Di-Boson Physics @ CDF

David WatersUniversity College London / CDF

ANL
Duke University
Fermilab
Liverpool University
University College London
UW-Madison
Okayama University
University of Pennsylvania
IPP-Toronto

+

whole of CDF

+

Uli Baur, John Campbell, Keith Ellis

DØ Has Results on All Topics Presented Here

Di-Boson Production at the Tevatron

$$p\,\overline{p} \rightarrow B\,B + X$$

Goals of the Run II program so far:

- Establish di-boson signals.
- Measure cross–sections as inclusively as possible.
- Compare cross–sections & kinematics to theoretical predictions.

Di-Boson Production: New Physics Probe

★ Test Gauge Boson Self Interactions

- LEP II results hard to beat, but:
- Complementarity : $W \rightarrow W \gamma$
- Probing couplings at higher \hat{s}

* Resonance Searches

Everyone Else's Background

Relevance to Light Higgs Searches

$$p\bar{p} \rightarrow WH \rightarrow l \nu b\bar{b}$$

$$\sigma(WH; m_{H}=115 \text{ GeV}) \approx 0.2 \text{ pb}$$

$$\sigma(WZ) \times BR(Z \rightarrow b\overline{b}) \approx 0.6 \text{ pb}$$

$$\sigma(ZH; m_{H}=115 \text{ GeV}) \approx 0.1 \text{ pb}$$

$$\sigma(\mathbf{Z}\mathbf{Z}) \times \mathbf{B}\mathbf{R}(\mathbf{Z} \rightarrow \mathbf{b}\mathbf{\bar{b}}) \approx \mathbf{0.2} \ \mathbf{pb}$$

- Major backgrounds
- Calibration signals

Relevance to Light Higgs Searches

"Tevatron Higgs Sensitivity Study", 2003:

Di-Boson Production: Predictions

Di-Boson Production: Tevatron to LHC

- Knowledge of di-boson production rates important for many LHC analyses.
- But there are important differences with Tevatron for example importance of VV scattering.

In addition, LHC is so far above threshold that novel detection methods also available :

Butterwoth, Cox, Forshaw 02

Tevatron & CDF

- \
- $W/Z + \gamma$
- WW
- WZ/ZZ
- H \rightarrow WW

CDF

Luminosities & Event Rates

- ~ 680 pb⁻¹ delivered so far in Run II.
- ~ 350 pb⁻¹ being analysed now.
- Results here based on 200 pb⁻¹ collected up until September 2003.

• At high luminosities, Tevatron is a factory for many massive states including boson pairs.

Process	Events/Week
$t \overline{t}$	50
$W \rightarrow e \nu_e$	18,000
$Z \rightarrow e^+ e^-$	1700
WW	90
$W \gamma \rightarrow e \nu \gamma$ (high- $p_T \gamma$)	130
$gg \rightarrow H (M_H=115 \text{ GeV})$	6

- $W/Z + \gamma$
- WZ/ZZ
- \bullet H \rightarrow WW

Di-Photon Production

Di-Photon Production

- \star Select two photons with E_T > 13 (14) GeV
- ★ Subtract background (mainly $\pi^0 \rightarrow \gamma \gamma$) statistically :

- ★ Data in good agreement with NLO prediction.
- ★ PYTHIA describes shapes well; normalisation off by factor of ~ 2.

- $\mathbf{W}/\mathbf{Z} + \gamma$
- WW
- WZ/ZZ
- \bullet H \rightarrow WW

$W/Z+\gamma$

W/Z+ γ : How Might New Physics Manifest Itself?

Di-Boson Physics @ CDF

$W/Z+\gamma$: Photon Identification

Di-Boson Physics @ CDF

$W+\gamma$

(1) Select $W \rightarrow lv$ events:

 \star Electrons : E_T>25 GeV; \not E_T>25 GeV

 \star Muons : E_T>20 GeV; $\not\!E_T$ >20 GeV

 $\star 30 < M_{T}(1v) < 120 \text{ GeV}$

(2) Search for additional photons
★ Use previously described cuts.

	Electron	Muon
$W+\gamma MC$	126.8 ± 5.8	95.2 ± 4.9
W+jet BG	59.5 ± 18.1	27.6 ± 7.5
W+ γ (tau)	1.5 ± 0.2	2.3 ± 0.2
Z+ γ	6.3 ± 0.3	17.4 ± 1.0
Total SM	194.1 ± 19.1	142.4 ± 9.5
data	195	128
σ*BR	$19.4 \pm 2.1 \pm 2.9$	$16.3 \pm 2.3 \pm 1.8$

$$\sigma(W\gamma) \times BR(W \rightarrow l\nu) = 18.1 \pm 1.6_{STAT} \pm 2.4_{SYST} \pm 1.2_{LUM} pb$$

$$\sigma(W\gamma) \times BR(W \rightarrow lv) (SM) = 19.3 \pm 1.4 \text{ pb}$$

$W+\gamma$

November 19, 2004

$Z+\gamma$

(1) Select $Z \rightarrow l^+l^-$ events:

 \star Electrons : E_T>25 GeV, $|\eta^e| < 2.6$

(2) Search for additional photons ★ Use previously described cuts.

 \star Muons : E_T>20 GeV, $|\eta^{\mu}| < 1.0$

 $\star 40 < M(1^+1^-) < 130 \text{ GeV}$

	Electron (±sys)	Muon (± sys)
Z+γ MC	30.9 ± 1.6	33.2 ± 1.5
Z+jet BG	2.8 ± 0.9	2.1 ± 0.7
Total SM	33.7 ± 1.8	35.3 ± 1.6
data	35	35
σ*BR	$4.7 \pm 0.8 \pm 0.3$	$4.5 \pm 0.8 \pm 0.2$

$$\sigma(\mathbf{Z}\gamma) \times \mathbf{BR}(\mathbf{Z} \rightarrow \mathbf{l}^{+}\mathbf{l}^{-}) = 4.6 \pm 0.5_{_{\mathbf{STAT}}} \pm 0.2_{_{\mathbf{SYST}}} \pm 0.3_{_{\mathbf{LUM}}} \ \mathbf{pb}$$

$$\sigma(Z\gamma) \times BR(Z \rightarrow l^+l^-)$$
 (SM) = 4.5 ± 0.3 pb

W/Z+γ: Kinematic Distributions

- ★ Data agree well with SM prediction.
- *These distributions sensitive to anomalous WWγ and ZZγ couplings.

$W/Z+\gamma$: Kinematic Distributions

- ★ Data agree well with SM prediction.
- ★ No hint of new physics/resonances at high mass.

$W/Z+\gamma$: Testing EWK SM

Radiation Amplitude Zero:

Mikaelain et al.,79; Baur, Errede, Landsberg 94.

observable as γ–lepton rapidity correlation

 $\Delta \eta(\gamma, 1) = \eta(\gamma) - \eta(1)$

Cross–Section Ratios:

inclusive:
$$1/R = \frac{\sigma(Z) \times BR(Z \to l^+ l^-)}{\sigma(W) \times BR(W \to l \nu)} = 9.16 \pm 0.18 \%$$

radiative:
$$1/R = \frac{\sigma(Z\gamma) \times BR(Z \to l^+ l^-)}{\sigma(W\gamma) \times BR(W \to l\nu)} = 25 \pm 5 \%$$

Quartic Couplings:

- $W/Z + \gamma$
- WW
- WZ/ZZ
- \bullet H \rightarrow WW

WW: Why?

★ Detected with very limited significance in Run I @ CDF : 5 events observed with 1.2 ± 0.3 background :

$$\sigma(WW) = 10.2^{+6.3}_{-5.1} \pm 1.6 \text{ pb}$$

- * Many interesting tests of the Standard Model are possible.
- ★ Critical channel @ LHC (background & signal).

WW: Decay Channels

WW: Backgrounds

Signal:

$$\sigma(p\bar{p} \rightarrow WW \rightarrow evev) \sim 0.15 \text{ pb}$$

<u>Drell-Yan</u>:

$$\sigma(p\overline{p} \rightarrow \gamma*/Z \rightarrow ee) \sim 250 \text{ pb}$$

Must have "fake" missing- E_T .

W+jets:

$$\sigma(p\bar{p} \rightarrow W(\rightarrow ev) + \ge 1 - \text{jet}) \sim 500 \text{ pb}$$

Jet must fake a lepton.

$t\overline{t}$:

$$\sigma(p\bar{p} \rightarrow t\bar{t} \rightarrow evevb\bar{b}) \sim 0.1 \text{ pb}$$

Contains additional jets.

WW: Analysis Strategies

- ★ Central electron/muon & plug electron triggers.
- ★ An isolated E_T >20 GeV lepton(e or μ) with full identification criteria applied :
 - central : $|\eta^{e,\mu}| < 1.0$; plug :1.1 < $|\eta^e| < 2.5$

- ★ Second isolated E_T >20 GeV lepton (e or μ) with full identification criteria applied.
- ★ Topological cuts (mainly MET– significance) to remove Drell–Yan events; applied only to like–flavour leptons with 76 < M(l⁺l⁻) < 106 GeV.</p>
- * Remove top background by requiring no additional jets.

"DILEPTON"

high purity

- ★ Second isolated track with $P_T>20$ GeV/c.
- ★ Topological cuts (mainly MET-significance) to remove Drell-Yan events.
- ★ Allow 0–jet and 1–jet events.

"LEPTON + TRACK"

- lower purity
- additional acceptance (1-jet bin; 1-prong tau decays)

WW: Drell-Yan Background

- Background due to large / mis-measured \mathbb{E}_{T} .
- Reject events consistent with E_T being a fluctuation of the total transverse energy flow:

$$\cancel{E}_T - \text{significance} = \frac{\cancel{E}_T}{\Sigma E_T}$$

• May not be well described by Monte Carlo – estimate DY background using data–based methods.

- Drell-Yan is also the most important control sample in this analysis.
- For example, measuring the rate of production of additional jets :

Di-Boson Physics @ CDF

WW: Fake Background

Mainly from W+jet(s) events.

Additional fake lepton due to jet fragmentation fluctuations, punch-through, heavy quark decays,

0.009

photon conversions etc.

• Measure "fake rates" in jet samples :

- Apply fake rates to events that contain 1 lepton and 1 jet but which are identical in all other respects to WW events.
- Correct for some subtle effects such as charge correlations:

November 19, 2004

Di-Boson Physics @ CDF

WW: Results

	DILEPTON	LEPTON+TRACK (STAT ERR.)
WW Signal	11.3 ± 1.3	16.3 ± 0.4
Drell-Yan Background	1.8 ± 0.4	1.8 ± 0.3
Fake Background	1.1 ± 0.5	9.1 ± 0.8
Other Background	1.9 ± 0.2	4.2 ± 0.1
Total Background	4.8 ± 0.7	15.1 ± 0.9
Total Expected	16.1 ± 1.6	31.5 ± 1.0
Data Observed	17	39
σ(WW) [pb]	$14.3^{+5.6}_{-4.9} (\text{stat}) \pm 1.6 (\text{syst}) \pm 0.9 (\text{lum})$	$19.4 \pm 5.1 \text{ (stat)} \pm 3.5 \text{ (syst)} \pm 1.2 \text{ (lum)}^{3}$

- → Two measurements statistically consistent given estimated acceptance overlap.
- $\sim 3\sigma$ significance.

$$\sigma (WW)_{\rm NLO}^{\rm THEORY} = 12.4 \pm 0.8 \text{ pb}$$

WW: Systematics

Backgrounds

Uncertainties large for instrumental and fake backgrounds :

- → Drell–Yan (fake \cancel{E}_{T}) : ~ 40 %
- W+jets (fake lepton) : $\sim 40 50\%$

$$\sigma(WW) = \frac{N_{\text{DATA}} - N_{\text{BKG}}}{\epsilon \times L \times BR(WW \to l \nu l \nu)}$$

Selection Efficiency

- ~10%
- → signal modelling
- acceptance & identification uncertainties

Luminosity

6%

WW: Results

WW: Kinematic Distributions

Leptons Transverse Momentum

- Good agreement with signal plus background expectation.
- These distributions are being fitted to extract anomalous coupling limits.

WW: Kinematic Distributions

No sign of unexpected structure in

LEPTON+ **TRACK**

200 M_{II} (GeV)

WW: Events

Run 155364 Event 3494901 : $WW \rightarrow e^+ \nu_e \mu^- \bar{\nu}_\mu$ Candidate

$$p_T(e) = 42.0 \text{ GeV/c}; \quad p_T(\mu) = 20.0 \text{ GeV/c}; \quad M_{e\mu} = 81.5 \text{ GeV}$$

$$E_T = 64.8 \text{ GeV}; \quad \Phi(E_T) = 1.6$$

$$\Delta\Phi(E_T, \text{lepton}) = 1.3; \quad \Delta\Phi(e, \mu) = 2.4; \quad \text{Opening-Angle}(e, \mu) = 2.6$$

- ★ eµ channel has little Standard Model background
- **★** Signal/Background ≈ 4

WW: Events

$$W^+W^- \rightarrow e^+e^- v\bar{v}$$
 ?

... or ...

$$Z^0Z^0 \rightarrow e^+e^-\nu\bar{\nu}$$
 ?

- \(\gamma \)
- $W/Z + \gamma$
- WW
- WZ/ZZ
- \bullet H \rightarrow WW

ZZ+ZW

CDF Run II Winter 2004 Preliminary, $\mathcal{L}=194~\mathrm{pb}^{-1}$

Process	$l_1 l_2 l_3 l_4$	$l_1 l_2 l_3 E_T \hspace{1cm}$	$l_1 l_2 E_T$	Combined
ZZ	0.07 ± 0.01	0.13 ± 0.01	0.87 ± 0.14	1.07 ± 0.15
ZW	-	0.81 ± 0.07	0.86 ± 0.14	$ 1.67 \pm 0.19 $
ZZ+ZW	0.07 ± 0.01	0.94 ± 0.08	1.73 ± 0.27	2.72 ± 0.33
WW	-	-	1.26 ± 0.20	1.26 ± 0.20
Fake	0.01 ± 0.02	0.07 ± 0.06	0.56 ± 0.30	0.64 ± 0.34
Drell-Yan	_	-	0.31 ± 0.13	0.31 ± 0.13
$tar{t}$	_	-	0.08 ± 0.02	0.08 ± 0.02
Total Background	0.01 ± 0.02	0.07 ± 0.06	2.21 ± 0.38	2.29 ± 0.42
Expected S. $+$ B.	0.08 ± 0.02	1.01 ± 0.10	3.94 ± 0.57	5.01 ± 0.64
Data	0	0	4	4

ZZ+ZW

$$\sigma(p\bar{p} \rightarrow ZZ/ZW + X) < 13.9$$
 pb

$$\sigma \left(p \, \overline{p} \rightarrow ZZ/ZW + X\right)_{\text{NLO}} = 5.0 \pm 0.4 \text{ pb}$$

. November 19, 2004

Di-Boson Physics @ CDF

- \(\gamma \)
- $W/Z + \gamma$
- WW
- WZ/ZZ
- \bullet H \rightarrow WW

$H \rightarrow WW^{(*)}$

H

★ Take advantage of largest (gluon-gluon) production cross-section.

★ Large branching ratio to WW^(*) above 140 GeV.

* Relatively low backgrounds.

H→WW^(*) Kinematics

Tend to have:

- $\star M_{_{II}} \leq M_{_{H}}/2$
- * Small dilepton opening angle.

$H \rightarrow WW^{(*)}$

- (1) Start with WW analysis.
- (2) Apply dilepton mass cut.
- (3) Fit dilepton $\Delta\Phi$ distribution. Find maximum allowed Higgs contribution.

CDF Run II Preliminary: 200/pb

Higgs Mass	140 GeV	160 GeV	180 GeV
$\sigma_{\rm SM}(gg{ ightarrow} H)$	0.45 pb	0.30 pb	0.21 pb
$\mathbf{BR}_{\mathrm{SM}}(\mathbf{H}{ ightarrow}\mathbf{WW})$	0.48	0.90	0.94
Expected Signal	0.10±0.01	0.22±0.03	0.17±0.02
WW Background	3.51±0.41	4.45±0.52	6.49±0.76
Other Backgrounds	0.68±0.16	1.34±0.35	2.40±0.55
DATA	2	3	8
Counting Limit (95% CL)	18.4 pb	6.2 pb	8.8 pb
ΔΦ– Fitting Limit – Obtained (95% CL)	17.8 pb	5.6 pb	6.4 pb

$H \rightarrow WW^{(*)}$

- * Cuts will be optimised for Higgs search.
- Maximal use of kinematic information to separate Higgs from SM WW.
- ★ Will soon set model limits for example on 4th quark generation :

 $\sigma(gg \rightarrow H; 4G) \sim 9 \times \sigma(gg \rightarrow H; 3G)$

CDF Run II Higgs: Summary

The Future ...

Future: Global Analyses

• Many of the signals we are trying to isolate are not cleanly separable from each other :

$$p\overline{p}\rightarrow WW$$
 $p\overline{p}\rightarrow t\overline{t}\rightarrow WWb\overline{b}$
 $p\overline{p}\rightarrow Z\rightarrow l^+l^-$
 $p\overline{p}\rightarrow H\rightarrow WW$

- • •
- "Cut & Count" experiments may not be making best use of the available data.
- Another approach is to fit the data in a space of N variables to shapes corresponding to each contribution :

Future: Global Analyses

Di-Boson Physics @ CDF

Future: Global Analyses

Fit the data to 2D shapes corresponding to different physics processes:

$$\frac{\mathrm{d}^{2} N_{\text{EVT}}}{\mathrm{d} \mathcal{E}_{T} \, \mathrm{d} N_{\text{jets}}} = \alpha N_{t\bar{t}} + \beta N_{WW} + \gamma N_{Z \to \tau\tau} + n_{\text{other}}$$

CDF Run II Preliminary 200pb⁻¹

other σ's fixed 🔻	$e\mu$ only	$ee + \mu\mu + e\mu$	Theory
$\sigma(tar{t}) ext{(pb)}$	$8.6^{+3.4}_{-3.2}\pm0.9$	$8.6^{+2.5}_{-2.4}\pm1.1$	6.7 ± 0.3
$\sigma(WW)(\mathrm{pb})$	$11.5^{+3.6}_{-3.6} \pm 0.6$	$12.6^{+3.2}_{-3.0}\pm1.2$	12.5 ± 0.8
$\sigma(Z o au au) ext{(pb)}$	$233^{+45}_{-42}\pm17$	-	253.1 ± 0.5

example likelihood contour

- Statistical precision compares favourably with individual cut based analyses full power of data being used.
- Method may be particularly useful for searches.

extra \mathbb{Z}_T^{SIG} cut in ee & $\mu\mu$ channels

Future

WW

- * measure WWγ/WWZ couplings
- * examine kinematics & event properties in more detail with larger samples
- ★ use jets channels WW→lvjj
- ★ WW+γ ; quartic couplings
- optimise & utilise global analysis techniques

WZ/ZZ

 \star measure WZ cross-section with $\sim 1 \text{ fb}^{-1}$

Z

$W/Z+\gamma$

- measure WWγ couplings
- * radiation amplitude zero
- * ratio measurements
- \star W/Z+2 γ ; quartic couplings

H

$H\rightarrow WW$

* optimise selection for scalar production

All Analyses:

- * extend acceptance
- ★ deal with effects of higher instantaneous luminosity

Summary

- Di-boson signals established in Run II :
 - W/Z+γ with substantially improved significance over Run I.
 - **WW** for the first time at the Tevatron.

- Looking forward to analyses made possible with more data:
 - precision di-boson measurements.
 - discovery of ZW/ZZ production
 - discovery of, or stringent limits on, new physics.