Neutrino Astronomy

Workshop on Cosmic Particles February 18th-20th 2005

Dave Waters University College London

- Why Neutrino Astronomy ?
- Connections to Fundamental Physics
- Astrophysical Neutrino Flux Estimates
- Detection Techniques
 - Extensive Air Showers
 - Optical Cerenkov
 - Radio Cerenkov
 - Acoustic
- Comparison & Outlook

Neutrino Astronomy : Why ?

Neutrino Astronomy : Connections

Astrophysical Neutrino Sources : General Bound

Waxman & Bahcall (1998), (1999)

directional beam

p,e[±]

magnetic

fields

4

• $1/E^2$ injection spectrum (Fermi shock).

Waxman-Bahcall Bound :

- Neutrinos from photo-meson interactions in the source.
- Energy in v's related to energy in **CR**'s :

- *Many* qualifications and caveats.
- Can be **evaded** if :
 - sources are optically thick
 - neutrinos from other sources ("top-down")

Cosmogenic Neutrinos

Cosmogenic Neutrino Flux : Guaranteed ?

Cosmogenic Neutrino Flux : Guaranteed ?

Ave et al. (2004) ;

- <u>Remaining caveats :</u>
 - ► The UHECR primary sources themselves cut-off around the GZK energy : "cosmic conspiracy". Most assume a cut-off substantially higher - 10^{21} - 10^{22} eV (Hillas)
 - Composition doubts (Auger also critical)
- Nevertheless, GZK neutrinos remain arguably the clearest target for future experiments.

Targets

Extensive Air Shower

Optical Cerenkov

- Similar to detection techniques used in low-energy experiments (Super-K).
- The only technique employed in currently operational neutrino telescopes.
- The only technique with a proven capacity to detect neutrino events (atmospheric).
- Backgrounds : CR muons (downward); atmospheric neutrinos (upward).

Muon tracking :

- Effective volume >> instrumented volume (@ E such that $R_{\mu} >> S_{detector}$)
- Excellent pointing accuracy.
- Relatively poor energy resolution.

Cascade detection :

- Effective volume = instrumented volume.
- Poor pointing accuracy.
- Relatively good energy resolution.

Optical Cerenkov : v_{τ} **Detection**

Optical Cerenkov : Media

Detector capabilities vary but *broadly* comparable between ice & water :

- Energy thresholds & ranges
- Pointing resolutions
- Deployment & operational difficulties

DATE: April 19, 1996 HIT CHANNELS: 19 RECONSTRUCTED *θ*: -152.7° RECONSTRUCTED ϕ : 253.5°

16

NEMO

Optical Cerenkov : Highlights

17

<u>Plus :</u>

- **Diffuse flux limits (upward \mu's; cascades).**
- Terrestrial WIMP searches.
- Atmospheric neutrino flux measurements out to high energies.
- Cosmic ray composition studies (in conjunction with surface arrays).
- **Supernovae**.

Radio Cerenkov : Mechanism

- First described by Askaryan (1961).
- Expected ~20% net negative co-moving charge excess (Z_{macro}) in UHE shower development due to :
 - ► Ionisation : $A \rightarrow A^+ + e^-$
 - ► Annihilation : $e^+ + e^- \rightarrow \gamma$
- Cerenkov radiation from Z_{macro} for $v > c_{local}$.
- Radiation is coherent for :

Target requirements :

▶ instrumentable

▶ quiet

radio/microwave transparent

$$\lambda > D_{shower} \sim O(n\chi_{rad}, n\lambda_{int})$$

f ~ 100 MHz – few GHz

- Candidates :
 - ► ice
 - ► dry salt
 - sand / lunar regolith

<u>N.B.</u> Radio emission from extensive air showers (geosynchrotron) is a different mechanism – not described here.

Radio Ice Cerenkov Experiment

- 20 dipole receivers in South Polar ice.
- Scattered within $200m \times 200m \times 200m$ cube.
- Threshold ~ 10^{16} eV
- Effective volume ~ $1 \text{ km}^3 @ 10^{18} \text{ eV}$
- Anthropogenic noise reduction through event reconstruction.
- Refractive effects measured in situ.
- Attenuation length > array size.
- Currently sets the best limits on neutrino fluxes at GZK energies.

ANtarctic Impulsive Transient Antenna

Fast On-orbit Recording of Transient Events

Lehtinen et al. (2003)

- Satellite radio antennae.
- 22 MHz bandwidth tunable [20-300 MHz]
- Search for impulsive events originating in Greenland ice.
- Very high threshold : 10¹³ GeV
- Few day effective exposure (now defunct)

Acoustic

 Mechanism first described by Askaryan (1957) : "Hydrodynamical emission of tracks of ionising particles in stable liquids".

Acoustic : Recent R&D

Acoustic Media : Comparison

c = sound speed $\beta = coefficient of thermal expansivity$ $C_P = specific heat capacity$ $\rho = density$ $\frac{dE}{dx} = ionisation energy loss$

	FoM (relative)	Attenuation Length	Scattering Length	Noisy ?
Water	1	~ 10 km	N/A	Yes
Ice	~ 5-10	? (large)	? (large at depth)	? (creaking)
Salt	~ 100	? (large)	?	No

Acoustic Media : Other Considerations

Refractive effects in water :

- Significantly complicates (compromises ?) acoustic reconstruction.
- May make the deep oceans very quiet.

<u>Practical considerations :</u>
☆ existing infrastructure
☆ receiver technology
☆ acoustic characterisation
are *far* more advanced for
water than any other medium.

Study of Acoustic Ultrahigh-energy Neutrino Detection

- 7 hydrophones in a larger US navy array instrumented with 180 kHz ADC's.
- Warm water : expansive but noisy :

Need well calibrated phase response

Study of Acoustic Ultrahigh-energy Neutrino Detection

- Thresholds too high small effective volumes at GZK energies.
- Fundamental limits (hydrophone sensitivity, noise floors) *not* yet reached.
- A lot of scope for :
 - finding quieter ocean volumes
 - optimal hydrophone arrangement
 - far larger hydrophone arrays

Detection Techniqes : Overview

optical cerenkov		radio		acoustic	
OPTICAL		CERENKOV			
		MUON	CASCADE	RADIO	ACOUSTIC
	Туре	tracking	calorimetric	calorimetric	calorimetric
	Channels	$ u_\mu CC$	$ u_X NC + CC $	$\nu_X NC + CC$	$ u_X NC + CC $
	Energy Dependence	$E_\mu \propto E_ u$	$E_{ m cascade} \propto E_{ u}$	$E_{ m radio}\proptoE_{ u}^2$	$E_{ m acoustic} \propto E_{ u}^2$
	Effective Volume	$V_{ m eff} \propto E_{ u}$	$V_{\rm eff} \approx { m fixed}$	$V_{ m eff} \propto E_{ u}^3$	$V_{ m eff} \propto E_{ u}^{2-3}$

Target Media : Overview

o(H O)	
Attenuation Length	KO.

	water		Salt
EM optical (Cerenkov)	~ 50 m	~ 100 m	?!?!
EM radio (0.1-1.0 GHz)	~ 0	~ few km	~ 1 km
Acoustic (10 kHz)	~ 10 km	? (large)	? (large)

† : $ρ(NaCL) \sim 2 \times$

Some Existing Limits

Some Future Limits

• Neutrino astronomy holds the promise of :

- opening a new observational window on the universe at very high energies & distances.
- telling us about fundamental physics at very high energy scales.
- Optical Cerenkov detectors are the only ones so far constructed that have unambiguously detected (atmospheric) neutrino signals.
- Radio detection has been demonstrated in the lab and in first generation experiments. It is the most promising technique for discovering a GZK flux of neutrinos.
- Acoustic detection is less well advanced but holds out much promise due to potentially vast detection volumes.
- EAS detectors especially Auger will be viable neutrino detectors.
- Many very interesting experiments on the horizon

