UNIVERSITY COLLEGE LONDON DEPARTMENT OF PHYSICS AND ASTRONOMY

2B21 MATHEMATICAL METHODS IN PHYSICS AND ASTRONOMY

Problem Sheet M9 (2003-2004)
Solutions to be handed in on Tuesday 9 December 2003

1. Using the expressions given in the hand-out sheets for the vector operators in spherical polar coordinates, evaluate $\nabla \psi$, where ψ is the scalar field

$$
\psi=x^{2}+y^{2}-2 z^{2},
$$

working in both Cartesian and spherical polar coordinates and showing that they are equal.
2. Working in Cartesian coordinates, verify the identity

$$
\nabla \times(\underline{A} \times \underline{B})=\underline{A}(\nabla \cdot \underline{B})-(\underline{A} \cdot \nabla) \underline{B}+(\underline{B} \cdot \nabla) \underline{A}-\underline{B}(\nabla \cdot \underline{A}) .
$$

for the vector fields

$$
\begin{gathered}
\underline{A}=x \hat{\underline{e}}_{x}+y \hat{\underline{e}}_{y}+z \underline{\hat{e}}_{z}, \\
\underline{B}=-y \underline{\hat{e}}_{x}+x \underline{\underline{e}}_{y} .
\end{gathered}
$$

3. In spherical polar coordinates, the above vectors become

$$
\begin{gathered}
\underline{A}=r \underline{\hat{\underline{e}}}_{r}, \\
\underline{B}=r \sin \theta \underline{\underline{e}}_{\phi} .
\end{gathered}
$$

Using the vector operators in spherical polar coordinates, verify the identity in question 2 in this system.

Note that in this coordinate system the directions of the basis vectors depend upon the values of θ and ϕ.

