A Cosmic Ray Detector

3rd Year Undergraduate Project University College London 26th March 2003

Marco Arosio, Simon Bevan, Brigitte Burt, Manuel Kurdian, Caroline Robson, Rebecca Wong

Board Members: Dr Mark Lancaster, Dr David Waters Assisted by: Brian Anderson, Derek Attree, Matthew Warren

This project involved the design and construction of a simple cosmic ray detector that could be used in school demonstrations. Research was carried out into the different methods used in modern detectors and inve stigations were undertaken using an experimental test stand. This led to the development of a portable muon detector. The detector utilises 16 scintillators connected to a photomultiplier tube, the readout from which is processed using a field-programmable gate array. Logic programmes were designed to control an LED display showing the angular distribution of the through-going muons. Accompanying educational materials and a website were developed.

Contents

1	INTRODUCTION	1
2	 RESEARCH 2.1 Origins and Comsposition of Cosmic Rays 2.2 Cosmic Ray F lux at the Earth's Surface 2.3 The History of Cosmic Ray Physics 2.4 Modern Detection Techniques 2.4.1 Spark Chambers 2.4.1 Scintillators 2.4.3 Cherenkov Radiation 2.5 Selection of a Detection Method 2.6 Photomultiplier Tubes 2.7 Optical Fibres 	2 6 9 12 12 16 18 22 22 23
3	 EXPERIMENTAL INVESTIGATIONS 3.1 Aims and Objectives 3.2 Experimental Method 3.2.1 Set Up of the Test Stand 3.2.2 Tests using the MINOS Scintillators 3.2.3 Addition of the New Scintillator 3.4 Summary 	26 26 28 41 42
4	 DEVELOPMENT OF THE SCINTILLATOR DESIGN 4.1 A Software model to Calculate Solid Angle Coverage 4.2 Testing the Validity of the Solid Angle Calculations 4.3 Methods Leading to the Final Geometry 	44 47 49
	CONSTRUCTION OF THE DETECTOR 5.1 Optical Components 5.2 Making the Scintillators 5.3 Machining the Octagonal Plates 5.4 Assembly ELECTRICAL COMPONENTS 6.1 The NIM Crate 6.2 Field Programmable Gate Array 6.3 LED Drivers	53 54 56 56 59 62 62
7	 PROGRAMMING THE FPGA 7.1 VHDL 7.2 The Coincidence Logic 7.3 Possible Coincidences 7.4 Programming the Logic via VHDL 7.5 ModelSim 	65 65 69 71 76

Page

7.6 Summary of the Logic	81
8 PRODUCTION OF EDUCATIONAL MATERIALS	
8.1 Aims and Objectives	82
8.2 Poster Design	82
9 WEBSITE DEVELOPMENT	83
10 CONCLUSION	87
11 REFERENCES	89
APPENDICES:	
I: Determination of the Optimum PMT Voltage	91
II: Graphs Adjusted for Noise	93
III: Results Taken after Noise Problem was Reduced	96
IV: Three-way Coincidences	98
V: Two-way Coincidences	104
VI: Comparison of Single Scintillators and the New Scintillator	111
With the Old	
VII: Java Code for Calculating Solid Angle Coverage	114
VIII: SLAC Data	118
IX: Coincidence Unit Code	120
X: Test Bench Code	134
XI: Test Bench Results	182
XII: Poster/Handout Designs	212
XIII: Website Structure	215
XIV: Budget	216
XV: Original Timeplan	217
XVI: Agendas and Minutes from Group Meetings	218
XVII: Proposed timeplan for the completion of the report, the	
presentation and the self assessment	234

AUTHORSHIP OF REPORT

Names on the right hand side of the pages show where authorship changes