

Run full analysis on 100k Pythia WW Monte Carlo events (wtop0f).

Results :

(1) Why ?

(2) Implications for the compatibility of the measurements ?

Electroweak Meeting, 25th March 2004

(1) Why ?

Why is the acceptance of both analyses calculated on Pythia WW MC identical ? [when LT quoted yield is 30% larger]

- ★ Both groups have double checked that they can reproduce the acceptance numbers in respective notes.
- ★ ALPGEN \leftrightarrow PYTHIA might account for 10–15%.
- This is acceptance BEFORE (data/MC) scale factors have been applied. The TD analysis takes a bigger hit here because :
 - **<u>i.</u>** inclusion of PHX–PHX category means a larger fraction of the TD acceptance is in a low–luminosity category.
 - **<u>ii.</u>** TD analysis takes double hits on lepton ID scale factors.

Why is the overlap so small ?

Don't be too shocked remember that :

- BOTH analyses are very low acceptance. For every 100 WW→lvlv (l=e,μ,τ) events at CDF, each analysis hopes to collect 6 or 7 events. Not impossible to "miss" each other.
- ✤ BOTH analyses are making harsh and DIFFERENT topological cuts (e.g. METSIG, 0-jet) to remove LARGE backgrounds.

Events Missing in LT Analysis :

- 2291 events unique to "tight-tight" analysis
- ★ 80% due to METSIG cut :
 - LT applies tighter cut
 - Higher METSIG cut value
 - Applied to all candidates at all invariant masses

- ★ Remaining 20%:
 - half have no high pt track in central
 - Rest fail MET>40 in Z window, $\delta\phi(MET,tl)$

le Mar 23 23:57:29 2004

Events Missing in TD Analysis :

Remainder (313) are events containing τ's

Events Missing in TD Analysis :

Some evidence for the missing tight leptons being in detector regions where we will naturally loose them, but this is still being looked at :

Electroweak Meeting, 25th March 2004

(2) Implications for the compatibility of the measurements ?

Basically, no.

Naïve calculation of the statistical significance of the discrepancy :

$$\frac{\text{LT} - \text{TD}}{\sqrt{\sigma_{\text{LT}}^2 + \sigma_{\text{TD}}^2}} = 0.64 \text{ "sigmas"}$$

combining statistical errors only

- Pseudo–experiments confirm that the 40% overlap hardly changes this naïve estimate.
- "Less than 1-sigma effect"

Summary

- Overlap lower than expected but maybe not so surprising.
- Big picture :
 - LT analysis is losing TD events due to topology cuts (which are designed to reject background).
 - TD analysis is losing LT events mainly due to tight lepton requirements. Topology cuts (jet-veto) also play a part.

BACKUP SLIDES

Events Missing in TL Analysis :

Tue Mar 23 23:57:29 2004

Events Missing in TL Analysis :

Tue Mar 23 23:54:38 2004

Events Missing in TD Analysis :

Category	ID	ISO	$\operatorname{Conv+Cosm}$	Z veto	$\not\!\!\!E_T>25~{\rm GeV}$	$\Delta \phi$	0j	OS
TCE-TCE	75	47	42	42	42	42	0	0
TCE-PHX	35	30	28	28	28	28	2	0
PHX-PHX	3	3	3	3	3	3	0	0
TCE-CMUP	131	96	88	88	88	86	0	0
TCE-CMU	23	17	17	17	17	17	0	0
TCE-CMP	41	28	28	28	28	28	0	0
TCE-CMX	71	43	39	39	39	39	0	0
TCE-CMIO	40	30	30	30	30	29	0	0
PHX-CMUP	42	39	39	39	39	38	2	0
PHX-CMU	14	11	11	11	11	11	0	0
PHX-CMP	9	9	9	9	9	9	0	0
PHX-CMX	19	19	19	19	19	19	1	0
PHX-CMIO	13	13	13	13	13	12	1	0
CMUP-CMUP	44	31	31	31	31	31	0	0
CMUP-CMU	19	14	14	14	14	14	0	0
CMUP-CMP	21	15	15	15	15	14	0	0
CMUP-CMX	44	32	32	32	32	31	0	0
CMUP-CMIO	40	29	29	29	29	28	0	0
CMX-CMX	5	3	3	3	3	3	0	0
CMX-CMU	4	1	1	1	1	1	0	0
CMX-CMP	6	6	6	6	6	6	0	0
CMX-CMIO	20	14	14	14	14	14	0	0
TRILEPTON	0	0	0	0	0	0	0	0

Events Missing in TL Analysis :

Tue Mar 23 23:44:09 2004

Statistical compatibility of two WW analyses

Take numbers from CDF–6872 & CDF–6909 :

<u>WW-TIGHT ("A") :</u> ★ww_mean = 11.3 ★bk_mean = 4.77

<u>L+T ("B") :</u> ★ ww_mean = 16.45 ★ bk_mean = 15.27

Proper definition of overlap (thanks Peter) :

overlap =
$$\frac{A \cap B}{A \cup B}$$

Then because of the different signal and background sizes, the range of overlap is limited :

OVERLAP = 0.0

<u>Pseudo-experiment results :</u>

- I million pseudo-experiments
- measured cross-sections unbiased (of course, since I'm only using the expectation numbers in the pseudo-experiment generation)
- discrete distribution of measured cross sections due to Poisson statistics.

0

1

-1

-2

40000

30000

20000

10000

$\mathbf{OVERLAP} = \mathbf{0.0}$

Pull distributions :

- errors on measured cross-section for each pseudo-experiment are just sqrt(n) (Feldman–Cousins too time consuming)
- pull distributions still reasonable slightly more asymmetric for "A" as expected.
- Quantitative :
 - fraction $< 1\sigma = 67.7\%$ ("A")
 - fraction $< 1\sigma = 66.9\%$ ("B")
- Should be 68.3% for perfect 1σ coverage, but simplified error treatment is clearly not too bad.

[N.B. The two measurements are only 0.64σ discrepant according to this definition]

$\mathbf{OVERLAP} = \mathbf{0.0}$

Compatibility of 2 measurements :

- pull distribution has a lot of structure
- but coverage is about right :
 - fraction $< 1\sigma = 68.0\%$ ("A–B")
- With 50 times the data, things look much more Gaussian, so structure above is still due to discrete statistics :

$OVERLAP = 0.69 \quad (MAX)$

Compatibility of 2 measurements :

- Coverage reflects correlation :

Another way of saying the same thing :

- With no overlap, the probability for the 2 measurements to be > 1"σ" away is 32% (tautology).
- With maximal allowed signal overlap (but no background overlap), this probability drops to 16%.

Pythia Pseudo-Experiments :

- Alternative approach : use Pythia WW overlap event lists.
- For each pseudo-experiment, Poisson fluctuate the total (WWT+LT) event yield and select this N events at random from Susana's & Peter's combined list (containing events which pass one or both analyses). Ask which of the N pass both analyses – hence using the full correlation between the 2 analyses.
- PROBLEM : this would give on average the same number of events selected in the WWT and LT analyses, since they have identical acceptance on this sample. I model this by randomly rejecting ~30% of the selected WWT events.

Pythia Pseudo-Experiments :

