

Physics With Vector Bosons @ The Tevatron

David Waters University College London

- ★ Tevatron & CDF
- * W & Z Cross Section Measurements
- ★ Di–Boson Production
- ★ Higgs Searches
- * Precision Measurements
- \star Outlook

Tevatron Performance

4

Accelerator performance in 2004 is excellent. "Design goals" surpassed.
Peak luminosity 7×10³¹cm⁻²s⁻¹ (Spring 04)
CDF takes data with efficiency > 85%.
Beam conditions good : silicon is typically integrated for the entire store.

 \Rightarrow >400 pb⁻¹ delivered so far in Run 2.

Process	Events/Week	
$t \overline{t}$	50	
$W \rightarrow e v_e$	18,000	
$Z \rightarrow e^+ e^-$	1700	
WW	90	
$W \gamma \rightarrow e \nu \gamma$ (high- $p_T \gamma$)	130	
$g g \rightarrow H (M_H = 115 \text{ GeV})$	6	

Tevatron Performance

Accum-

ulated

0.28

0.59

0.98

1.48

2.11

3.25

4.41

CDF Run 2 Detector

6

CDF Run 2 Detector :

- Largely new detector.
- -New trigger system : displaced tracks, taus, etc.
- Data handling : ≈ 0.5 PetaBytes/year processed and analysed.

Glasgow, Liverpool, Oxford, UCL

W and Z Production

7

Physics :

☆PDF's

☆Production and decay –soft and hard QCD & EWK.

 \mathbf{A} Detector response to high- \mathbf{p}_{T} leptons

and low– p_{T} hadrons.

W Cross Section

8

- ★ Background shapes well described well below the final cut value.
- ★ Backgrounds (QCD, W $\rightarrow \tau v$, Z, cosmics) : 4.4 ± 0.8% (e), 9.4 ± 0.4% (µ).
- * Trigger & lepton identification efficiencies all have to be understood at the 1% level.

Oxford : Manca, Renton, Robson

W Cross Section

Triggers :

Reconstruction :

- ★ Count tracks in τ -cone (10°) and require no tracks in isolation cone (30°)
- ***** Reconstruct π^0 candidates in shower max detector
- \Rightarrow Require combined mass to be < 1.8 GeV

Universality Tests

[similar to LEP]

- ★ Competitive precision EWK results with 72 pb⁻¹. We already have 250 pb⁻¹ on tape. Many errors are still scaling with luminosity, either directly or indirectly (Z statistics).
- ★ Luminosity monitor. <u>Current error is 6% :</u>

$$\frac{\sigma(L)}{L} = 2.5\% \oplus 5.5\%$$

$$\sigma_{TOT}(p\bar{p}) \quad \epsilon \text{ (lumi detector)}$$
By comparison :
Systematic error on W cross-section measurement : 2%
NNLO theory uncertainty : 2–3%.

 \star These analyses have been the benchmark for many other CDF analyses :

"cluster transverse mass"

$W + \gamma$

22

 $\begin{aligned} \sigma(W\gamma) \times BR(W \rightarrow l\nu) &= 19.7 \\ &\pm 1.7_{_{STAT}} \pm 2.0_{_{SYST}} \\ &\pm 1.1_{_{LUM}} \ pb \end{aligned}$

★ For E_{T} (photon) > 7 GeV and $\Delta R(l, \gamma) > 0.7$: $\sigma(W\gamma) \times BR(W \rightarrow l\nu)$ (Theory) = 19.3 ± 1.4 pb

W+γ: Anomalous Coupling Prospects

 $2 \, \mathrm{fb}^{-1}$

Ζ+γ

Ζ+γ

25

$$\sigma(\mathbf{Z}\gamma) \times \mathbf{BR}(\mathbf{Z} \rightarrow \mathbf{l}^{+}\mathbf{l}^{-}) = 5.3$$

$$\pm 0.6_{\text{STAT}} \pm 0.3_{\text{SYST}}$$

$$\pm 0.3_{\text{LUM}} \text{ pb}$$

★ For E_{T} (photon) > 7 GeV and $\Delta R(l,\gamma) > 0.7$: $\sigma(Z\gamma) \times BR(Z \rightarrow l^{+}l^{-})$ (Theory) = 5.4 ± 0.3 pb

- \neq Now V+ γ cross-sections well established :
 - extending acceptance
 - optimising sensitivity to anomalous couplings and new physics
 - testing the Standard Model in ways unique to the Tevatron (e.g. observing the radiation amplitude zero in W+γ production).

- ★ Never observed in hadron collisions with any significance (Run I @ CDF : 5 events observed with 1.2±0.3 background).
- * Many interesting tests of the Standard Model are possible.
- ★ Critical channel @ LHC (background & signal).

Sun Nov 16 13:20:29 2003

WW: Fake Background

- **P**(jet→ track lepton) 0.01 0.009 \boldsymbol{E}_{T} 0.008 0.007 0.006 0.005 0.004 0.003 0.002 0.001 **P**(jet→ track lepton) 0.006 0.005 0.004 0.003 0.002 0.001 0.5 -0.5 0 1.5
- ★ Jets can "fake" leptons due to jet fragmentation fluctuations, punch-through, heavy quark decays, etc.
- ★ Measure "fake rates" in jet samples.
- ☆ Apply them to events that contain 1 lepton and 1 jet but which are identical in all other respects to signal events.
- ★ Many thorny issues. For example, charge correlations :

WW: Fake Predictions

WW: Jet Rates

- ★ Jet multiplicity is a crucial discriminant between WW and top production.
- ★ We don't expect this to be well described by leading-order Monte Carlo programs.
- ★ Derive correction factors from Drell-Yan data.

 \star Missing- $E_T > 25$ GeV.

★ Topological cuts to remove Drell–Yan events.

Remove top background by requiring no additional jets.

full identification criteria applied.

- \star One isolated track with P_T>20 GeV/c.
- \bigstar Missing- $E_T > 25$ GeV.

 \star Topological cuts to remove Drell–Yan events.

 \Rightarrow Allow 0-jet and 1-jet events.

	DILEPTON	LEPTON+TRACK		
WW Signal	11.3 ± 1.3	16.3 ± 0.4		
Drell-Yan Background	1.8 ± 0.4	1.8 ± 0.3		
Fake Background	1.1 ± 0.5	9.1 ± 0.8		
Other Background	1.9 ± 0.2	4.2 ± 0.1		
Total Background	4.8 ± 0.7	15.1 ± 0.9		
Total Expected	16.1 ± 1.6	31.5 ± 1.0		
Data Observed	17	39		
σ(WW) [pb]	$14.3^{+5.6}_{-4.9}$ (stat) ± 1.6 (syst) ± 0.9 (lum)	$19.4 \pm 5.1 \text{ (stat)} \pm 3.5 \text{ (syst)} \pm 1.2 \text{ (lum)}$		

- Two measurements statistically consistent given estimated acceptance overlap.

 $- \sigma$ significance : <u>first observation of WW production in hadron collisions.</u>

 $\sigma\left(WW
ight)_{
m NLO}^{
m THEORY}~=~12.5\pm0.8~{
m pb}$

WW : Events

eµ channel has little Standard Model background
Signal/Background ≈ 4

 $\begin{array}{l} \begin{array}{l} \begin{array}{l} {\rm Run \ 155364 \ Event \ 3494901 : \ WW \rightarrow e^+ \nu_e \mu^- \bar{\nu}_\mu \ {\rm Candidate} \\ \hline p_T(e) = 42.0 \ {\rm GeV/c}; & p_T(\mu) = 20.0 \ {\rm GeV/c}; & M_{e\mu} = 81.5 \ {\rm GeV} \\ \hline \end{tabular} \\ \end{$

$$Z^0Z^0 \rightarrow e^+e^-\nu\bar{\nu}$$
?

CDF Run II Winter 2004 Preliminary, $\mathcal{L}=194 \text{ pb}^{-1}$

Process	$l_1 l_2 l_3 l_4$	$l_1 l_2 l_3 \not\!\!\!E_T$	$l_1 l_2 \not\!\!\!E_T$	Combined
ZZ	0.07 ± 0.01	0.13 ± 0.01	0.87 ± 0.14	1.07 ± 0.15
ZW	-	0.81 ± 0.07	0.86 ± 0.14	1.67 ± 0.19
ZZ+ZW	0.07 ± 0.01	0.94 ± 0.08	1.73 ± 0.27	2.72 ± 0.33
WW	-	-	1.26 ± 0.20	1.26 ± 0.20
Fake	0.01 ± 0.02	0.07 ± 0.06	0.56 ± 0.30	0.64 ± 0.34
Drell-Yan	-	-	0.31 ± 0.13	0.31 ± 0.13
$t\bar{t}$	-	-	0.08 ± 0.02	0.08 ± 0.02
Total Background	0.01 ± 0.02	0.07 ± 0.06	2.21 ± 0.38	2.29 ± 0.42
Expected S. $+$ B.	0.08 ± 0.02	1.01 ± 0.10	3.94 ± 0.57	5.01 ± 0.64
Data	0	0	4	4

H→WW

- \star Large branching ratio to WW^(*) above 140 GeV.
- ★ Relatively low backgrounds.

CDF Run II Preliminary (162 pb⁻¹)

Precision Electroweak Prospects

49

W Mass :

- ★ Fit transverse mass distribution.
- ★ Calibrate to Z signal.

Precision Electroweak Prospects

53

<u>CDF alone with 2 fb^{-1} </u>

- $\bigstar \Delta M_{W} \approx 40 \text{ MeV}$
- $\bigstar \Delta \mathbf{M}_{top} \approx \mathbf{3} \; \mathbf{GeV}$
- Similar to all current direct measurement data combined.
- ★ With a Higgs discovery at Tevatron or LHC, these measurements will provide a powerful consistency test of the Standard Model.
- ★ Could provide first evidence of what lies beyond the SM.
- ★ Will be improved at LHC, but not quickly or easily.

Summary

- Precision measurements have been made of single boson production crosssections & properties.
- ★ Diboson signals established in Run 2.
- ★ First observation of WW production in hadron collisions.
- Analyses being optimised for Standard Model tests – in particular anomalous coupling limits.
- ★ Higgs limits around a mass of 160 GeV are currently around 20 times the Standard Model expectation.
- \mathbf{M}_{w} & other EWK measurements soon.
- ★ Tevatron luminosity looks good interesting few years ahead.