UNIVERSITY COLLEGE LONDON DEPARTMENT OF PHYSICS AND ASTRONOMY

2B21 MATHEMATICAL METHODS IN PHYSICS AND ASTRONOMY

Problem Sheet M10 (2003-2004)
Solutions to be put in my pigeon hole by Tuesday 12 January 2004

1. In plane polar coordinates, where the Cartesian components are given by $x=$ $r \cos \theta$ and $y=r \sin \theta$, show that the unit vector in the θ direction is

$$
\underline{\underline{\hat{e}}}_{\theta}=-\sin \theta \hat{\underline{e}}_{x}+\cos \theta \hat{\underline{e}}_{y} .
$$

Calculate the line integral $I=\oint_{\gamma} \underline{W} \cdot \underline{d s}$ of the vector

$$
\underline{W}=(x+y) \underline{\hat{e}}_{x}+x y^{2} \underline{\underline{e}}_{y}+x^{2} \underline{\hat{e}}_{z}
$$

anticlockwise around the figure shown in the plane $z=0$. This consists (a) of the axis $y=0,(\mathrm{~b})$ a quarter-circle of radius 1 , with its centre at the origin, and (c) the axis $x=0$.

Evaluate curl $\underline{W}=\nabla \times \underline{W}$ and hence verify Stokes' theorem by integrating curl \underline{W} over the area of the quarter-circle in the $x-y$ plane.
2. An eighth of a sphere $x^{2}+y^{2}+z^{2}$ lies in the first octant, $x \geq 0, y \geq 0, z \geq 0$. Calculate the net flux of the vector

$$
\underline{F}=z \underline{\hat{e}}_{x}+y \underline{\hat{e}}_{y}+x \underline{\hat{e}}_{z}
$$

through the three straight and one curved surfaces.
Verify the result using the divergence theorem.

