UNIVERSITY COLLEGE LONDON DEPARTMENT OF PHYSICS AND ASTRONOMY

2B21 MATHEMATICAL METHODS IN PHYSICS AND ASTRONOMY

Problem Sheet M6 (2003–2004)

Solutions to be handed in on Tuesday 18 November 2003

1. A function u(x, y) of two independent variables x and y satisfies the first order partial differential equation

$$x\frac{\partial u}{\partial x} - y\frac{\partial u}{\partial y} = u \,.$$

By first looking for a separable solution of the form $u(x, y) = X(x) \times Y(y)$, find the general solution of the equation. [8 marks] Determine the u(x, y) which satisfies the boundary condition $u = x + x^3$ when y = x. [2 marks]

2. The potential $V(r, \theta)$ in plane polar coordinates satisfies the equation

$$\nabla^2 V(r,\theta) = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial}{\partial r} V(r,\theta) \right) + \frac{1}{r^2} \frac{\partial^2}{\partial \theta^2} V(r,\theta) = 0.$$

By searching for a solution in the separable form, $V(r, \theta) = R(r) \times \Theta(\theta)$ show that the general solution in the region $0 \le \theta \le 2\pi$ is

$$V(r,\theta) = A + B \ln r + \sum_{n=1}^{\infty} \left(C_n r^n + \frac{D_n}{r^n} \right) \left(E_n \cos n\theta + F_n \sin n\theta \right) .$$
 [7 marks]

If the potential on the ring r = a is given by $V(a, \theta) = V_0 \cos \theta$, evaluate the potential in the regions $0 \le r \le a$ and $a \le r < \infty$. [3 marks]