UNIVERSITY OF LONDON
(University College London)
May 1998
PHYSICS B221 : MATHEMATICAL METHODS IN PHYSICS

Credit will be given for all work done. [For guidance, a student should aim to answer correctly the equivalent of FOUR complete questions in the time available].

1. If ϕ is a scalar point function and \mathbf{A} is a vector point function, give expressions for
$\nabla \phi, \quad \nabla . \mathbf{A}, \quad \nabla \times \mathbf{A}, \quad \nabla^{2} \phi$ in Cartesian coordinates.
Verify the identities
$\nabla \cdot\left(\begin{array}{ll}\phi & \mathbf{A})\end{array}\right)(\nabla \phi) \cdot \mathbf{A}+\phi(\nabla \cdot \mathbf{A})$
$\nabla \cdot(\mathbf{A} \times \mathbf{B})=\mathbf{B} .(\nabla \times \mathbf{A})-\mathbf{A} \cdot(\nabla \times \mathbf{B})$
$\nabla \times \nabla \phi=0$
$\nabla \cdot(\nabla \times \mathbf{A})=0$
Write down expressions defining a solenoidal field and a conservative field.
In a vacuum, one of Maxwell's equations of electromagnetism may be written $\nabla . \mathbf{B}=0$, where \mathbf{B} is the magnetic induction. Show that \mathbf{B} can be written as the curl of the vector potential \mathbf{A}. What type of field is \mathbf{B} ?
2. By examining the way in which a scalar field changes from one level surface to another, write down in Cartesian coordinates, the definition of the gradient of a scalar field.

Write down the transformations between Cartesian coordinates (x, y, z) and spherical polar coordinates (r, θ, ϕ), and the expression for the gradient of a scalar field in spherical polar coordinates.

Evaluate ∇r^{n} in both Cartesian and spherical polar coordinates.
Verify Stoke's theorem

$$
\int_{S} \nabla \times \mathbf{A} \cdot \hat{\mathbf{n}} \quad d S=\int_{\gamma} \mathbf{A} \cdot \mathbf{d} \ell
$$

by direct calculation for the vector field $\mathbf{A}=(x-2 y) \hat{\mathbf{i}}-2 \mathrm{yz}^{2} \hat{\mathbf{j}}-2 \mathrm{y}^{2} z \hat{\mathbf{k}}$ for the upper half surface of the sphere $x^{2}+y^{2}+z^{2}=4$ and its boundary with the (x, y) plane.
3. Write down definitions of
i) the transpose of a matrix
ii) the adjoint of a matrix
iii) a Hermitian matrix
iv) a Unitary matrix

Show that if two matrices \mathbf{A} and \mathbf{B} are Hermitian, then $(\mathbf{A B})^{\dagger}=\mathbf{B}^{\dagger} \mathbf{A}^{\dagger}$.
Show that the eigenvalues of a Hermitian matrix are real, and the corresponding eigenvectors of distinct eigenvalues are orthogonal.

Show that the eigenvalues of a Unitary matrix have magnitude unity.
If \mathbf{C} is a matrix, which is not necessarily Hermitian, show that it is always possible to write \mathbf{C} as the sum of two Hermitian matrices in the form $\mathbf{C}=\mathbf{A}+\mathrm{i} \mathbf{B}$.
4. A guitar string of length l is fixed at its ends, $x=0$ and $x=l$, and has a displacement $y(x, t)$ perpendicular to its equilibrium position which satisfies

$$
\frac{\partial^{2} y(x, t)}{\partial x^{2}}-\frac{1}{c^{2}} \frac{\partial^{2} y(x, t)}{\partial t^{2}}=0
$$

where c is a real constant. Use the method of separation of variables to show that if at time $t=0$, the string is at rest, then

$$
\begin{equation*}
y(x, t)=\sum_{n=0}^{\infty} A_{n} \sin \left(\frac{n \pi x}{l}\right) \cos \left(\frac{n \pi c t}{l}\right) \tag{8}
\end{equation*}
$$

If the displacement at time $t=0$ is of the form

$$
\begin{array}{lll}
y(x, 0)= & \alpha x, & 0 \leq x \leq l / 2 \\
& \alpha(l-x), & l / 2 \leq x \leq l
\end{array}
$$

show that the subsequent displacement is given by

$$
\begin{equation*}
y(x, t)=\frac{4 l \alpha}{\pi^{2}} \sum_{m=0}^{\infty} \frac{(-1)^{m}}{(2 m+1)^{2}} \sin \frac{(2 m+1) \pi x}{l} \cos \frac{(2 m+1) \pi c t}{l} \tag{12}
\end{equation*}
$$

5. Laguerre's differential equation is given by

$$
x y^{\prime \prime}+(1-x) y^{\prime}+p y=0
$$

By writing

$$
y(x)=\sum_{\lambda=0}^{\infty} a_{\lambda} x^{k+\lambda}
$$

show that $k=0$ is a solution of the indicial equation.
In this case, develop a recursion relation between successive coefficients, a_{j} and write down a general expression for each coefficient in the series.

Thus, when $k=0$, write down the solution for $y(x)$ and show that when $p=n$, where n is a positive integer, the series for $y(x)$ terminates and for each n, a solution, $y=L_{n}(x)$ can be found.

Write down the solutions for $n=0,1,2,3$.
6. A function, $f(x)$ which is periodic over the interval $(-L,+L)$, may be represented by the Fourier series

$$
f(x)=\frac{1}{2 L} \int_{-L}^{+L} f(t) d t+\frac{1}{L} \sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi x}{l}+\frac{1}{L} \sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{l}
$$

where

$$
\begin{aligned}
& a_{n}=\int_{-L}^{+L} f(t) \cos \frac{n \pi t}{L} d t \\
& b_{n}=\int_{-L}^{+L} f(t) \sin \frac{n \pi t}{L} d t
\end{aligned}
$$

In the limit that the period L tends to infinity, and the periodic function is transformed to a pulse, show that we can write

$$
f(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} g(\omega) \exp (-i \omega x) d \omega
$$

where

$$
g(\omega)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} f(t) \exp (i \omega t) d t
$$

is the Fourier Transform of $f(x)$.
A function $f(t)$ is defined such that

$$
\begin{array}{ll}
f(t)=\sin \omega_{0} t & |t| \leq N \pi / \omega_{0} \\
f(t)=0 & |t| \geq N \pi / \omega_{0}
\end{array}
$$

where N is a positive integer. Sketch the function, explaining whether it is even or odd.

Calculate the Fourier transform, $g(\omega)$ of $f(t)$, again sketching your result.
For large ω_{0} and $\omega \approx \omega_{0}$, determine the zeroes of $g(\omega)$. Give a physical example to which this Fourier Transform might correspond.
7. A generating function for the Legendre polynomials, $P_{l}(x)$, can be written

$$
\begin{equation*}
g(x, t)=\left(1-2 x t+t^{2}\right)^{-1 / 2}=\sum_{l=0}^{\infty} P_{l}(x) t^{l} \tag{6}
\end{equation*}
$$

where $|t|<1$ and l is an integer. Show that $P_{l}(1)=1$ for all l.
By differentiating the recurrence relation, in the one case with respect to t and in the other case with respect to x, show that

$$
\begin{aligned}
& (2 n+1) x P_{n}(x)=(n+1) P_{n+1}(x)+n P_{n-1}(x) \\
& P_{n+1}^{\prime}(x)+P_{n-1}^{\prime}(x)=2 x P_{n}^{\prime}(x)+P_{n}(x)
\end{aligned}
$$

Show from the generating function that $P_{0}(x)=1$, and hence, using the first recurrence relation above, deduce the next three Legendre polynomials

