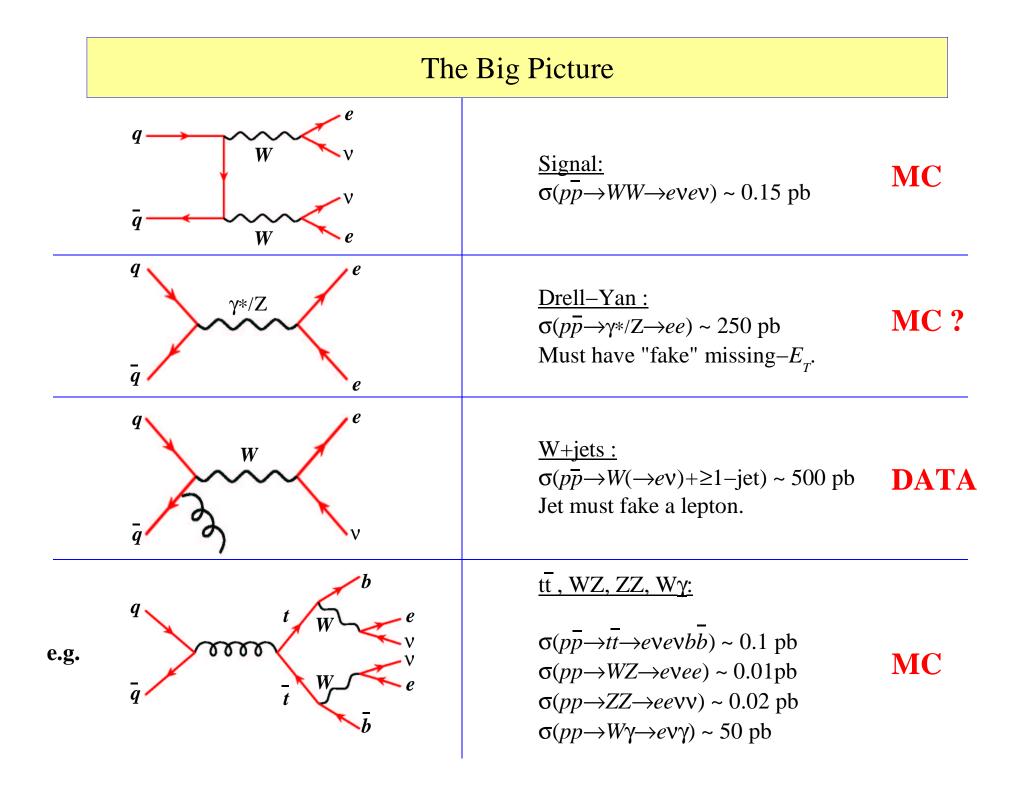
WW \rightarrow lvlv : Final Numbers

S.Cabrera, S.Carron, S.Chuang, J.Deng, A.Goshaw, Y.Huang, M.Kruse, D.McGivern, D.Waters

- Drell–Yan background :
 - updated data-based estimate
 - updated systematic uncertainty
- Fake background :
 - use of full statistics
 - more careful W/Z contamination removal
 - $\bullet P_{T}$ dependence
- Diboson backgrounds :
 - ZZ
 - $W(Z/\gamma^*)$ normalization
- Signal estimates :
 - updated WW yield calculations
 - PDF acceptance systematic

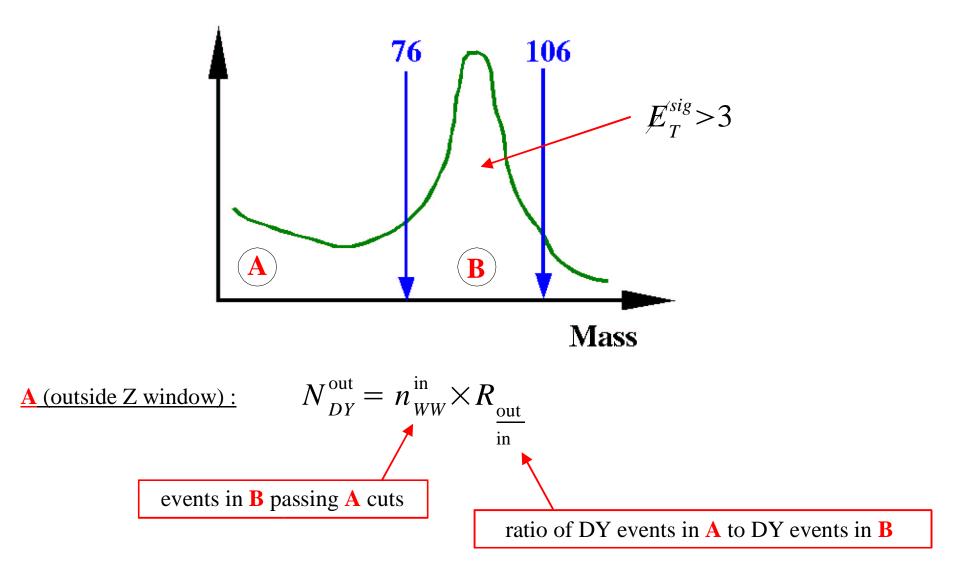

Not covered :

- Updated MET_PEM trigger efficiency
- Updates on heavy flavour background
- Many other minor changes and cross-checks.

See :

CDF-6909

http://www-cdf.fnal.gov/internal/physics/WW



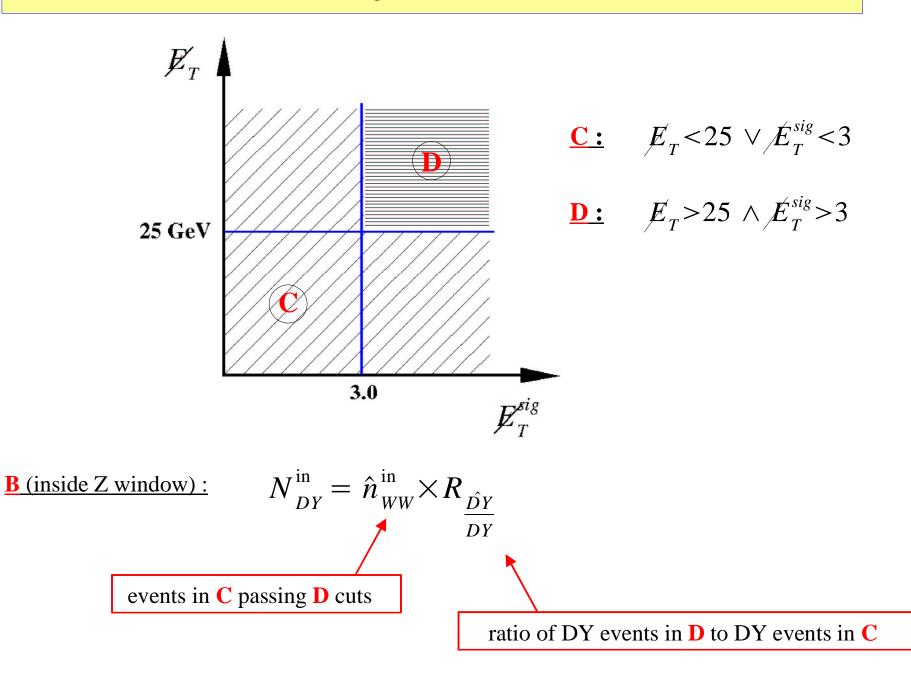
Diboson Backgrounds

SOMETHING HERE ON ZZ AND W/GAMMA* CONCERNS

Drell-Yan Background

Data-based method :

Drell–Yan Background : Outside Z Window


		ee	$\mu\mu$			
	Data	$\mathrm{MC}~(\not\!\!\!E_T>25GeV)$	Data	$\mathrm{MC}~(\not\!\!\!E_T>25GeV)$		
Outside Window	577	242	604	219		
Inside window	5459	471	4934	385		
$R_{rac{out}{in}}$	0.106 ± 0.001	0.51 ± 0.02	0.122 ± 0.001	0.57 ± 0.01		
	ratio vei	ratio very correlated with cuts : take from MC				

Number of events in Z mass window passing WW cuts heavily contaminated :

	WW	$t\bar{t}$	WZ	Fake	$Z \to \tau \tau$	ZZ	$W\gamma$	Total (n_{other}^{in})
ee	0.70	0.007	0.28	0.114	0.012	0.38	0.06	1.55
$\mu\mu$	0.65	0.0	0.28	0.086	0.007	0.39	0.0	1.41

Background Estimate	ee	$\mu\mu$
n_{ww}^{in}	2	1
$(n_{ww}^{in} - n_{other}^{in})$	(2 - 1.55)	(1 - 1.41)
$\left(n_{ww}^{in} - n_{other}^{in}\right) \times R_{\frac{out}{in}}$	$(2-1.55) \times 0.51$	$(1 - 1.41) \times 0.57$
	$= 0.23 \pm 0.61$	$=-0.23\pm0.68$

Drell–Yan Background : Inside Z Window

Drell–Yan Background : Inside Z Window

	ee	$\mu\mu$
Numerator	3	3
Denominator	5456	4931
$R_{rac{\hat{DY}}{DY}} = rac{Numerator - \hat{n}_{other}^{in}}{Denominator}$	$\tfrac{3-2.75}{5456}$	$\tfrac{3-2.26}{4931}$
	$= 4.55 \times 10^{-5} \pm 0.0003$	$= 0.00015 \pm 0.00035$

Numerator is *mainly* non–DY.

	WW	$t\bar{t}$	WZ	Fake	$Z\to\tau\tau$	ZZ	$W\gamma$	Total \hat{n}_{other}^{in}
ee	0.74	0.56	0.59	0.09	0.06	0.47	0.23	2.75
$\mu\mu$	0.65	0.51	0.53	0.06	0.05	0.47	0.0	2.26

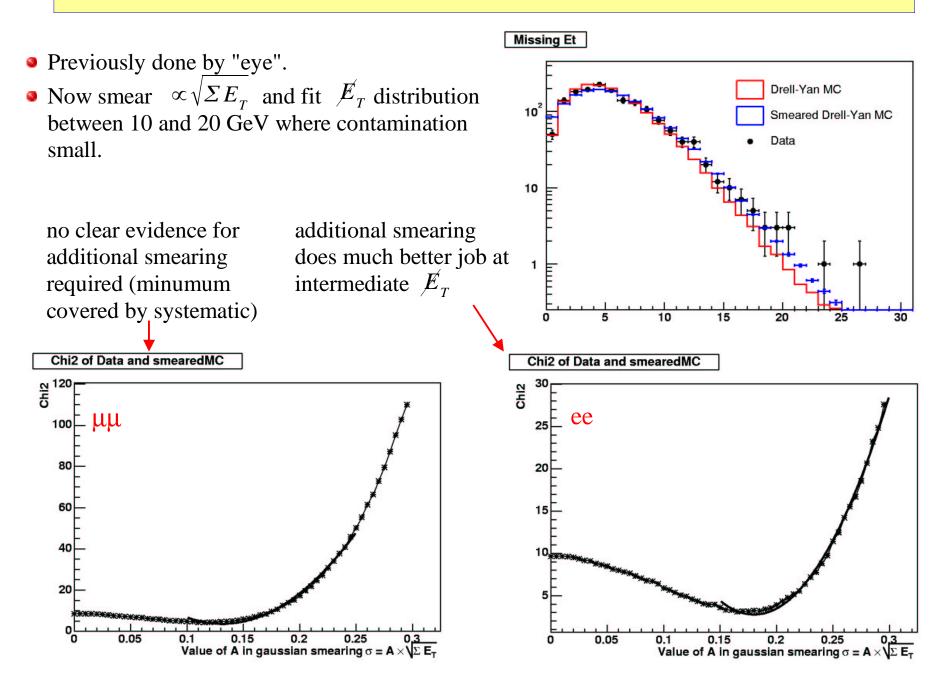
Drell–Yan Background : Inside Z Window

Background Estimate	ee	$\mu\mu$
\hat{n}_{ww}^{in}	3160	3107
$\hat{n}_{ww}^{in} \times R_{\frac{\hat{DY}}{DY}}$	$3160 \times (4.55 \times 10^{-05})$	3107 imes 0.00015
	$= 0.14 \pm 1.00$	0.46 ± 1.09

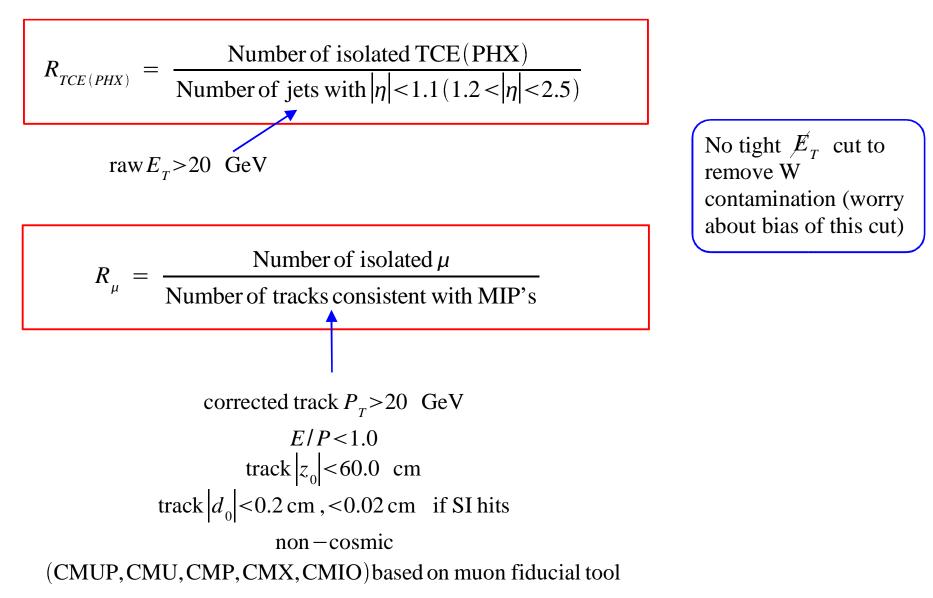
Drell–Yan Background : Summary

Channel	Inside	Outside	Total	MC
ee	0.14 ± 1.00	0.23 ± 0.61	0.37 ± 1.18	$\boldsymbol{0.75\pm0.34}$
$\mu\mu$	0.46 ± 1.09	-0.23 ± 0.68	0.46 ± 1.28	$\boldsymbol{0.61 \pm 0.27}$

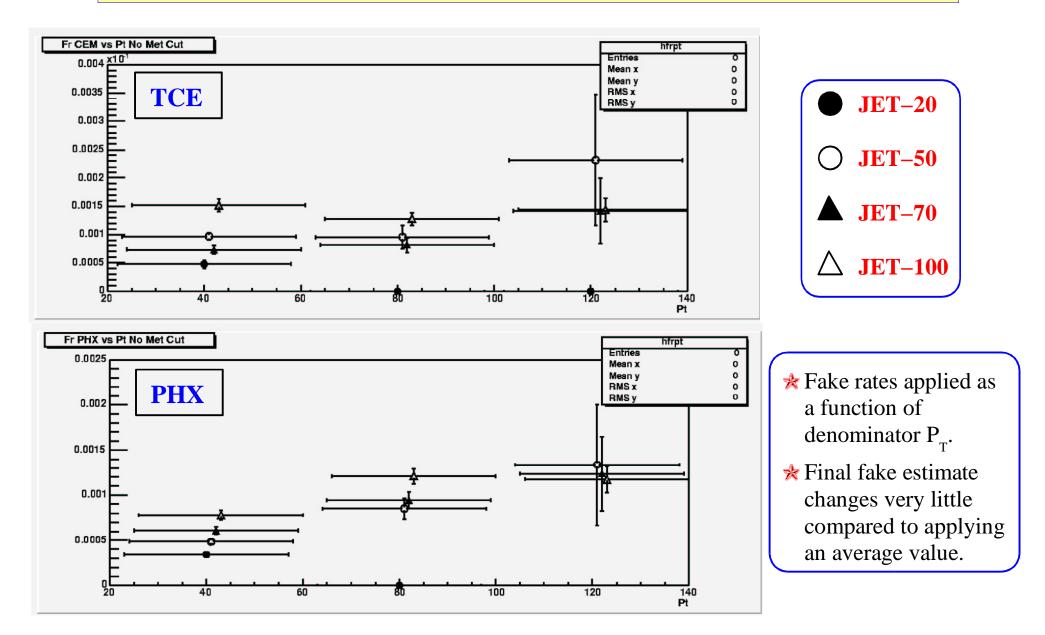
Comments on data cross-check :

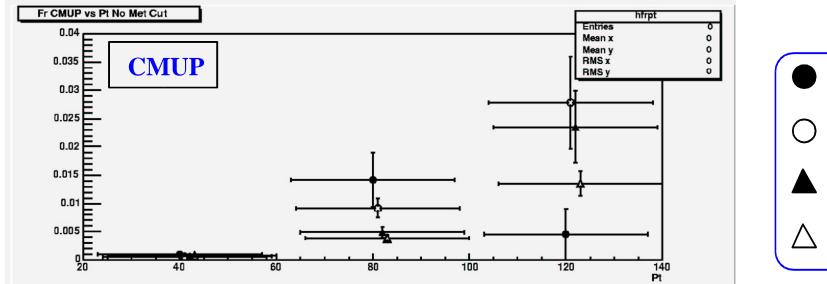

It is not independent of the assumed WW cross-section due to the contamination corrections. Turning off WW in the contamination estimate :

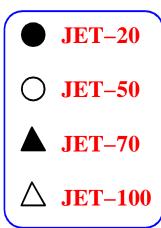
DATA (w/WW)	DATA (wo/WW)
$\boldsymbol{0.37 \pm 1.18}$	1.2 ± 0.3
$\textbf{0.46} \pm \textbf{1.28}$	$\textbf{1.0} \pm \textbf{0.3}$

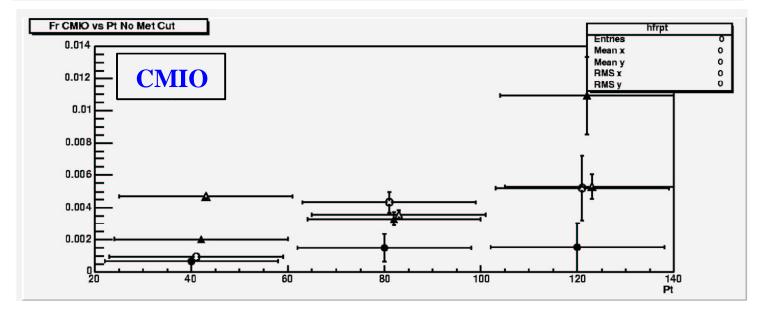

Iterative solution would be close to estimate with WW.

- Still dependent on MC in several ways.
- Considered a consistency check only.

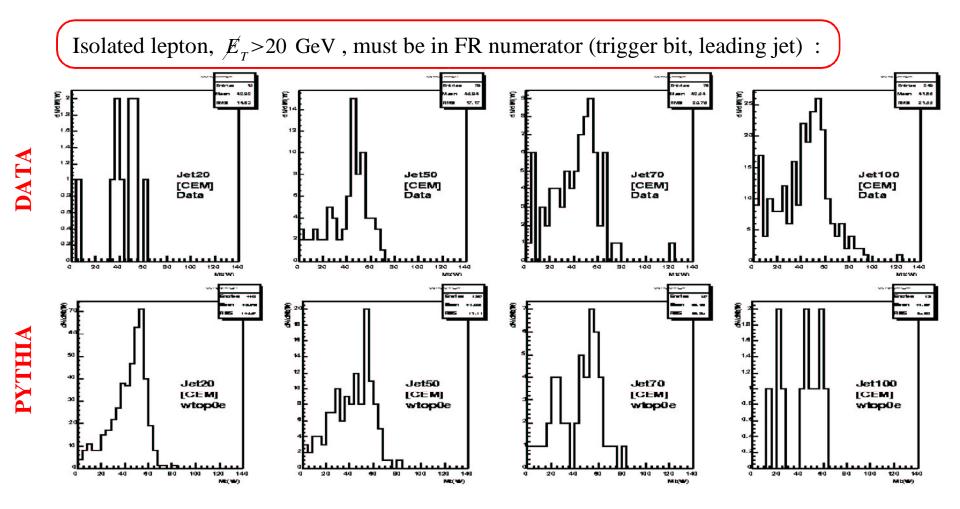

Drell-Yan Systematic


Fakes




Fakes : P_{T} Dependence

Fakes : P_{T} Dependence



Fakes : W Contamination Correction

- Want to remove leptons from W decay from fake ratio numerator.
- Previously done by applying a harsh and potentially biasing cut : $\not E_T < 10 \text{ GeV}$
- New strategy is to select W events in the lepton (signal) sample and directly count how many will have entered the fake ratio numerator.
- Double check using Monte Carlo that the events we remove are "W-like".

P_T	$20 < P_T < 60$	$60 < P_T < 100$	$100 < P_T < 140$
JET20 CEM	0.00004 ± 0.00001	$0. \pm 0.$	$0. \pm 0.$
JET50 CEM	0.00007 ± 0.00001	0.00006 ± 0.00002	0.00006 ± 0.00006
JET70 CEM	0.00003 ± 0.00001	0.00004 ± 0.00001	0.00010 ± 0.00005
JET100 CEM	0.00005 ± 0.00001	0.00004 ± 0.00001	0.00007 ± 0.00001
CEM	0.00005 ± 0.00002	0.00003 ± 0.00003	0.00006 ± 0.00005
JET20 PHX	0.00033 ± 0.00003	$0. \pm 0.$	0.00658 ± 0.00660
JET50 PHX	0.00044 ± 0.00002	0.00068 ± 0.00010	0.00102 ± 0.00058
JET70 PHX	0.00043 ± 0.00004	0.00084 ± 0.00008	0.00111 ± 0.00039
JET100 PHX	0.00036 ± 0.00004	0.00085 ± 0.00007	0.00100 ± 0.00014
PHX	0.00039 ± 0.00005	0.00059 ± 0.00042	0.00243 ± 0.00279
JET20 CMUP	0.00081 ± 0.00015	0.01136 ± 0.00426	0.00452 ± 0.00454
JET50 CMUP	0.00021 ± 0.00005	0.00375 ± 0.00115	0.01944 ± 0.00678
JET70 CMUP	0.00031 ± 0.00007	0.00223 ± 0.00066	0.00983 ± 0.00408
JET100 CMUP	0.00036 ± 0.00007	0.00118 ± 0.00030	0.00743 ± 0.00159
CMUP	0.00042 ± 0.00030	0.00463 ± 0.00509	0.01031 ± 0.00746
JET20 CMU	0.00046 ± 0.00022	$0. \pm 0.$	$0. \pm 0.$
JET50 CMU	0.00024 ± 0.00010	0.00051 ± 0.00082	$0. \pm 0.$
JET70 CMU	0.00015 ± 0.00010	0.00288 ± 0.00141	$0. \pm 0. (*)$
JET100 CMU	0.00023 ± 0.00010	0.00001 ± 0.00005	$0. \pm 0. (*)$
CMU	0.00027 ± 0.00016	0.00085 ± 0.00144	$0. \pm 0.$
JET20 CMP	0.00117 ± 0.00030	$0. \pm 0.$	$0. \pm 0.$
JET50 CMP	0.00043 ± 0.00010	0.00063 ± 0.00073	0.02415 ± 0.01412
JET70 CMP	0.00028 ± 0.00009	0.00101 ± 0.00070	$0. \pm 0. (*)$
JET100 CMP	0.00025 ± 0.00007	0.00032 ± 0.00022	0.01272 ± 0.00342
CMP	0.00053 ± 0.00046	0.00049 ± 0.00050	0.00922 ± 0.01208
JET20 CMX	0.00065 ± 0.00019	0.00056 ± 0.00130	$0. \pm 0.$
JET50 CMX	0.00020 ± 0.00006	0.00264 ± 0.00123	$0. \pm 0. (*)$
JET70 CMX	0.00028 ± 0.00008	0.00225 ± 0.00085	0.00140 ± 0.00206
JET100 CMX	0.00034 ± 0.00008	0.00024 ± 0.00017	0.00350 ± 0.00144
CMX	0.00037 ± 0.00022	0.00142 ± 0.00120	0.00123 ± 0.00175
JET20 CMIO	0.00062 ± 0.00007	0.00086 ± 0.00066	0.00152 ± 0.00152
JET50 CMIO	0.00088 ± 0.00005	0.00340 ± 0.00057	0.00350 ± 0.00162
JET70 CMIO	0.00194 ± 0.00009	0.00281 ± 0.00040	0.00822 ± 0.00208
JET100 CMIO	0.00461 ± 0.00012	0.00308 ± 0.00025	0.00396 ± 0.00065
CMIO	0.00201 ± 0.00199	0.00254 ± 0.00127	0.00430 ± 0.00335
JET20 CMIOFIDELE	0.00046 ± 0.00008	0.00099 ± 0.00084	0.00214 ± 0.00214
JET50 CMIOFIDELE	0.00099 ± 0.00007	0.00393 ± 0.00079	0.00557 ± 0.00251
JET70 CMIOFIDELE	0.00263 ± 0.00014	0.00364 ± 0.00057	0.00882 ± 0.00270
JET100 CMIOFIDELE	0.00610 ± 0.00018	0.00410 ± 0.00037	0.00490 ± 0.00089
CMIOFIDELE	0.00255 ± 0.00282	0.00316 ± 0.00155	0.00536 ± 0.00334

Fakes

- ★ Full statistics in the jet samples used to compute fake ratios.
- ★ Same run range as signal samples.
- ★ Far fewer zero bins (consistent with statistics).
- ★ CMUP/CMX fake rates very similar.
- ☆ Same systematics considered as before.
- ★ Blessed fake number :

 $\boldsymbol{1.08 \pm 0.49}$

★ Updated number :

 $\textbf{1.34} \pm \textbf{0.66}$

WW Acceptance Systematics

- ★ Largely unchanged.
- ☆ Additional cross-check of 0-jet efficiency scale factor. It's not a strong function of selection cuts for the signal covered by existing 6% error.
- ★ Revisit Pythia/Herwig difference, taking properly into account different assumptions for BR(W→lv) built into each generator – slightly reduced systematic of 4%.
- ***** New systematic due to PDF variation -1%:

Cuts	ee events	Acceptance	Uncertainty Range (%)
-	113.48	-	
$ \eta < 1$	40.48	0.36	(-1.0, 1.2)
$P_T > 20$	31.05	0.77	(-0.4, 0.4)
$\not\!$	21.84	0.70	(-0.3, 0.3)
overall	21.84	0.19	(-1.0, 1.1)

 Apply cuts (at generator level) on all 40 CTEQ6 PDF sets. Monitor acceptance range.

⋪

- Conservative since we have wider acceptance than $|\eta| < 1$

★ Combined acceptance uncertainty 10% (unchanged).

WW : Summary of Expectations

		CDF Run II	[Preliminary]
Source	ee	$\mu\mu$	$e\mu$	ll	
Drell-Yan e^+e^-	0.75 ± 0.34	0.00 ± 0.00	0.052 ± 0.043	0.80 ± 0.34	
Drell-Yan $\mu^+\mu^-$	0.00 ± 0.00	0.61 ± 0.27	0.28 ± 0.13	0.89 ± 0.30	← updated
Drell-Yan $\tau^+\tau^-$	0.047 ± 0.021	0.046 ± 0.020	0.099 ± 0.041	0.19 ± 0.05	
WZ	0.29 ± 0.03	0.33 ± 0.03	0.15 ± 0.02	0.76 ± 0.06	
ZZ	0.35 ± 0.04	0.34 ± 0.04	0.011 ± 0.002	0.70 ± 0.07	⇐ new
$W+\gamma$	0.48 ± 0.13	0.00 ± 0.00	0.57 ± 0.13	1.06 ± 0.19	
$t\bar{t}$	0.021 ± 0.011	0.012 ± 0.007	0.046 ± 0.018	0.078 ± 0.023	
Fake	0.52 ± 0.19	0.17 ± 0.16	0.65 ± 0.37	1.34 ± 0.66	⇐ updated
Total Background	2.46 ± 0.42	1.51 ± 0.33	1.86 ± 0.43	5.82 ± 0.86	
$WW \rightarrow \text{dileptons}$	2.61 ± 0.31	2.48 ± 0.29	5.11 ± 0.60	10.20 ± 1.19	$ \leftarrow \text{new } \sigma(WW) $
Total Expectation	5.07 ± 0.56	3.99 ± 0.46	6.97 ± 0.76	16.0 ± 1.6]
Run 2 Data	6	6	5	17]

$$\sigma_{meas}^{WW} = \frac{(N_{obs} - N_{bk})}{\epsilon_{tot} \times \mathcal{L}} = \frac{(N_{obs} - N_{bk})}{\epsilon_{lep} \times [3 \times BR(W \to l\nu)]^2 \times \mathcal{L}}$$
• Previously using 0.11043 (Campbell & Ellis LO EWK
• Switch to using Standard Model value 0.1080

<u>Updated :</u>

 σ_{meas}^{WW} = 13.6^{+5.8}_{-5.1} (stat) ± 1.7 (syst) ± 0.8 (lum) pb

Blessed :

 $\sigma^{WW}_{meas}({
m blessed}) = 14.3^{+5.6}_{-4.9} ({
m stat}) \pm 1.6 ({
m syst}) \pm 0.9 ({
m lum}) {
m pb}$

Backup Slides

WW Cross-Section X-Checks

<u>Using old value for BR(W \rightarrow lv)=0.11043 :</u>

 $\sigma^{WW}_{meas}({
m old BR})~=~13.0^{+5.6}_{-4.9}~({
m stat})~\pm~1.6~({
m syst})~\pm~0.8~({
m lum})~{
m pb}$

<u>Using data-based DY background numbers :</u>

 $\sigma_{meas}^{WW}({
m cross check}) = 14.2^{+5.8}_{-5.1}~{
m (stat)} \pm 2.7~{
m (syst)} \pm 0.9~{
m (lum)}$ pb

WW : Grand Summary Table Blessed Winter'04

	CDF Run II Preliminary, 200 pb^{-1}						
Source	ee	μμ	еµ	ll			
Drell-Yan e^+e^-	0.69 ± 0.31	0.00 ± 0.00	0.048 ± 0.039	0.74 ± 0.31			
Drell-Yan $\mu^+\mu^-$	0.00 ± 0.00	0.61 ± 0.24	0.28 ± 0.12	0.89 ± 0.27			
Drell-Yan $\tau^+\tau^-$	0.047 ± 0.018	0.046 ± 0.018	0.098 ± 0.037	0.19 ± 0.05			
WZ	0.29 ± 0.03	0.32 ± 0.03	0.15 ± 0.02	0.76 ± 0.06			
$W\gamma$	0.48 ± 0.13	0.00 ± 0.00	0.57 ± 0.13	1.05 ± 0.19			
tt	0.013 ± 0.008	0.008 ± 0.005	0.033 ± 0.014	0.053 ± 0.017			
Fake	0.45 ± 0.20	0.15 ± 0.13	0.48 ± 0.23	1.08 ± 0.49			
Total Background	1.97 ± 0.40	1.14 ± 0.28	1.66 ± 0.31	4.77 ± 0.70			
$WW \rightarrow \text{dileptons}$	2.90 ± 0.34	2.75 ± 0.32	5.69 ± 0.66	11.3 ± 1.3			
Total Expectation	4.87 ± 0.55	3.89 ± 0.45	7.35 ± 0.76	16.1 ± 1.6			
Run 2 Data	6	6	5	17			

WW : Updated Plots

WILL PUT UPDATED PLOTS HERE ...