projection
operators of helicity.

Where m 6= 0 (which is generally the case) the operator 1
2

(

1 + γ5
)

is the
right-handed chirality state and ifm is small then the state can be approximated
as a right-handed helicity state, but will also contain a small fraction of the left-
handed helicity component.

8.2.7 Completeness relation

The completeness relations are used extensively in the evaluation of Feynmann
diagram calculations.

Consider the summation over all spin states:

∑

S=1,2

us(p)ūs(p) =
∑

S=1,2

N⋆N

(

χS
σ·p
E+mχS

)(

χ†
S ,−

σ · p
E +m

χ†
S

)

=
∑

S=1,2

N⋆N

(

χ†
SχS − (σ·p)†

E+m χ
†
SχS

σ·p
E+mχ

†
SχS − E2−m2

(E+m)2
χ†
SχS

)
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=
∑

S=1,2

N⋆N

(

I − (σ·p)†

E+m
σ·p
E+m − E2−m2

(E+m)2

)

χ†
Sχ

The summation over states is:

∑

S=1,2

χ†
SχS =

(

1
0

)

(10) +

(

0
1

)

(01)

=

(

1 0
0 1

)

N⋆N = E +m

∑

S=1,2

uS ūS =

(

I − σ·p
E+m

σ·p
E+m − E2−m2

(E+m)2
I

)

(E +m)

=

(

(E +m) I −σ · p
σ · p −I (E −m)

)

=

(

(E +m) I −σ · p
σ · p (m− E) I

)

(8.5)

However 6 p+m = γµpµ +mI

= γ0E − γkpk +mI

=

(

I 0
0 −I

)

E −
(

0 σk
−σk 0

)

pk +

(

I 0
0 I

)

m

=

(

(E +m) I −σ · p
σ · p (m− E) I

)

(8.6)

So (19)=(20).

∑

S=1,2

uS ūS = 6 p+m

∑

S=1,2

vS v̄S = 6 p−m

8.2.8 Possible forms of interaction

An exhasutive set of possibilities of interaction is:

Scalar interactions ūu (even parity)

Vector interactions ūγµu (odd parity) This interaction causes allowed Fermi
transitions in β decay and in µ decay.
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Tensor interactions ūσµνu As far as has been confirmed by experiment this
interaction does not exist, except for anomalous magnetic moments.

Axial vector interactions ūγ5γµu (even parity) The weak interaction is a
mixture of the vector and axial vector interactions. In some nuclei, either the
vector or axial vector process cannot take place. In many β decays of nuclei
both of the processes take place.

Pseudoscalar interactions ūγ5u (odd parity)

8.3 Trace theorems

8.3.1 Tr[I]

Tr[I] = 4

8.3.2 Tr[6 a 6 b]

Tr[6 a 6 b] = Tr[6 b 6 a]

So Tr[6 a 6 b] =
1

2
Tr[6 a 6 b+ 6 b 6 a]

=
1

2
Tr[γµγνaµbν + γµγνbµaν ]

γµγν + γνγµ = 2gµνI

=
1

2
a · b2Tr[I]

= 4a · b

8.3.3 Tr[6 a 6 b 6 c 6 d]

Tr[6 a 6 b 6 c 6 d] = Tr[γµγνγδγσaµbνcδdσ]

But Tr[γµγνγδγσ] = −Tr[γνγµγδγσ] + Tr[2gµνγδγσ]

= Tr[γνγδγµγσ] − Tr[2gµδγνγσ] + Tr[2gµνγδγσ]

= −Tr[γνγδγσγµ] + Tr[2gµσγνγδ] − Tr[2gµδγνγσ] + Tr[2gµνγδγσ]

⇒ Tr[γµγνγδγσ] = Tr[gµσγνγδ] − Tr[gµδγνγσ] + Tr[gµνγδγσ]

Tr[γµγν ] = 4gµν

Tr[γµγνγδγσ] = 4
(

gµσgνδ − gµδgνσ + gµνgδσ
)

⇒ Tr[γµγνγδγσ]aµbνcδdσ = 4
[

(a · d)(b · c) − (a · c)(b · d) + (a · b)(c · d)
]

Some other identities, which shall be used in the calculation of the cross-
section for Compton scattering include:
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8.3.4 γµγ
νγµ = −2γν

γµγ
νγµ = −γµγµγν + 2gµνγµ

= −4γν + 2γν

= −2γν

or γµ 6 aγµ = −2 6 a

8.3.5 γµγ
δγσγµ = 4gδσ

γµγ
δγσγµ = −γδγµγσγµ + 2gδµγ

σγµ

= 2γδγσ + 2γσγδ

= 4gδσ

or γµ 6 a 6 bγµ = 4a · b

8.3.6 γµ 6 a 6 b 6 cγµ = −2 6 c 6 b 6 a

γµ 6 a 6 bγνγµcν = −γµ 6 a 6 bγµγνcν + γµ 6 a 6 b2gνµcν
= −4(a · b) 6 c+ 2 6 c 6 a 6 b
= −4(a · b) 6 c+ 2 6 cγαγβaαbβ
= −4(a · b) 6 c− 2 6 cγβγαaαbβ + 2 6 c2gαβaαbβ
= −2 6 c 6 b 6 a

8.3.7 Tr[γ5γµ] = 0

γ5γµ + γµγ5 = 0

⇒ Tr[γ5γµ] = −Tr[γµγ5]

= −Tr[γ5γµ]

So Tr[γ5γµ] = 0

8.3.8 Tr[γ5γµγν ] = 0

Assume that γµ = γν

Tr[γ5 (γµ)
2
] = Tr(γ5I)

= Tr

[

(

0 I
I 0

)(

I 0
0 I

)

]

= 0

Now assume µ = 1, ν = 2
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Tr[iγ0γ1γ2γ3γ1γ2] = Tr[iγ0
(

γ1
)2
γ2γ3γ2]

= −Tr[iγ0
(

γ2
)2
γ3]

= −iT r[γ0γ3]

= −iT r[γ3γ0]

and Tr[γ0γ3 + γ3γ0] = 2Tr[g03I]

= 0

⇒ Tr[γ3γ0] = 0

So Tr[γ5γ1γ2] = 0

8.3.9 Tr[γ5γνγµγδ] = 0

The trace of an odd number of γ matrices is zero:

Tr[6 a1 6 a2 · · · 6 an] = Tr[6 aa 6 a2 · · · 6 anγ5γ5]

Back-propagate γ5 :

Tr[6 a1 6 a2 · · · 6 an] = (−1)
n
Tr[γ5 6 aa 6 a2 · · · 6 anγ5]

= (−1)
n
Tr[6 a1 6 a2 · · · 6 anγ5γ5]

as traces are cyclic

So Tr[6 a1 6 a2 · · · 6 an = (−1)
n
Tr[6 a1 6 a2 · · · 6 an]

So as n is odd, the Trace is equal to zero.

8.3.10 Tr[γ5γµγνγδγσ]

First consider Tr[γ5γ0γ1γ2γ3]:

Tr[γ5γ0γ1γ2γ3] =
−1

i
T r
[

(

γ5
)2
]

= 4i

T r[γ5γµγνγδγσ] = 4iǫµνδσ

where ǫµνδσ =

{ 1 even permutations
−1 odd permutations
0 otherwise
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8.4 Electron-muon scattering

Consider electrons and muons scattering, taking spin into account. The calcula-
tion of the cross-section can be used to predict the cross-section of other similar
processes.

8.4.1 An electron in an electromagnetic field

The Dirac equation is:

(α · p+ βm)ψ = Eψ

Now substitute pµ → pµ + eAµ

then E → E + eV

pk → pk + eAk

αkp
k + βm+ e

(

αkA
k − V I

)

ψ = Eψ

The amplitude for the scattering of an electron from a state ψi to ψf is:

Tfi = −i
∫

d4xψ†
fVDIRACψi

where VDIRAC = e
(

αkA
k − V I

)

Tf i = −ie
∫

d4xψ†
f

(

−A0I + αkAk
)

ψi

= −ie
∫

d4xψ†
fγ

0γ0
(

−A0I + αkAk
)

ψi

= −ie
∫

d4xψ̄f
(

−γ0A0I + γkAk
)

ψi

= ie

∫

d4xψ̄fγ
µAµψi

= −i
∫

jµfiAµd
4x

where jµfi = −eψ̄fγ
µψi

= −eūfγ
µuie

i(pf−pi)x

This is the electromagnetic transition current between states i and f . Recall
for a spinless electron:

jµfi = −e (pf + pi)
µ

ei(pf−pi)x

Consider the following diagram:



8.4. ELECTRON-MUON SCATTERING 81

(Feynmann diagram of scattering)
The transition amplitude is then:

Tfi = −i
∫

j1µ

(−1

q2

)

jµ2 d4x

= ie

∫

d4xū(k′)eik
′xγµu(k)e

−ikx

(−1

q2

)

(−e) ū(p′)eip
′xγµu(p)e−ipx

=
ie2

q2

∫

d4xei(k
′+p′−k−p)

[

ū (k′) γµu (k)
][

ū (p′) γµu (p)
]

As before for |Tfi|2, one exponential term becomes the phase-space factor
and the second becomes the product of the volume and time.

|Tfi|2 =
e4

q4

[

ū (k′) γµu (k)
][

ū (p′) γµu (p)
][

ū (k′) γµu (k)
]†[

ū (p′) γµu (p)
]†

The Hermitian conjugates are:

(

u†(p′)γ0γµu(p)
)†

= u†(p)γµ†γ0†u(p′)

= u†(p)γµ†γ0u(p′)

= −u†(p)γµγ0u(p′)

= u†(p)γ0γµu(p′)

= ū(p)γµu(p′)

and similarly for the other term.

⇒ |Tfi|2 =
e4

q4

[

ū(k′)γµu(k)
][

ū(k)γνu(k
′)
][

ū(p′)γµu(p)
][

ū(p)γνu(p′)
]

(

ū(k′)γµu(k)
](

ū(k)γνu(k
′)
]

is the electron tensor
[

ū(p′)γµu(p)
][

ū(p)γνu(p
′)
]

is the muon tensor

|Tfi|2 =
e4

q4
eLµν

µLµν

In order to calculate the transition amplitude correctly the amplitude must
be summed over all initial states, summed over all final spin states and averaged
over all initial spin states:

eLµν =
1

2

∑

S

∑

S′

ū(k′)γµu(k)ū(k)γνu(k
′)
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Writing this explicitly in terms of individual matrix elements, α, β, γ, δ:

eLµν =
1

2

∑

S

∑

S′

ū(k′)αγ
αβ
µ u(k)β ū(k)γγ

γδ
ν u(k′)δ

where the factor of 1/2 is due to the averaging over initial spin states.
These values are all elements of tensors, so they can be reordered:

eLµν =
1

2

∑

S

∑

S′

u(k′)δū(k
′)α
(

γαβµ
)

u(k)β ū(k)γγ
γδ
ν

=
∑

S

∑

S′

(6 k′ +m)δα
(

γαβµ
)

(6 k +m)βγ

So eLµν is reduced to the trace of the product of four 4 × 4 matrices:

eLµν =
1

2
Tr
[

(6 k′ +m) (γµ) ( 6 k +m) (γν)
]

µLµν =
1

2
Tr
[

(6 p′ +m) (γµ) ( 6 p+m) (γν)
]

Denoting the electron mass by m and the muon mass by M gives:

|Tfi|2 =
e4

q4
1

2
Tr
[

( 6 k′ +m) γµ (6 k +m) γν

]1

2
Tr
[

( 6 p′ +M) γµ ( 6 p+M) γν
]

=
e4

4q4
Tr
[

( 6 k′ +m) γµ ( 6 k +m) γν

]

Tr
[

(6 p′ +M) γµ ( 6 p+M) γν
]

The only non-zero terms are terms involving two or four γ matrices. eg
(6 k′γµmγν) = 0.

So |Tfi|2 =
e4

4q4
Tr[γδγµγσγνk

′δkσ + γµγνm
2]Tr[γδγµγσγνp′δpσ + γµγνM2]

=
e4

q4
(

(gδνgνσ − gδσgνµ + gδµgσν) k
′δkσ + gµνm2

)

×4
((

gδνgνσ − gδσgνµ + gδµgσν
)

p′δpσ + gµνM
2
)

Multiplying out:

|Tfi|2 =
8e4

q4
(

(k′ · p′) (k · p) + (k′ · p) (k · p′) −m2 (p′ · p) −M2 (k′ · k) +m2M2
)

In the relativistic limit the m2 and M2 terms can be neglected.

⇒ |Tfi|2 =
8e4

q4
((k′ · p′) (k · p) + (k′ · p) (k · p))
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Expressing this in terms of the Mandelstran variables gives:

s = (k + p)
2

∼ 2k · p
∼ 2k′ · p′

q2 = t

= (k − k′)
2

= (p− p′)
2

∼ −2k · k′

∼ 2p · p′

u = (k − p′)
2

∼ −2p′ · k
∼ −2k′ · p

So |Tfi|2 =
8e4

t2

(

s

2

s

2
+

(−u
2

)(−u
2

))

=
2e4

t2
(

s2 + u2
)

= 2e4

(

s2 + u2

t2

)

⇒ dσ

dΩ
=

1

64π2s
|Tfi|2

=
e4

32π2s

(

s2 + u2

t2

)

8.5 Cross section for e+e− → µ+µ−

This cross section can be easily derived from eµ→ eµ scattering.
Comparing the vertices:

For I k → k′ in eµ→ eµ
k → −p in e+e− → µ+µ−

For II p→ p′ in eµ→ eµ
−k′ → p′ in e+e− → µ+µ−

So between the two processes there is an interchange of k′ with −p and p
with −k′.

Recall for e−µ− scattering:

|Tfi|2 =
8e4

q4
((k′ · p′) (k · p) + (k′ · p) (k · p′))
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and q4 = 4 (k · k)2

So |Tfi|2 for e+e− is:

|Tfi|2 =
8e4

4 (k · p)2
((p · p′) (k · k′) + (p · k′) (k · p))

=
2e4

(k · p)2
((p · p′) (k · k′) + (p · k′) (k · p′))

=
2e4

(

s
2

)2

((−t
2

)(−t
2

)

+

(−u
2

)(−u
2

))

⇒ |Tfi|2e+e− = 2e4

(

t2 + u2

s2

)

⇒ dσ

dΩ e+e−
=

1

64π2
× 2e4

(

t2 + u2

s2

)

=
e4

32π2

(

t2 + u2

s2

)

In comparison with eµ→ eµ, the values of s and t are simply interchanged.

8.5.1 Total cross-section

To find the total cross-section, integrate with respect to Ω and evaluate s, t and
u in terms of the energy and angle of scattering in the centre of mass frame:

s ∼ 2k · p
= 4Ee−Ee+

t2 = 4 (k · k′)2

= 4
(

Ee−Eµ+ − pe− · pµ+

)2
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= 4Ee−Eµ+ (1 − cos θ)
2

u2 = 4 (k · p′)2

= 4Ee−Eµ− (1 + cos θ)
2

⇒ dσ

dΩ
=

1

64π2s
2e4

4
(

Ee−Eµ+ (1 − cos θ)
2

+ Ee−Eµ− (1 + cos θ)
2
)

16Ee+Ee−

But in the centre of mass system:

Ee− = Ee+ = Eµ− = Eµ+

⇒ dσ

dΩ
=

1

64π2s
e4
(

1 + cos2 θ
)

σ =

∫ π

−π

dσ

dΩ
dΩ

dΩ = 2πd (cos θ)

α =
e2

4π

⇒ σ =

∫ π

0

α2

4s

(

1 + cos2 θ
)

2πd (cos θ)

=
2πα2

4s

∫ −1

1

(

1 + x2
)

dx

(as x = cos θ)

=
2πα2

4s

[

− cos θ − 1

3
cos3 θ

]π

0

=
4πα2

3s

The annihilation process falls off as a function of 1/s. Had it not been for
qq̄ resonances, eg Z0, particle physics would have become rather uninteresting.

Note that using similar methods it is possible to calculate Bhabha scattering.

8.6 The ratio R at e+e− colliders

R =
σ(e+e− → hadrons)

σ(e+e− → µ+µ−)

At low energies e+e− can annihilate into systems containing u or d quarks
with quarks subsequently hadronising. They can annihilate through the virtual
photon to make qq̄ resonances such as the ρ(770). As the energy increases ss̄,
cc̄ and bb̄ states can be formed. At very high energies tt̄ states can be formed,
although such e+e− colliders have yet to be built.
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Consider the contribution to R from on generation of qq̄ pairs:

R =

(

(

2
3

)2
+
(

−1
3

)2
)

× e2 × 3

e2

=
15

9
per generation

By the time the energy is
√
s > 2mb, R should be be ∼ 11

3 .

Superimposed are the resonances, such as the J/ψ and Υ family. There are
resonances at ρ(770), J/ψ(3088) and Υ(10588). At Babar, the e+e− collider
runs at the Υ(4S) resonances, which decays almost exclusively to bb̄ pairs.

Although the simple model predicting 11
3 for R for

√
s > 2mb gives a reason-

able description of the data, this is not the complete picture. The actual value
is somewhat higher due to gluon radiation in the final state of the hadronic
system:

So there is a higher order correction to R ∼ 11
3 .

At the Z0 mass resonance, an analogous quantity is the ratio of the partial
decay widths:

RZ =
Γ(Z0 → hadrons)

Γ(Z0 → µ+µ−)
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To lowest order, RZ = 20.09, however the measured value is 20.79 ± 0.04.
This 3.5% discrepency is due entirely to higher order QCD corrections and gives
a good way to measure αs.

8.7 Helicity conservation at high energies

It is possible to gain further insight into cross-section calculations and their
angular distributions by looking at the helicity of particles. The states are:

UL =
1

2

(

1 − γ5
)

u

UR =
1

2

(

1 + γ5
)

u

ŪL = U†
Lγ

0

=
1

2

(

U†
) (

1 − γ5
)†
γ0

=
1

2
U†
(

1 − γ5
)

γ0

=
1

2
U†γ0

(

1 + γ5
)

=
1

2
Ū
(

1 + γ5
)

At high energies the electromagnetic interaction conserves helicity.

Consider the electromagnetic current:

ūγµu =
(

ŪL + ŪR
)

γµ (UL + UR)

ŪLγ
µUR =

1

2
ū
(

1 + γ5
)

γµ
1

2

(

1 + γ5
)

u

=
1

4
ūγµ

(

1 − γ5
) (

1 + γ5
)

u

=
1

4
ūγµ

(

1 −
(

γ5
)2
)

u

= 0

Helicity conservation requires that the incoming electron and positron have
opposite helicities, as do the outgoing muons.
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In the centre of mass system:

The reaction proceeds via a photon of spin−1 so the amplitudes are propor-
tional to the rotation matrices:

djλλ′(θ) = 〈jλ′|e−iθJy |jλ〉

where y is perpendicular to the reaction plane. The rotation matrices can
be calculated using angular momentum theory.

d1
1,1(θ) = d1

−1,−1(θ) = 1
2 (1 + cos θ) ∼ −u

s

d1
1,−1(θ) = d1

−1,1(θ) = 1
2 (1 − cos θ) ∼ − t

s

Squaring and adding the above:

dσ

dΩ
∝ t2 + u2

s2



Chapter 9

Massless spin-1 particles
(photons)

9.1 Maxwell’s equations and the definition of
classical potentials

I ∇ · E = ρ
II ∇ ·B = 0

III ∇× E = −Ḃ
IV ∇×B = J + Ė

The potentials are defined as:

B = ∇×A

∇× E = −∂∇×A

∂t

= −∇×
(

∂A

∂t

)

So ∇×
(

E +
∂A

∂t

)

= 0

The solution is:

E +
∂A

∂t
= −∇φ

as the gradient of a scalar function has zero curl everywhere.

I and IV give:
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∇ · E = ρ

E = −∇φ− ∂A

∂t

⇒ −∇2φ− ∂

∂t
(∇ ·A) = ρ

So ∇2φ− ∂2φ

∂t2
+
∂2φ

∂t2
+
∂

∂t
∇ ·A = ρ (9.1)

∇×B = J +
∂E

∂t

∇×∇×A = J +
∂E

∂t

= J +
∂

∂t

(

−∇φ− ∂A

∂t

)

= J −∇∂φ

∂t
− ∂2A

∂t2

or ∇ (∇ ·A) −∇2A = J −∇∂φ

∂t
− ∂2A

∂t2

⇒ ∇2A− ∂2A

∂t2
−∇ (∇ ·A) − ∂

∂t
∇φ = J (9.2)

(9.3)

Equations (21) and (22) can be written as:

2
2Aµ − ∂µ∂νA

ν = Jµ

where 2
2 =

(

∂2

∂t2
,−∇2

)

Aµ = (φ,A)

Jµ = (ρ, J)

Therefore the electromagnetic field is given by the four-potential Aµ which
satisfies the above equation. For a free electromagnetic field (ρ, J) = 0.

Consider the polarisation states for a free photon. Since there is a four-
potential there appears to be four polarisation states. These states reduce to
the well known two polarisations states of the free photon. The four states for
a photon travelling in the z−direction are:

|1, 0, 0, 0〉 time-like polarisation

|0, 1, 0, 0〉 polarisation in the x direction

|0, 0, 1, 0〉 polarisation in the y direction

|0, 0, 0, 1〉 polarisation in the z direction
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For virtual photons all four polarisation states exist, whereas for real photons
only tranverse polarisation states exist.

Applying the Lorentz condition:

∂µA
µ = 0

2
2Aµ = Jµ

This makes the time-like component depend on the spatial components so
that the time-like component is no longer independent. For free photons Jµ =
0µ, so 2

2Aµ = 0µ and the solutions are plane waves:

Aµ = ǫµi e
−iqx

where ǫi are the four polarisation states.
The Lorentz condition gives:

∂µA
µ = ∂µǫ

µ
i e

−iqµx
µ

= 0

⇒ −iqµǫµi e−iqµx
µ

= 0

So the Lorentz condition reduces to:

qµǫ
µ
i = 0

⇒ q0ǫ
0
i = qkǫ

k
i

So the time-like component is dependent on the space-like components. To
reduce to two polarisation vector a gauge transformation is applied. Recall that
E and B in classic electromagnetism come from the field tensor:

Fµν = ∂µAν − ∂νAµ

Fµν is unchanged and this E and B are unchanged under the gauge trans-
formation:

A′µ → Aµ + ∂µΛ

where Λ is a scalar field. Λ satisfies the Lorentz condition.

Let Λ = iae−iqµx
µ

∂µ∂
µΛ = (−iqµ) (−iqµ) iae−iqµx

µ

= −iaq2e−iqx
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But q2 = E2 − p2 and is equal to zero for a real photon, so ∂µµ = 0 and

the Lorentz condition is satisfied. Substituting Λ and Aµ = ǫµe−iqµx
µ

into the
gauge tranformation gives:

A′µ → ǫµe−iqx + (−iqµ) iae−iqx

= ǫµe−iqx + aqµe−iqx

So the gauge transformation simplifies to:

ǫ′µ → ǫµ + aqµ

So two polarisation vectors ǫ and ǫ′µ which differ by a multiple of qµ, describe
the same photon. This means the time component must be zero. ǫ0 = 0.

So the Lorentz condition reduces to ǫ·q = 0. From this only two independent
polarisation vectors can exist and they must be perpendicular to q. So the states
are:

ǫ1 = (1, 0, 0)

ǫ2 = (0, 1, 0)

They can also be expressed as circular polarisation:

ǫR =
1√
2

(ǫ1 + iǫ2)

ǫL =
1√
2

(ǫ1 − iǫ2)

9.1.1 Virtual photons and the photon propagator

For virtual photons, by imposing the Lorentz condition:

2
2Aµ = Jµ

= gµνJν

By inspection: Aµ = −g
µν

q2
Jν

The solution can be derived by the propagator approach:

Aµ(x′) =

∫

G(x′;x)jµ(x)d4x (9.4)

From the Lorentz condition:
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2
2Aµ(x′) = jµ(x′)

=

∫

d4xδ4(x′ − x)jµ(x)

Also from (24):22Aµ(x′) =

∫

2
2G(x′, x)jµ(x)d4x

Comparing the expressions for 2
2Aµ(x′):

2
2G(x′, x) = δ4(x′ − x)

Translating into four-momentum space via a Fourier transform:

1

(2π)
4

∫

d4q (−iq)2G(q)e−iq(x−x
′) =

1

(2π)
4

∫

d4qe−iq(x
′−x)

⇒ G(q) = − 1

q2

So Aµ(x) = −j
µ(x)

q2

= −−gµνjν(x)
q2

When considering the propagator approach theory it is found that the prop-
agator in four-momentum space is the inverse of the equation describing the
free propagation of virtual particles. In four-momentum space the propagator
for a Klein-Gordon particle is obtained by inverting the Klein-Gordon equation,
multiplied by i.

i
(

2
2 +m2

)

φ = −iV φ

So the Klein-Gordon propagator is:

1

i (22 +m2)
=

−i
22 +m2

2
2 = ∂µ∂

µ

=
i∂µi∂

µ

i2

= −pµpµ
= −p2

So the propagator is
i

p2 −m2
.

Consider the Dirac equation:
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[

(αp+ βm) + e
(

αA−A0I
)

]

ψ = Eψ

where the Dirac potential is αA−A0I.
Converting this equation to convariant form by premultiplying by β gives:

[

βαp+ β2m+ e
(

βαA− βA0I
)

]

ψ = βEψ

Rearranging:

(

βE − βαp− β2m
)

ψ = e
(

βαA− βA0
)

ψ
(

γ0E − γkpk − Im
)

ψ = −e
(

βA0 − βαA
)

ψ

(6 p−m)ψ = −e 6 Aψ
⇒ −i ( 6 p−m)ψ = ie 6 Aψ

= −iV ψ

So the propagator is:

1

−i ( 6 p−m)
=

i ( 6 p+m)

( 6 p−m) (6 p+m)

=
i ( 6 p+m)

6 p2 −m2

=
i ( 6 p+m)

p2 −m2

=
i
∑

spins uū

p2 −m2
via the completeness relation

This is the general form of the propagator of a virtual particle where the
sum is over eg all spin states of the electron or polarisation states of the photon.

9.1.2 Real and virtual photons and the significance of lon-
gitudinal and time-like polarisations

Consdier a typical process involving photon exchange ie the photon is sand-
wiched between two currents:

jAµ (x)

(−gµν
q2

)

jBν (x) = −jAµ (x)
1

q2
jBµ(x)

=
1

q2

[

jA1 (x)j1B(x) + jA2 (x)j2B(x) + jA3 (x)j3B(x) − jA0 (x)j0B(x)
]

However, electromagnetic current is conserved:

∂µj
µ = 0 ⇒ qµj

µ = 0
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Proof Consider jµ = ūfe
ipfxγµuie

−ipix. Then if q is the momentum of the
exchanged photon and q = pf − pi then:

∂µj
µ ∝ i (pf − pi)

Therefore if ∂µj
µ = 0 then qµj

µ = 0.
Since q can be taken to be parallel to the x3 axis without loss of generality:

q3j
1 = q3j

2 = 0

Applying the condition qµj
µ = 0 to the longitudinal and time-like compo-

nents:

qµj
µ = q0j

0 − q3j
3

⇒ j3 =
q0j

0

q3

Substituting this back into the amplitude:

1

q23q
2
q20j

A
0 j

0B − 1

q2
jA0 j

0B =
1

q2
jA0 (x)j0B(x)

(

q20 − q23
q23

)

but q2 = q20 − q23

so amplitude =
jA0 (x)j0B(x)

q23

which is Coulomb’s law in three-momentum space.
The completeness relation for real photons is:

(

1
0

)

(10) +

(

0
1

)

(01) =

(

1 0
0 1

)

However the same completeness relation can be used as for virtual photons.

ie − gµν =











−1 0 0 0

0
0

{

1
0

0
1

}

0
0

0 0 0 1











where the {· · ·} denotes the real parts of the polarisation.
The generalised form of virtual photons (−gµν) is used for the completeness

relation for virtual photons.
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Chapter 10

Massive spin−1 particles

For a massless photon the four-potential satisfies:

2
2Aµ − ∂µ∂νA

ν = jµ

For a free particle jµ = 0

so 2
2Aµ − ∂µ∂ν = 0

(

∂2

∂t2

)

Aµ − ∂µ∂νA
ν = 0

(

E2 + p2
)

Aµ − ∂µ∂νA
ν = 0

For massive particles E2 = p2 +m2, so a massive particle satisfies:

2
2Aµ +m2Aµ − ∂µ∂νA

ν =

{

0 real
jµ virtual

This the Proca equation. Differentiating with respect to ∂µ:

∂µ2
2Aµ +m2∂µA

µ − ∂µ∂
µ∂νA

ν = ∂µj
µ

= 0

∂µ∂µ∂
µAµ +m2∂µA

µ − ∂µ∂
µ∂νA

ν

so m2∂µA
µ = 0 (m2 6= 0)

Therefore the (free) Proca equation field satisfies the Lorentz condition. The
polarisation vectors for free massive vector bosons is:

Aµ = ǫµe−ipµx
µ

As ∂µA
µ = 0, ipµǫ

µ = 0.
In the rest frame:
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pµ = (m, 0, 0, 0)

ǫ1 = (0, 1, 0, 0)

ǫ2 = (0, 0, 1, 0)

ǫ3 = (0, 0, 0, 1)

then pµǫµ = 0.
Consider the polarisation states when m is boosted along z. ǫ1 and ǫ2 remain

unchanged as they are perpendicular to the boost. The particle is now described
by the four-vector:

(E, 0, 0,−pz)

It is possible to determine ǫ3 by requiring the Lorentz condition.

⇒ (pz, 0, 0, E) × 1

m
(E, 0, 0,−p) = 0

So ǫ3 =
1

m
(pz, 0, 0, E)

Consider the completeness relation for massive vector bosons:

∑

i

ǫiǫ
⋆
i =









0
1
0
0









(0100) +









0
0
1
0









(0010) +
1

m2









pz
0
0
E









(pz00E)

=









p2z
m2 0 0 0
0 1 0 0
0 0 1 0

0 0 0 E2

m2









= −gµν +
pµpν

m

The 00 term is:

−g00 +
p0p0

m2
= −1 +

E2

m2

=
E2 −m2

m2

=
p2
z

m2

And the 33 term is:
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−g33 +
p3p3

m2
= 1 +

p2
z

m2

=
p2
z +m2

m2

=
E2

m2

Similarly it is possible to determine the polarisation vectors for virtual pho-
tons. Imposing the Lorentz condition removes the time-like polarisation state.
For the virtual photon:

qµ = (ν, 0, 0, qz)

q2 = qµq
µ

= ν2 − q2z

⇒ q2z = ν2 − q2

= ν2 +Q2

⇒ qz = (ν, 0, 0,
√

ν2 +Q2)

In a deep elastic scattering experiment Q2 and ν are known from the kine-
matics of the lepton vertex:

(Feynmann diagram of deep inelastic scattering)
Repearing the argument for the massive vector boson, the polarisation states

for a virtual photon are:

ǫ1 = (0, 1, 0, 0)

ǫ2 = (0, 0, 1, 0)

ǫ3 =
1

√

Q4
(
√

ν2 +Q2, 0, 0, ν)

10.0.3 Massive virtual vector boson propagator

(

2
2 +m2

)

Aµ − ∂µ∂νA
ν = jµ

But m2∂νA
ν = ∂µj

µ

⇒ ∂νA
ν =

1

m2
∂µj

µ

⇒
(

2
2 +m2

)

Aµ − ∂µ

m2
∂µj

µ = jµ

⇒
(

2
2 +m2

)

Aµ =
∂µ

m2
∂νj

ν + gµνjν

=
∂µ

m2
∂νjν + gµνjν
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=

(

gµν − qµqν

m2

)

jν

using ∂νjν = (−iq)jν

So the propagator is:

gµν − qµqν

m2

−q2 +m2

The above expression is the propagator for the exchange of the massive
soin−1 particle. However if the particle is formed in an annihilation process
then it is a real particle which can decay. The propagator of the spin−1 particle
in the s-channel is modified in the following manner:

Γ =
1

m2
|Tfi|2pf

1

32π2
4π

The quantum state of a decaying particle in the rest frame must be of the
form:

ψ = e−iMte−
Γt
2

such that:

ψ⋆ψ = e−Γt

This suggests that for a decaying particle −iM should be replaced with
−iM − Γ/2 in the propagator.

So propagator =
−gµν + qµqν

m2

q2 −
(

m− iΓ
2

)2

≃ −gµν + qµqν

m

q2 −m2 + imΓ
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Chapter 11

Compton scattering

Feynmann diagrams for the process eγ → eγ are:

These processes are closely related to e+e− annihilation:

Calculating the cross-section for Compton scattering is also useful for deriv-
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ing the cross-section for the QCD Compton process.

Boson-gluon fusion (BGF):

The above diagrams cause structure functions to evole with Q2 of the probe
(in this case the photon).

s = (k + p)2

t = (k − k′)2

u = (k − p′)2

This is a double scattering process. Recall:



104 CHAPTER 11. COMPTON SCATTERING

Tfi = −i
∫

d4x1

∫

d4x2φ
⋆(2)V (2)G0(2, 1)V (1)φ(1)

= −i
∫

d4x1

∫

d4x2 (e) ūeip
′x2eik

′x2ǫ⋆νγ
ν 1

(2π)
4 e−i(p+k)(x2−x1)

×i 6 p+ 6 k +m

(p+ k)2 −m2
(−e) ǫµe

−ikx2γµue−ipx1

In the above expression the integration
∫

d4xe−i(p+k)(x2−x1) gives δ4(x2−x1),
so x2 and x1 can be replaced with a dummy variable x. The exponential in terms
of the four-momentum, combined with other terms gives the volume and time
and the number of state vectors as before. Therefore Tfi can be more simply
expressed as:

Tfi = −iū(p′)(−e)ǫ⋆νγ
ν

( 6 p+ 6 k +m

(p+ k)2 −m2

)

(−e)ǫµγ
µu(p)

Assume m→ 0, then:

Tfi = − ie
2

s
ū(p′)ǫ⋆νγ

ν ( 6 p+ 6 k) ǫµγµu(p)

|Tfi|2 =
e4

s2

(

ǫ⋆µ′ǫν′ǫ⋆νǫµū(p)γ
µ′

(6 p+ 6 k) γν′

u(p′)ū(p′)γν (6 p+ 6 k) γµu(p)
)

This must be summed over initial and final spin states and averaged over the
initial spin states, 1/4. For the sum over the initial photon polarisation states:

∑

ǫ⋆µǫµ′ = −gµµ′

The sum over the initial and final electron states is again performed by using
the completeness relation for uū as in eµ scattering:

|Tfi|2 =
e4

4s2
gµµ′gνν′Tr[(6 p′ +m) γµ

′

( 6 p+ 6 k) γν′

(6 p+m) γν ( 6 p+ 6 k) γµ]

=
e4

4s2
Tr[γµ 6 p′γµ (6 p+ 6 k) γν 6 pγν (6 p+ 6 k)]

=
e4

s2
Tr[6 p′ ( 6 p+ 6 k) 6 p ( 6 p+ 6 k)]

=
e4

s2
Tr[6 p′ 6 k 6 p 6 k]

where 6 p′ 6 p = m2
e terms have been neglected

|Tfi|2 =
4e4

s2
((p′ · k)(p · k) − (p′ · p)(k · k) + (p′ · k)(k · P ))

k · k = 0 as the photon is massless
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So |Tfi|2 =
2e4

s2
(2(p′ · k)2(p · k))

=
2e4

s2
(−us)

= −2e4
(u

s

)

For the second diagram:

|Tfi|2 = −2e4
( s

u

)

For the above expressions, the matrix element is needed for the calculation
of the inteference between the two diagrams.

Tfi = −ie
2

u
ū(p′)ǫµγ

µ (6 p− 6 k) ǫ⋆νγνu(p)

|T Ifi + T IIfi |2 = |T Ifi|2 + |T IIfi |2 + T ⋆Ifi T
II
fi + T ⋆IIfi T Ifi

T ⋆IIfi T Ifi = T †II
fi T

I
fi

=
e2

u
ǫνǫ

⋆
µ′ ū(p)γν

′

(6 p− 6 k′) γµ′

u(p′) × e2

s
ǫ⋆νǫµū(p

′)γν ( 6 p+ 6 k) γµu(p)

=
e4

us

1

4
gµµ′gνν′

∑∑

spins ū(p)γν
′

( 6 p− 6 k′) γµ′

u(p′)ū(p′)γν ( 6 p+ 6 k) γµu(p)

=
e4

4us
Tr[6 pγν ( 6 p− 6 k′) γµ 6 p′γν (6 p+ 6 k) γµ]

=
e4

4us
Tr[−2 ( 6 p− 6 k′) γν 6 p 6 p′γν (6 p+ 6 k)]

(using γµ 6 a 6 b 6 cγµ = −2 6 c 6 b 6 a)

= − e4

2us
Tr[6 p 6 p′4(p+ k)(p− k′)]

= −2e4

us
(p · p′)(p+ k)(p− k′)

= 4e4 t

su
(p · p+ k · p− p · k′ − k · k′)
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= 4e4 t

su

(

0 +
1

2
s+

1

2
u+

1

2
t

)

= 2e4 t

su
(s+ t+ u)

But s+ t+ u = 2(m2
e +m2

γ) ≃ 0

Thus the inteference terms for real photons scattering off nearly massless
electrons does not contribute to the cross-section. However, if the incoming
photon is virtual then s+ t+ u = Q2 and for a photon of mass k2 = Q2.

So for a real photon:

dσ

dΩ
=

1

64π2s
2e4

(−u
s

+
−s
u

)

=
α2

2s

(−u
s

+
−s
u

)

and for a virtual photon:

dσ

dΩ
=

1

64π2s
2e4

(−u
s

+
−s
u

+
2tQ2

su

)

The cross-section and |Tfi|2 for e+e− annihilation are the same as for the
above except that s, t and u are permutated. The Compton scattering cross-
section in the limits me → 0 and s→ ∞ is:

dσ

dΩ
=

1

64π2s
2e4

(−u
s

+
−s
u

)

lim
s→∞

dσ

dΩ
=

1

64π2
2e4

(−1

u

)

u ≃ −2p · k′
dσ

dΩ
=

1

64π2
2e4 −1

−2p · k′

=
1

64π2

e4

p · k′

p·k′ can be evaluated in the centre of mass system and using Ee =
√

p2
e +m2

e:

p · k′ = peEγ

(

1 + cos θ +
1

2

m2
e

p2
e

+ · · ·
)

⇒ dσ

dΩ
=

1

64π2

e4

s
4

(

1 + cos θ +
2m2

e

s

)

dσ =
α2

s
2π

d cos θ

1 + cos θ +
2m2

e

s
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⇒ σ =
2πα2

s

∫

dl

l

(using l = 1 + cos θ +
2m2

e

s
)

σ =
2πα2

s
ln

[

1 + cos θ +
2m2

e

s

]1

−1

=
2πα2

s
ln





2
(

1 +
m2

e

s

)

2
m2

e

s





≃ 2πα2

s
ln

(

s

m2
e

)


