UNIVERSITY COLLEGE LONDON DEPARTMENT OF PHYSICS AND ASTRONOMY

2B21 MATHEMATICAL METHODS IN PHYSICS AND ASTRONOMY

Problem Sheet M6 (2003-2004)
Solutions to be handed in on Tuesday 18 November 2003

1. A function $u(x, y)$ of two independent variables x and y satisfies the first order partial differential equation

$$
x \frac{\partial u}{\partial x}-y \frac{\partial u}{\partial y}=u .
$$

By first looking for a separable solution of the form $u(x, y)=X(x) \times Y(y)$, find the general solution of the equation.

Determine the $u(x, y)$ which satisfies the boundary condition $u=x+x^{3}$ when $y=x$.
2. The potential $V(r, \theta)$ in plane polar coordinates satisfies the equation

$$
\nabla^{2} V(r, \theta)=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial}{\partial r} V(r, \theta)\right)+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}} V(r, \theta)=0 .
$$

By searching for a solution in the separable form, $V(r, \theta)=R(r) \times \Theta(\theta)$ show that the general solution in the region $0 \leq \theta \leq 2 \pi$ is

$$
V(r, \theta)=A+B \ell n r+\sum_{n=1}^{\infty}\left(C_{n} r^{n}+\frac{D_{n}}{r^{n}}\right)\left(E_{n} \cos n \theta+F_{n} \sin n \theta\right) .
$$

If the potential on the ring $r=a$ is given by $V(a, \theta)=V_{0} \cos \theta$, evaluate the potential in the regions $0 \leq r \leq a$ and $a \leq r<\infty$.

