$WW \rightarrow l\nu l\nu : 200 \text{ pb}^{-1} \text{ Results}$

S.Cabrera¹, S.Carron¹, S.Chuang², J.Deng¹, A.Goshaw¹, Y.Huang¹, M.Kruse¹, D.McGivern³, D.Waters³

¹ Duke University
 ² University of Wisconsin
 ³ University College London

- Summary of the Analysis & Extended Acceptance
- Acceptance Systematic Studies
- Backgrounds & Fake Rate Calculation
- Kinematic Distributions & Cross Section Measurement

Documentation :

- Winter 2004 Analysis : CDF– 6909
- DY Background & MET–Sig. Studies : CDF–6834
- Summer 2003 Analysis : CDF–6611
- Winter 2003 Analysis : CDF–6323
- Preliminary Studies : CDF–6197

Web Page :

http://www-cdf.fnal.gov/internal/physics/WW

Summary of the Analysis

Summary of the Analysis

Lepton ID Summary :

- *** TCE** : baseline central electron with calorimeter and track isolation < 0.1
- **PHX** : baseline Phoenix electron with calorimeter isolation < 0.1
- MUON : minimum ionising track passing baseline muon cuts, categorised by stub content and fiduciality

$$E_T$$
 or $P_T > 20$ GeV

Missing–Et Significance

- An additional cut in the Z-mass window for like-flavour lepton pairs (previously discarded)
- * Such events make up ~15% of our total acceptance.
- Recover 80% of WW events in Z-mass window (compared to simple veto) and reject 93% of DY background.
- * Include leptons in transverse energy sum ("muon corrected")
- * Definition and cut optimised using smaller data sample.
- ★ Described in detail in CDF-6834.

Missing–Et Significance

- Some discrepancy observed for W and W+1j data. BUT, only ~15% of our WW acceptance (same-flavour, Z-mass window) is affected by this cut.
- * Systematic error from this source : 2%.

Acceptance

	WW						
		ee		$\mu\mu$		$e\mu$	
Cut		%		%		%	
Lepton ID	25777	0.00 ± 0.00	22663	0.00 ± 0.00	46143	0.00 ± 0.00	
Isolation	23300	90.39 ± 0.18	20856	92.03 ± 0.18	42176	91.40 ± 0.13	
Conv+Cosmic	22878	98.19 ± 0.09	20856	100.00 ± 0.00	41771	99.04 ± 0.05	
Z-veto	20258	88.55 ± 0.21	18219	87.36 ± 0.23	41771	100.00 ± 0.00	
$\not\!\!E_T > 25 \text{ GeV}$:	15848	78.23 ± 0.29	14159	77.72 ± 0.31	30230	72.37 ± 0.22	
$\Delta \Phi > 20^{\circ}$ if $\not \!\!E_T < 50$	15297	96.52 ± 0.15	13642	96.35 ± 0.16	29080	96.20 ± 0.11	
0 jets	12309	80.47 ± 0.32	10930	80.12 ± 0.34	23535	80.93 ± 0.23	
Opposite Sign	12307	99.98 ± 0.01	10930	100.00 ± 0.00	23532	99.99 ± 0.01	

★ Not currently applied for PHX categories.

★ Would reduce overall acceptance by 10% in e–e channel and 5% overall.

Scale Factors and Corrections

Acceptance Summary

not including separate	category]	luminosities	& SF, e	etc.
------------------------	------------	--------------	---------	------

	A _{ee}	$A_{\mu\mu}$	$A_{e\mu}$	$A_{ee+\mu\mu+e\mu}$
A_{abs}	(0.163 ± 0.001) %	(0.145 ± 0.001) %	$(0.312 \pm 0.002)~\%$	$(0.620 \pm 0.003)~\%$
A_{rel}	26.3 %	23.4~%	50.3 %	100.0~%
$A_{abs}(SF)$	(0.140 ± 0.001) %	(0.114 ± 0.001) %	$(0.252 \pm 0.002)~\%$	$(0.505\pm 0.002)~\%$
$A_{rel}(SF)$	27.7 %	22.5~%	49.8 %	100.0 %

including individual category luminosities & SF, etc.

* Acceptance has approximately doubled since Winter 2003 :

- New categories including PHX
- Use of MET_PEM trigger sample
- New treatment of muon categories

WW Acceptance Systematic

(1) Jet Veto ("ISR")	6%
(2) Generator/Parton-Shower Model (Pythia vs. Herw	ig) 5%
(3) PDF/QCD–Scale (event yield)	[5%] —
(4) Jet Energy Scale ($\pm 1 \sigma$ correction variation)	3%
(5) Lepton ID (mainly from PHX contribution)	2%
(6) Track Isolation	4%
(7) Trigger Efficiency (mainly from MET_PEM)	1%
(8) METSIG	2%
(9) Combined	10%
	↓

Yield only, doesn't contribute to acceptance systematic.

WW Acceptance Systematic

Jet Veto ("ISR")

- ***** Problem : $\sigma(WW)$ measurement uses 0-jet bin to reduce the background.
- \mathbf{k} Need to estimate zero jet fraction of total production cross-section " $\mathbf{f}_{\mathbf{0}}$ ".
- ★ Tools :
 - PYTHIA : full spin correlations, but will overestimate \mathbf{f}_{0j} due to lack of hard parton emission.
 - MC@NLO : in principle the best tool for estimating the migration of events from 0−jet ≥1−jet, but does not include full spin correlations.
 - Drell-Yan events : comparison between data and Monte Carlo values for \mathbf{f}_{0i} .

WW

WW Acceptance Systematic

★ Drell-Yan e+e-: MC (PYTHIA) : $<\mathbf{f}_{0j}> = 0.852 \pm 0.001$ DATA : $<\mathbf{f}_{0j}> = 0.813 \pm 0.008$ DATA/MC : 0.955 ± 0.009

★ WW→ $l\nu l\nu$ MC (PYTHIA) : $<\mathbf{f}_{0j}> = 0.803 \pm 0.005$ MC (MC@NLO) : $<\mathbf{f}_{0j}> = 0.767 \pm 0.010$ MC@NLO/PYTHIA : 0.955 ± 0.010

☆ Apply the mass averaged scale factor 0.955 to WW yield calculated from Pythia.

★ Systematic error of 6% from difference between Drell–Yan data and MC@NLO value for f₀.

Backgrounds

Major Backgrounds & Uncertainties :

☆ Drell−Yan

- Evaluated using Monte Carlo (k-factor corrected cross-sections).
- Corrected for missing- E_{T} distribution observed in data \Rightarrow largest source of uncertainty.
- Cross-checked using a data-based background calculation.

☆ WZ

- Evaluated using Monte Carlo (NLO cross-section).
- Significantly reduced through tri–lepton rejection.
- Similar systematic uncertainties to WW acceptance systematic.

★ tī

- Evaluated using Monte Carlo (normalised to 7 pb)
- Largest systematic uncertainty ($\approx 30\%$) from jet energy scale variation.

🛪 Fake

Data-based estimate described below.

Other Potential Backgrounds :

★ bb

• Negligible based on high- p_{T} bb Monte Carlo sample.

$\star \mathbf{W} + \gamma$

Negligible based on cross-section and assumed photon → lepton fake rate. Currently being checked using Monte Carlo.

Fake Background

☆Origin of fakes : mainly W+jet events in which a jet is misidentified as a lepton (or contains a real lepton from heavy quark decay).

*Fake ratios calculated using QCD samples : Jet20, 50, 70, 100 : differences give one source of systematic error.

*Fake ratio applied to events in the signal sample that contain "fakable" (or "denominator") lepton but otherwise satisfy WW requirements.

Fake Ratios

Fake Rates : Systematic Checks

- ★ W and Z (real lepton) contamination
 - → Procedure : vary missing- E_{T} (10, 15, 20, 25) and Z-veto (76–106, 66–116, 56–126) cuts.
 - Result : variation consistent with varying contamination based on prescale and threshold.
 Use 10 GeV cut to select purest fake sample. Residual error well within overall systematic.

Denominator definition.

- Procedure : vary EM fraction cut for electron FR (NONE, 0.5, 0.8) and E/P cut for muon FR (NONE, 0.5, 1.0)
- Result : no variation with EM fraction. Some variation with E/P cut : 50% systematic uncertainty on muon fake rates.
- ★ Jet vs. Electron Energy.
 - Procedure : use EM component of jet only.
 - Result : 20% systematic variation of TCE and PHX fake rates.
- ★ Fake Rate Summary :
 - **- e**−**e** : 0.618 ± 0.174 (stat+samp) ± 0.124 (syst)
 - $e \mu : 0.621 \pm 0.164 \text{ (stat+samp)} \pm 0.210 \text{ (syst)}$
 - μ - μ : 0.149 ± 0.080 (stat+samp) ± 0.075 (syst)

★ Large errors, but :

- ★ Fake/Signal ≈ 0.1
- ★ We want to do some additional cross checks

Drell–Yan Background Systematics

★ Data cross-check :

Drell–Yan Background Systematics

★ Data cross-check numbers :

Channel	Inside	Outside	Total	Monte-Carlo
ee	0.70 ± 1.09	0.21 ± 0.15	0.91 ± 1.10	0.62 ± 0.22
$\mu\mu$	0.35 ± 1.11	0.13 ± 0.13	0.49 ± 1.12	0.61 ± 0.24
			-	

- \star Consistent within errors.
- Data errors large due to small statistics.
- Prefer to use MC values and evaluate systematic error in other ways.
- **NOTE** : this with OS cut for PHX.

Drell–Yan Background Systematics

E/T Data MC comparison 0jet Zmass

- ★ Smearing $\propto \sqrt{E_T}$ or simple 6% shift both give a reasonable description of the tail and increase the fraction above 25 GeV by ~85%.
- ★ Large error (40%) estimated on this fraction since there is little data (and significant signal contamination) above 25 GeV.
- $\neq \mu^+\mu^-$ data : no evidence for systematic effect.

<u>Other background systematics :</u> ★ Jet energy scale (important for tt)

Grand Summary

	CDF Run II Winter 2004 Preliminary					
Source	ee	$\mu\mu$	$e\mu$	ll		
Drell-Yan e^+e^-	1.17 ± 0.52	0.00 ± 0.00	0.072 ± 0.059	1.24 ± 0.52		
Drell-Yan $\mu^+\mu^-$	0.00 ± 0.00	0.61 ± 0.24	0.48 ± 0.19	1.09 ± 0.31		
Drell-Yan $\tau^+\tau^-$	0.051 ± 0.020	0.046 ± 0.018	0.10 ± 0.04	0.20 ± 0.05		
WZ	0.36 ± 0.04	0.32 ± 0.03	0.22 ± 0.02	0.91 ± 0.07		
$tar{t}$	0.013 ± 0.008	0.008 ± 0.005	0.033 ± 0.014	0.054 ± 0.017		
Fake	0.62 ± 0.21	0.15 ± 0.11	0.62 ± 0.27	1.39 ± 0.36		
Total Background	2.22 ± 0.56	1.14 ± 0.27	1.53 ± 0.34	4.88 ± 0.73		
$WW \rightarrow \text{dileptons}$	3.38 ± 0.40	2.75 ± 0.32	6.09 ± 0.71	12.2 ± 1.4		
Run 2 Data	8	6	6	20		

New Monte Carlo studies show :

★ bb background negligible

★ W+γ very small (<0.1 events)

\mathbf{H} Relax missing- \mathbf{E}_{T} cut.

- ★ Backgrounds still normalised to luminosity.
- * Before any additional smearing of DY missing- E_{T} .

- ★ Relax METSIG cut for data in Z-mass window.
- ★ Backgrounds still normalised to luminosity.

- Statistical error : Feldman & Cousins.
- Systematic error propagation :

$$\sigma_{meas}^{WW} = \frac{(N_{obs} - N_{bk})}{\epsilon \times L \times BR}$$

$$\delta N_{bk} = \sim 20 \% \text{ (effect of missing-E}_{T} \text{ cut, jet veto and fake uncertainties).}$$

$$\sigma_{meas}^{WW} = 16.4_{-4.5}^{+5.7} \text{ (stat)} \pm 1.8 \text{ (syst)} \pm 1.0 \text{ (lumi) pb}$$

$$THEORY: \sigma_{NLO}^{WW} = 13.25 \pm 0.8 \text{ pb}$$

$$TO BLESS$$

* Uses identical lepton categories to WW analysis in all cases (except "LCE")

★ Uses identical datasets, ntuples etc.

		backgr from σ	round fra (W,Z) ar	action nalyses	Standa	ard SF	from M	
process	$\ell_{\rm det}$ type	$N_{ m signal}$	$p_{ m bg}(\%)$	$\mathcal{L}_{\mathrm{int}}(/\mathrm{pb})$	$\epsilon_{ m trigger}$	$f_{ m data/MO}$	$_{ m C} A \cdot \epsilon_{ m ID}$	$\sigma \cdot B \pm ext{stat} \pm ext{lumi} (ext{nb})$
$W \to e \nu$	TCE	117123	0.035	193.525	0.9621	0.964	0.2344	$2.686\pm 0.008\pm 0.161$
	PHX	69917	0.03	161.804	0.973	0.947	0.1803	$2.523\pm 0.010\pm 0.151$
$W ightarrow \mu u$	CMUP	59466	0.0943	193.525	0.887	0.8874	0.1286	$2.750\pm 0.012\pm 0.165$
	CMX	32479	0.0921	175.302	0.954	1.0069	0.0632	$2.773\pm 0.017\pm 0.166$
$Z \rightarrow ee$	TCE-LCE	4929	0.0026	193.525	0.999	0.943	0.1072	$0.2517{\scriptstyle\pm0.0036\pm0.0151}$
	TCE-PHX	3517	0.0015	161.804	0.963	0.817	0.1156	$0.2386 {\pm} 0.0040 {\pm} 0.0143$
$Z ightarrow \mu \mu$	$CMUP-\mu$	4355	0.0000	193.525	0.8921	0.8874	0.1063	$0.2675{\scriptstyle\pm0.0041\scriptstyle\pm0.0161}$
1977 - 25 1	$CMX-\mu$	2345	0.0000	175.302	0.956	1.0069	0.0554	$0.2506 {\pm} 0.0052 {\pm} 0.0150$

 $\sigma \times B_{_{SM}}(W \to l\nu) = 2.731 \text{ nb}$ $\sigma \times B_{_{SM}}(Z \to l^+ l^-) = 0.2505 \text{ nb}$

Reasonable agreement with other CDF measurements.

★ No systematic difference w&w/o trk iso requirement.

★ W yield stability :

★ Z yield stability :

★ W kinematics :

★ Z kinematics :

BACKUP SLIDES

Baseline Lepton Definitions

EM E_T	$> 20 { m ~GeV}$
E_{HAD}/E_{EM}	$< 0.055 + 0.00045 \cdot E$
L_{shr}	< 0.2
Track P_T	$>10 \text{ GeV/c} \text{ (if EM } E_T \leq 100 \text{ GeV)}$
	$>50 \text{ GeV/c}$ (if EM $E_T > 100 \text{ GeV}$)
$\frac{E}{p}$	$< 2 \text{ (if EM } E_T \leq 100 \text{ GeV)}$
$q_{track} \cdot \Delta x$	$[-3.0\mathrm{cm},1.5\mathrm{cm}]$
$ \Delta z $	< 3 cm
χ^2	< 10
track $ z_0 $	< 60 cm
Track quality	3 axial and 3 stereo SL with at least 7 out of 12 in each SL $$
Fiducial	fidele=1 (Ces $ X < 21$ cm, 9< Ces $ Z < 230$ cm
	Tower 9 excluded, most of tower next to chimney included)

Baseline Lepton Definitions

EM E_T	$> 20 { m ~GeV}$
E_{HAD}/E_{EM}	$< 0.05 + 0.026 \cdot \ln(\frac{E_{EM}}{100})$ (if $E_{EM} > 100 \text{ GeV}$)
	$< 0.05 \text{ (if } E_{EM} \leq 100 \text{ GeV)}$
PEM 3×3 Fit tower	<i>≠</i> 0
PEM 3×3 Fit χ^2	<10
PES 5×9 U and V	>0.65
Fiducial	PES based $1.2 < \eta < 2.5$
Silicon track	2D Phoenix track
Number of Silicon Hits	≥ 3
Track $ z_0 $	< 60 cm
$\Delta_R(\mathrm{Track},\mathrm{PES})$	<3

Track P_T	>20 GeV/c
Track $ z_0 $	< 60 cm
E_{EM}	< 2 + Max(0, 0.0115(P-100)) GeV
E_{HAD}	< 6 + Max(0, 0.028(P-100)) GeV
Track $ d_0 $	0.2 cm (if no silicon hits attached by OI)
	0.02 cm (if silicon hits attached by OI)
Track quality	3 axial and 3 stereo SL with at least 7 out of 12 in each SL

PHX Charge Mis-identification

Fake Rate for Different W/Z Rejection Cuts

CEM	$\not\!$	$\not\!$	$\not\!$	$\not\!$
JET20	$3.38 \ 10^{-5} \pm 1.28 \ 10^{-5}$	$3.97 \ 10^{-5} \pm 1.20 \ 10^{-5}$	$4.26 10^{-5} \pm 1.18 10^{-5}$	$4.44 \ 10^{-5} \pm 1.19 \ 10^{-5}$
JET50	$8.71 \ 10^{-5} \pm 1.59 \ 10^{-5}$	$6.94 \ 10^{-5} \pm 1.13 \ 10^{-5}$	$6.66 \ 10^{-5} \pm 9.93 \ 10^{-6}$	$6.34 \ 10^{-5} \pm 9.24 \ 10^{-6}$
JET70	$2.35 \ 10^{-5} \pm 1.18 \ 10^{-5}$	$4.25 \ 10^{-5} \pm 1.23 \ 10^{-5}$	$4.39 \ 10^{-5} \pm 1.10 \ 10^{-5}$	$4.08 \ 10^{-5} \pm 9.89 \ 10^{-6}$
JET100	$2.80 \ 10^{-5} \pm 1.25 \ 10^{-5}$	$4.84 \ 10^{-5} \pm 1.25 \ 10^{-5}$	$6.42 10^{-5} \pm 1.23 10^{-5}$	$5.94 \ 10^{-5} \pm 1.08 \ 10^{-5}$
PHX	$E_T < 10$	$E_T < 15$	$\not\!$	$\not\!$
JET20	$2.73e-04 \pm 3.83 \ 10^{-5}$	$3.22\mathrm{e}{-04}\pm3.70\;10^{-5}$	$3.21\mathrm{e}{-04} \pm 3.57 \; 10^{-5}$	$3.19\mathrm{e}{-04}\pm3.52\;10^{-5}$
JET50	$3.46e-04 \pm 4.36 \ 10^{-5}$	$3.67\mathrm{e}{-04} \pm 3.64 \; 10^{-5}$	$4.33e-04 \pm 3.61 \ 10^{-5}$	$4.67e-04 \pm 3.61 \ 10^{-5}$
JET70	$6.66e-04 \pm 9.51 \ 10^{-5}$	$5.67 \mathrm{e}{-04} \pm 6.93 \; 10^{-5}$	$6.14e-04 \pm 6.44 \ 10^{-5}$	$6.53e-04 \pm 6.28 \ 10^{-5}$
JET100	$4.26e-04 \pm 8.51 \ 10^{-5}$	$4.85e-04 \pm 6.99 \ 10^{-5}$	$5.43e-04 \pm 6.44 \ 10^{-5}$	$5.99e-04 \pm 6.25 \ 10^{-5}$
CMIOS	$E_T < 10$	$\not\!$	$\not\!$	$\not\!$
JET20	$3.06 \ 10^{-3} \pm 6.85 \ 10^{-4}$	$2.43 \ 10^{-3} \pm 5.07 \ 10^{-4}$	$2.16 \ 10^{-3} \pm 4.42 \ 10^{-4}$	$2.17 \ 10^{-3} \pm 4.26 \ 10^{-4}$
JET50	$2.92 \ 10^{-4} \pm 1.31 \ 10^{-4}$	$7.15 \ 10^{-4} \pm 1.60 \ 10^{-4}$	$9.05 \ 10^{-4} \pm 1.60 \ 10^{-4}$	$1.00 \ 10^{-3} \pm 1.59 \ 10^{-4}$
JET70	$1.23 \ 10^{-3} \pm 3.42 \ 10^{-4}$	$1.57 \ 10^{-3} \pm 2.96 \ 10^{-4}$	$1.68 \ 10^{-3} \pm 2.66 \ 10^{-4}$	$2.07 \ 10^{-3} \pm 2.72 \ 10^{-4}$
JET100	$2.38 \ 10^{-3} \pm 4.21 \ 10^{-4}$	$2.47 \ 10^{-3} \pm 3.22 \ 10^{-4}$	$2.98 10^{-3} \pm 3.00 10^{-4}$	$3.41 \ 10^{-3} \pm 2.90 \ 10^{-4}$
CMIOS FIDELE	$\not\!$	$\not\!$	$\not\!$	$E_T < 25$
JET20	$2.18 \ 10^{-3} \pm 7.28 \ 10^{-4}$	$1.89 \ 10^{-3} \pm 5.70 \ 10^{-4}$	$1.79 \ 10^{-3} \pm 5.18 \ 10^{-4}$	$1.83 \ 10^{-3} \pm 5.08 \ 10^{-4}$
JET50	$1.85 \ 10^{-4} \pm 1.31 \ 10^{-4}$	$5.79 \ 10^{-4} \pm 1.83 \ 10^{-4}$	9.40 $10^{-4} \pm 2.10 \ 10^{-4}$	$1.15 \ 10^{-3} \pm 2.22 \ 10^{-4}$
JET70	$1.37 \ 10^{-3} \pm 4.55 \ 10^{-4}$	$1.63 \ 10^{-3} \pm 3.86 \ 10^{-4}$	$1.87 \ 10^{-3} \pm 3.61 \ 10^{-4}$	$2.41 \ 10^{-3} \pm 3.81 \ 10^{-4}$
JET100	$1.81 \ 10^{-3} \pm 4.54 \ 10^{-4}$	$2.00 10^{-3} \pm 3.60 10^{-4}$	$2.94 10^{-3} \pm 3.74 10^{-4}$	$3.42 10^{-3} \pm 3.67 10^{-4}$

Fake Rate Charge Correlations

 \neq Look at events in the W+1j data that can fake the WW+0j signal.

* Consider combinations for which charge correlations can be computed :

* Averaging across all such categories, we find :

- $OS/(OS+SS) = 63.3 \pm 4.9\%$
- * We can then correct our fake rates previously calculated assuming 50%.
- ★ However, only a few categories are affected, since :
 - We have <u>dropped the OS cut</u> for PHX categories.
 - Where possible (i.e. where the fakeable leg is a track object), <u>OS cut was already being</u> <u>applied</u> to fakeable events, thereby including the effect of any charge correlations.
- ★ The net result is an increase of 3% in fake rate estimate.

Luminosities

	Offline	+1.9% correction and $6%$ error
No Silicon (ee only)	199.973	203.8 ± 1.2
Good Silicon (ee only)	166.465	169.6 ± 1.0
No Silicon $(e\mu \text{ and } \mu\mu)$	189.917	193.5 ± 1.2
Good Silicon ($e\mu$ and $\mu\mu$):	158.787	161.8 ± 1.0
	ALALIAN BUILDER AL POLIA	
No Silicon with CMX ($e\mu$ and $\mu\mu$):	172.033	175.3 ± 1.1
Good Silicon with CMX ($e\mu$ and $\mu\mu$):	147.26	150.1 ± 0.9

Data Cut Tables

Category	ID	ISO	Conv+Cosm	Z veto	$\not\!$	$\Delta \phi$	0j	OS
TCE-TCE	4227	3620	3455	402	15	7	4	4
TCE-PHX	4982	4452	4327	338	8	7	4	4
PHX-PHX	73	62	62	10	5	3	0	0
e-e	9282	8134	7844	750	28	17	8	8
TCE-CMUP	30	19	17	17	4	3	1	1
TCE-CMU	7	4	4	4	1	1	0	0
TCE-CMP	11	4	4	4	2	2	1	1
TCE-CMX	24	12	11	11	6	6	2	2
TCE-CMIO	46	16	16	16	3	2	0	0
PHX-CMUP	18	13	13	13	5	5	1	1
PHX-CMU	2	1	1	1	0	0	0	0
PHX-CMP	6	2	2	2	1	1	1	1
PHX-CMX	11	9	9	9	2	1	0	0
PHX-CMIO	23	5	5	5	0	0	0	0
$e-\mu$	178	85	82	82	24	21	6	6
CMUP-CMUP	1014	948	948	121	2	2	1	1
CMUP-CMU	429	405	405	41	1	0	0	0
CMUP-CMP	566	517	517	59	5	5	1	1
CMUP-CMX	1151	1079	1079	114	4	3	1	1
CMUP-CMIO	2076	1939	1939	218	4	4	2	2
CMX-CMX	404	363	363	36	1	1	0	0
CMX-CMU	259	249	249	26	0	0	0	0
CMX-CMP	263	243	243	32	0	0	0	0
CMX-CMIO	911	834	834	78	3	1	1	1
$\mu - \mu$	7073	6577	6577	725	20	16	6	6
TRILEPTON	8	8	8	4	1	1	1	1

Drell–Yan $\mu^+\mu^-$

