ZZ Cross–Section

Susana, Al, Yimei, Jianrong, Beate, Dave 25th June 2004

<u>Question</u> :

Have we been normalising our ZZ background sample correctly ?

★1.43 pb taken from Campbell & Ellis 1999

*Pythia with certain kinematic cuts and settings used to generate the events.

Issues :

 \neq Z and γ^* being correctly combined ?

★BR's are a function of mass [BR(Z→ee)] != [BR(γ→ee)].

☆Full–width versus zero–width ?

★Different renormalisation scales ?

*Best k-factors determination ?

PYTHIA L	0 :	MCFM	LO :	MCFM/I	PYTHIA :	
m2.5 2.004 m5.0 1.489 m10 1.183 m20 1.080 m30 1.041 m40 1.035 m50 1.025 m60 1.006 m70 1.005 m80 0.966	pb pb pb pb pb pb pb	34.1 5.99 2.15 1.32 1.14 1.07 1.04 1.01 0.988 0.952	pb pb pb pb pb pb pb	17.0 4.02 1.82 1.22 1.10 1.03 1.01 1.00 0.98 0.99	[* 10%	difference]

MCFM >> Pythia for small mass cuts

Leptonic ZZ cross-section comparison :

★ Run MCFM and Pythia in $ZZ \rightarrow ee\mu\mu$ mode :

			constant BR		varying BR	
PYTHIA L	0 :	MCFM(e-m) :	MCFM :	PYTHIA (e-m)) : PYTHIA :	MCFM/PYTHIA :
			(e-m/LO)		(e-m/L0)	(leptonic)
m5.0 1.489 m10 1.183 m20 1 080	pb pb pb	0.0138 pb 0.00485 pb	0.00230 0.00226	0.0106 pb 0.00465 pb 0.00310 pb	0.00712	1.30 1.04
m30 1.041 m40 1.035	po pb pb	0.00260 pb	0.00228	0.00267 pb 0.00259 pb	0.00256	1.03
m50 1.025 m60 1 006	pb nh	0.00237 pb	0.00228	0.00243 pb	0.00237	1.03
m80 0.966	pb	0.00218 pb	0.00229	0.00220 pb		0.96

Conclusions :

- * Only Pythia has mass dependence of BR's.
- ★ MCFM looks like an overestimate due to Z–only BR's being used.
- * Prefer to use Pythia to drive cross-section estimate.
- ★ Confirmed with analysis of $ZZ \rightarrow eevv$

ratio of leptonic cross sections in much better agreement down to 5 GeV or so

effective BR from Pythia for
$$M_{Z\gamma\gamma} > 30 \text{ GeV}$$

 $\sigma (ZZ; Q^2 = \hat{s})_{MCFM}^{LO} = \frac{\sigma (ZZ; Q^2 = \hat{s})_{PYTHIA}^{LO} \longrightarrow 0.94 \text{ pb}}{\sigma (ZZ \to ee \ \mu \ \mu; Q^2 = \hat{s})_{PYTHIA}^{LO} \longrightarrow 2.459 \text{ fb}}$
 $\times \sigma (ZZ \to ee \ \mu \ \mu; Q^2 = 4M_Z^2)_{MCFM}^{LO} \longrightarrow 2.60 \text{ fb}}$
 $\times \frac{\sigma (ZZ; Q^2 = \hat{s})_{MCFM}^{LO}}{\sigma (ZZ; Q^2 = 4M_Z^2)_{MCFM}^{LO}} \longrightarrow 1.10/1.14 \text{ (JMC)}}$
 \downarrow
adjustment for different QCD scales
 $\sigma (ZZ; Q^2 = \hat{s})_{MCFM}^{LO} = 0.96 \text{ pb}}$
 $\sigma (ZZ; Q^2 = \hat{s})_{PYTHIA}^{LO} = 0.94 \text{ pb}}$
 $\star \text{ for } M_{Z\gamma\gamma} > 30 \text{ GeV}}$
 $\star \text{ agreement to within 2\%}$

<u>k-factors</u>: Use MCFM with 30 GeV cut ; CTEQ5L/M ; $Q^2 = 4M_z^2$:

 Full-width :

 NLO/LO = 1.585/1.143 = 1.386

 Zero-width :

 NLO/LO = 1.389/0.989 = 1.404

Best estimate of ZZ cross-section to normalise Pythia background sample :

 $\sigma(ZZ; Q^2 = \hat{s})_{PYTHIA}^{LO} \times 1.386 = 1.30 \text{ pb}$

<u>To do :</u>

★ Need to pass this by John Campbell/Keith Ellis

 \neq John will provide code for using Q2 = shat in MCFM for easier comparison with Pythia

- ★ Need to look again at WZ :
 - Pythia description of this process does not include γ^* component.
 - Uli Baur's concern that nearly on-shell γ^* component could produce a large background.