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Quantum ChromoDynamics QCD is the theory of the strong interaction.

Quarks (fermions) interact via the exchange of gluons (vector bosons) with the physics
described by the SU(3) gauge theory with Lagrangian

LQCD = −1/4Fµν
aFµνa +

nf
∑

f=1

q̄f

(

iγµDµ − mf

)

qf ,

where the covariant derivative is defined by

Dµqf = ∂µqf + igsAµa1/2λaqf

and qf represent the fermionic quark fields and Aµ,a the vector boson gluon fields.
(Very similar for the electroweak sector.) The sum over f is for the different quark
flavours, up. down, strange, charm, bottom and top, each with different masses.
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Can formulate Feynman rules to calculate particle interactions as a perturbation series
in αS = g2

s/(4π)

At first non-classical order obtain corrections to quark-gluon or gluon-gluon coupling
of form

pa

pa − k

pb

pb + k

k
pa + pb

pa

pa − k

pb

pb + k

k
pa + pb

This results in integrals of the form

V ∼
∫

d4k

(2π)4
k k

k2(pb + k)2(pa − k)2
→

∫

d4k

(2π)4
1

k4
∼

∫

dk

(2π)

1

k

when we consider the limit k → ∞ in the loop. Leads to ultraviolet divergence.
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In order to obtain a well-defined result must implement some ultraviolet cutoff Λ0

above which QCD is no longer a reliable theory (e.g. Λ0 is the scale of new physics).

Also introduce a physical renormalization scale µR – choose to be similar to scale of
physics.

Subtract divergences like ln(Λ2
0/µ

2
R) and absorb into definition of bare parameters,

leaving behind finite predictions in terms of physical renormalised parameters.

g0
s = gs + g3

sC ln(Λ2
0/µ

2
R) σ({p}, g0

s,Λ0) ≡ σ({p}, gs)

Process known as renormalization. Long been proved that it can be applied successfully
to all orders in QCD and rest of the Standard Model.

However, we have introduced artificial renormalization scale µR on which renormalised
couplings, masses, etc depend, though dependence disappears (at all orders in physical
quantities), e.g.

d

d lnµ2
R

(

αS(µ2
R)σ1({p}, µR) + α2

S(µ2
R)σ2({p}, µR)

)

= O(α3
S(µ2

R)).
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By calculating previous diagrams representing coupling find that coupling satisfies
evolution equation

dαS

d lnµ2
R

= −β0α
2
S − β1α

3
S + · · · , β0 =

(11 − 2/3Nf)

4π

Negative β-function means strong at low scales but weaker at higher scales.

Ignoring the O(α3
s) corrections this may be solved

−
∫ µ2

R

µ2
0

d ln µ̃2
R =

1

β0

∫ αs(µ
2
R)

αs(µ2
0)

d α̃s

α̃2
s

,

where µ0 is some fixed scale. Hence,

− ln(µ2
R/µ2

0) =
1

β0

[

1

αs(µ2
0)

− 1

αs(µ2
R)

]

.

This leads to

αs(µ
2
R) =

1

β0
∗ 1

ln(µ2
R/µ2

0) + 1
β0αs(µ2

0)

.

From this expression we can indeed see that αs(µ
2
R) decreases as µ2

R increases, and
that αs(µ

2
R) → 0 as µ2

R → ∞. However, the definition relies on an arbitrary boundary
condition for the coupling at some fixed scale µ2

0.
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It is simpler, and more illustrate to rewrite the solution for αs(µ
2
R) slightly. It may be

expressed as

αs(µ
2
R) =

1

β0
∗ 1

ln(µ2
R) − (ln(µ2

0) − 1
β0αs(µ2

0)
)
.

Defining a scale ΛQCD by

ln(µ2
0) −

1

β0αs(µ2
0)

= ln(Λ2
QCD),

ΛQCD is the value of µ2
0 for αs(µ

2
0) → ∞. Results in the solution.

αs(µ
2
R) ≈ 4π

(11 − 2/3Nf) ln(µ2/Λ2
QCD)

Binds partons into hadrons at low scales, but can do perturbative calculations at
higher scales.

Even in processes involving no incoming hadrons the final state is often dominated
by hadrons, and thus a full understanding of the physics requires an understanding of
this hadronic final state. This means we must use QCD and understand it as well as
possible. The most obvious features in the hadronic final states are jets.
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General form of Perturbative Expansion

Suppose we calculate a total cross-section with one variable, e.g. centre of mass energy√
s. Since the coupling depends on the renormalization scale µ the cross-section is

scale-dependent. At LO in αS

σ(s) = AαS(µ2).

This automatically leads to

dσ(s)

d lnµ2
= −Aβ0α

2
S(µ2).

At NLO in αS renormalisation leads to explicit scale dependence

σ(s) = AαS(µ2) + α2
S(µ2)(B + b ln(µ2/s)).

In general the scale dependence is

dσ(s)

d lnµ2
= −Aβ0α

2
S(µ2) + bα2

S(µ2) + O(α3
S).

The scale dependence must decrease as we go to higher orders.

Achieved if b = Aβ0, i.e. scale dependent part of NLO correction determined by lower
orders and running of the coupling. Constant B has to be calculated explicitly.
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Renormalisation scheme dependence at LO, NLO and NNLO, for ratio of e+ + e− →
hadrons/leptons (Samuel and Surguladze).

Renormalization scale variation (s/4 ≤ µ2 ≤ 4s) is definitely NOT a good estimate of
theory error unless details of higher orders are understood and if necessary included.
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Jet Events

Consider the simplest case of e+e− annihilation into a photon producing a hadronic
final state. At zeroth order in QCD this will simply be a quark-antiquark pair at
parton level, and each quark will hadronize into at jet. Hence we have a 2-jet final
state.

e−

e+

γ⋆

q

q̄
Y

XZ

   200 .  cm.   

 Cen t r e  o f  sc r een  i s  (    0 . 0000 ,    0 . 0000 ,    0 . 0000 )         

50  GeV2010 5

 Run : even t  4093 :   1000   Da t e  930527  T ime   20716                                  

 Ebeam 45 . 658  Ev i s   99 . 9  Emi ss   - 8 . 6  V t x  (   - 0 . 07 ,    0 . 06 ,   - 0 . 80 )               

 Bz=4 . 350   Th r us t =0 . 9873  Ap l an=0 . 0017  Ob l a t =0 . 0248  Sphe r =0 . 0073                  

C t r k (N=  39  Sump=  73 . 3 )  Eca l (N=  25  SumE=  32 . 6 )  Hca l (N=22  SumE=  22 . 6 )  

Muon (N=   0 )  Sec  V t x (N=  3 )  Fde t (N=  0  SumE=   0 . 0 )  
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At first order in αS we can also have the emission of a gluon from the quark or
anti-quark, e.g.

e−

e+

γ⋆

q

q̄

Y

XZ

   200 .  cm.   

 Cen t r e  o f  sc r een  i s  (    0 . 0000 ,    0 . 0000 ,    0 . 0000 )         

50  GeV2010 5

 Run : even t  2542 :  63750   Da t e  911014  T ime   35925                                  

 Ebeam 45 . 609  Ev i s   86 . 2  Emi ss    5 . 0  V t x  (   - 0 . 05 ,    0 . 12 ,   - 0 . 90 )               

 Bz=4 . 350   Th r us t =0 . 8223  Ap l an=0 . 0120  Ob l a t =0 . 3338  Sphe r =0 . 2463                  

C t r k (N=  28  Sump=  42 . 1 )  Eca l (N=  42  SumE=  59 . 8 )  Hca l (N=  8  SumE=  12 . 7 )  

Muon (N=   1 )  Sec  V t x (N=  0 )  Fde t (N=  2  SumE=   0 . 0 )  

In general this will lead to a 3-jet final state.
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At order α2
S we could have two gluons, or the one gluon could fragment into a

quark-antiquark pair, and we could obtain a 4-jet final state. This continues to higher
orders, i.e. at nth-order αS we can have a (n + 2)-jet state. However, if a final state
parton is sufficiently collinear with another parton or is sufficiently unenergetic (soft)
it will simply go into the jet of the initial parton. i.e.

e−

e+

γ⋆

q

q̄

e−

e+

γ⋆

q

q̄

will contribute to the 2-jet rate rather than the 3-jet rate.
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Jet Definitions

In order to be quantitative we need a precise definition of what constitutes an n-jet
event, i.e. we need a jet definition.

The simplest definition (in principle) is the cone algorithm. Define a cone with an
opening angle δ. The jet is made up of all partons within the cone, with the axis
chosen such that the energy within the cone is maximised, and the momentum of the
jet is the sum of the hadron momenta.

δ
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The same definition must be used at parton level in order to predict the theoretical
jet rate. At leading order

e−

e+

γ⋆

q

q̄

Hence at this order σ2jet = σtot, and every event has two jets each of energy 1/2
√

s.
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When working to order αS we must consider the virtual correction

e−

e+

γ⋆

q

q̄

which always leads to a 2-jet event. However, the amplitude for this diverges. We
must also consider the emission of a gluon off the quark (antiquark) line.

Real emission of a gluon will lead to a 3-jet event if θ1, θ2, θ3 > δ (in the limit θi → 0
the 3-parton amplitude also diverges).

θ3

θ2

θ1
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Defining x1,2,3 =
2Eq,q̄,g√

s
the three parton cross section is calculated as

dσ

dx1dx2
= σ0CF

αS

2π

x2
1 + x2

2

(1 − x1)(1 − x2)

where using p
1

= p
2
+ p

3
and E1 =

√
s − E2 − E3

(1 − x1) =
1

2
x2x3(1 − cos θqg) + permutations.

Hence divergences when θi → 0.

θ1 > δ → 2(1 − x1)

x2(2 − x1 − x2)
> 1 − cos(δ)

So if δ << 1 we have x1 > 1 − 0.25δ2x2(1 − x2).
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Using the kinematic constraint that x1, x2 ≤ 1, x1 + x2 ≥ 1 and x1 + x2 ≤ 2, the
phase space can be pictured as below

x2 = 1

x1 = 1

2 jet

3 jet
x2

x1

However, this single constraint does not render results for the 2-jet and 3-jet cross-
sections finite, i.e. there is not a complete cancellation of divergence between the
real and virtual contributions. This is because we still have divergences coming from
the situation when one of the 3 jets has vanishingly small momenta, i.e. when the
corresponding parton is sufficiently soft.
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Infrared Safety

To obtain a finite answer we must ensure that both soft and collinear real emission is
treated the same way as virtual contributions.

→ as well as finite angle δ we need an energy cut-off in the jet definition.

Ejet > ǫ × 1/2
√

s

This modifies our previous diagram.

x2 = 1

x1 = 1

2 jet

3 jet
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The cancellation of divergences between real and virtual contributions is now complete
and the fraction of 3-jet events R3 at first order in αS is now given by.

R3 = CF
αS

2π

[

log(1/δ) log(1/ǫ) + log(1/ǫ) + log(1/δ) + C

]

R2 = 1 − R3

where the latter definition avoids complications in regularising the divergent
contributions.

Note: as ǫ → 0 or δ → 0, R3 can become very large, i.e. cancellation of divergences
is ceasing to be effective. Possible for R3 > 1 i.e. R2 < 0 - clearly not sensible.

Intuitively simple jet definition. But suffers from some problems in details, e.g. need
two completely separate cuts-off; possible for two cones to overlap. What happens in
this case?

→ alternative definitions.
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Cluster Algorithms.

Consider a system of two hadrons in the experimental case, or two partons in the
theoretical case. JADE algorithm will combine them into a single jet if the invariant
mass m2 satisfies.

m2 = (p1 + p2)
2 < ycuts.

m2 = 2E1E2(1 − cos θ12) and so → 0 if Ei → 0 (soft) or θ12 → 0 (collinear).

Works pretty well, but has some problems for small ycut. Exhibited by below event.

The two gluons may be combined into a spurious jet indicated by the dashed line.
This may be avoided by a simple modification.
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KT (Durham) Algorithm.

In this case the algorithm will combine into a single jet if

K2
T < ycuts.

where K2
T = 2min(E2

1 , E2
2)(1 − cos θ12) and so → 0 if Ei → 0 (soft) or θ12 → 0

(collinear).

Use an iterative procedure

1. Find the pair with the smallest yij.

2. If yij,min < ycut combine i and j, e.g. pij = pi + pj and go back to 1.

3. If yij,min > ycut stop. All remaining momenta are called jets.

(Avoids previous problem because gluons combined with quarks before each other.)

In practice simpler than cone algorithm. Can be applied at any order. → powerful
test of QCD.
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Comparison with n-jet rates at
ALEPH.
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Anti-KT Algorithm

“anti-KT algorithm” combines all soft partons within “cone” with hard parton to
produce cone-like jet definition.

Most commonly used at the LHC.
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Event Shapes.

These are quantities which contain more detailed information about the final hadronic
state.

e.g. Thrust T = maxn
P

i |pi·n|
P

i |pi|

this measures how unidirectional a set of jets are,

n
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Has extreme limits

T = 1 T = 1/2 isotropic
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Other variable such as spherocity S

S =

(

4

π

)2

minn

(∑

i |pi × n|
∑

i |pi|

)2

which has value S = 1 for an isotropic event and S = 0 for a linear event. Also
C − parameter

C − parameter =
3

2

∑

i,j |pi||pj| sin2 θij

(
∑

i |pi|)2

which is similar to spherocity.

Concentrate on Thrust as example.
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Order αS - three partons

1

2

3

θ3

θ2

It is not too difficult to see that n must lie along the axis of a particle.

T = max

(

x1 + x2 cos θ2 + x3 cos θ3

x1 + x2 + x3
, · · ·

)

T = max{x1, x2, x3}

Leads to a constraint → T > 2/3 at this order
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From the previous calculation of the three parton rate

1

σ

dσ

dT
= CF

αS

2π

∫

dx1 dx2
x2

1 + x2
2

(1 − x1)(1 − x2)
δ(T − max{x1, x2, x3})

We obtain a cross-section which diverges in the limit T → 1 tending to

1

σ

dσ

dT
= CF

αS

2π

[

4

(1 − T )
log

(

1

1 − T

)

− 3

1 − T

]

This is due to soft and collinear singularities. The O(αS) virtual correction ∝ δ(1−T )
such that a finite total cross-section is obtained. Of course in the limit T → 1 we
should use a proper jet definition.
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The figure shows the thrust
distribution measured at DELPHI
compared with the theory (solid
line) and for scalar gluon (dashed
line).

Deficiency at small T due to
kinematic bound for 3-parton
process. Just starting to fail as
T → 1.
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Useful to define an effective two jet rate using the thrust distribution.

R(τ) ≡
∫ 1

1−τ

dT
1

σ

dσ

dT

where σ is now summed over all n-parton final states.

This is like the previous two-jet fraction, but with τ = 1 − T being the jet resolution
y. As τ → 0 find up to NNLO

R(τ) → 1 − CF
αS

2π
2 log2 τ +

(

CF
αS

2π

)2

2 log4 τ

Extra log2 τ at every order of αS. Negative at NLO as τ → 0. Oscillates at NNLO.

Fortunately terms in log2 τ can be very neatly summed to all orders (resummed) →
Sudakov form factor

R(τ) → exp

[

−CF
αS

2π
2 log2 τ

]

Hence the probability to produce a qq̄ pair with no accompanying gluon = 0. (Similar
to QED.)

P (no emission) = exp
(

−Psimple(emission)
)

.
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Higher order resummations.

Exponentiation removes unphysical behaviour, but still problems with perturbative
convergence due to large log τ terms and corresponding µ2-dependence.

By iterative means able to even resum exponent.

R(τ) → exp

[

−CF
αS

2π
2 log2 τ + a2α

2
S log3 τ + a3α

3
S log4 τ + · · ·

]

where we have the notation

αn
S logn+1 τ are leading logs.
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Parton Showers.

Very often it is extremely difficult to account for the enhancements in the perturbative
expansion in such a neat analytic manner. However, we have seen that in a partonic
final state Sudakov form factor → probability of each parton being unaccompanied
= 0.

Phase space fills with partons

e−

e+

γ⋆

Dominated by soft and collinear partons.

Must calculate parton shower.
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Collinear limit. In the limit that branching angle → 0

dσ = σ0
αS

2π

dθ2

θ2
dz P (z)

P (z) = splitting function.

z
q → qg

z
q → gq

z
g → gg

z
g → qq̄

CF
1+z2

1−z CF
1+(1−z)2

z

CA
z4+1+(1−z)4

z(1−z)
TR(z2 + (1 − z)2)
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Account for running coupling constant. Higher orders suggest that

αS → αS(k2
T ).

k2
T is parton transverse momentum k2

T = z(1 − z)Q2 where Q2 is initial parton
virtuality. → enhancement for low kT partons.

However, need emitted parton to be resolvable, i.e. collinear parton pair
indistinguishable from single parton.

Introduce resolution criterion kT > Q0 where Q0 ≤ 1GeV.

→ z, (1 − z) > Q2
0/Q

2

Virtual corrections combined with unresolvable emissions → cancellation of
divergences.

Unitarity: resolved + unresolved = 1.
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Sudakov Form Factor.

Probability of resolvable emission between q2 + dq2 and q2

dP =
αS(k2

T )

2π

dq2

q2

∫ 1−Q2
0/q2

Q2
0/q2

dzP (z) ≡ dq2

q2
P̄ (q2).

Define probability of no emission between Q2 and q2 to be ∆(Q2, q2). Satisfies
equation

d∆(Q2, q2)

dq2
= −∆(Q2, q2)

dP
dq2

∆(Q2, q2) = exp

(

−
∫ Q2

q2

dk2

k2
P̄ (k2)

)

.

(Similar to radioactive decay. If decay constant = λ probability of no decay before t

= exp−
∫ t

λdt.

∆(Q2, q2) ≡ ∆(Q2) is the Sudakov form factor, i.e. probability for emitting no
resolvable partons.

Can use more sophisticated variables, not just virtuality.
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Monte Carlo implementation.

Given parton with virtuality Q2 = t1 and momentum fraction x1 what is (t2, x2) after
next branching?

Probability of evolving from t1 down to t2 without resolvable branching is ∆(t1)/∆(t2).
If we have random number ρ1 in the interval [0, 1] then t2 determined by solving

∆(t1)

∆(t2)
= ρ1.

If t2 ≤ t0 then no further branching takes place, else we find scale of next branching
and can repeat.

Can reverse in order to evolve up (e.g. DIS).

At t2 also want momentum fraction z = x2/x1 for branching. Find this by using
weight given by splitting function and solving

∫ x2/x1

t0/t

dz
αS(k2

T )

2π
P (z) = ρ2

∫ 1−t0/t

t0/t

dz
αS(k2

T )

2π
P (z)

where ρ2 is another random number.

Depends on various choices, particularly Q2
0.
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Main approaches (models) string hadronization and cluster hadronization. Not
discussed here.

General effect, change hard quantities E, p relationship by amount λ ∼ ΛQCD.
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Full machinery of final state QCD
calculations works well, but requires
many contributions.

Still refinements going on.

Hence, recent developments of
HERWIG++ and PYTHIA 8.
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