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Classical Ideas

Waves :

Collective motion in some medium (electromagnetic waves ?)

Transverse or longitudinal.

Travelling or standing.

Wavelength (!), frequency (f ) and speed (v) related by :

Amplitude (A) : maximum displacement.

Intensity (I ) : power delivered by the wave (per unit area).

Distance or Time

Displacement
Amplitude

Wavelength or Period

(like the energy of a simple

  harmonic oscillator)

2

! 

v = " # f

! 

I" A
2



Classical Ideas

Particles :

Point-like : well defined location.

Well defined mass, velocity, momentum and energy. At non-relativistic speeds

(much smaller than the speed of light) :

Momentum Kinetic Energy

3

[ ]"

! 

m

! 

v

! 

p = m " v

! 

E =
1

2
mv

2

! 

E =
p
2

2m

Wave Properties

(I) Refraction
Change of velocity of wave at

boundaries between different media.

(II) Diffraction
Behaviour of waves through gaps

or around obstacles/boundaries.

Snell's Law :

Refractive index :

Quantitative formulation : Huygen's

principle.

Effect is most striking when :
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Wave Properties

Constructive Interference Destructive Interference

(III) Superposition

Displacements (or amplitudes) add, not intensities
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Wave Properties

Superposition of waves from different sources gives rise to interference patterns :

Bright fringe (constructive interference).

Dark fringe (destructive interference).

Displacements add :

Resulting amplitude : phase difference
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Electromagnetic Waves

In a vacuum, electromagnetic waves consist of

perpendicular oscillations of electric (E) and

magnetic (B) fields.

Fundamental wave equation (for example, for

the electric component) :

 c = speed of light

The solution is :

or

where :

You can verify this by direct substitution :

"

"

Substitute into the original equation

to find                     .
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Problems with the Wave Theory of Light

At the end of the 19th century, physics looked like it was wrapped up :

All that was left to do was to apply these theories to explain the detailed properties

and interactions of matter.

However, difficulties emerged in the attempt to explain several phenomena :

"Ultraviolet catastrophe" : the spectrum of light emitted by bodies at a given

temperature :

"Photoelectric Effect" : the flux and energy spectrum of electrons emitted from

metals due to incident electromagnetic radiation.

Electromagnetism :

Maxwell's Equations

Mechanics :

Newton's Laws

prediction of

classical physics
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The Photoelectric Effect (I)

incident 

light ejected electron, E
max

metal

Observations :

                                   where E
max 

is the maximum electron kinetic energy, f is the

frequency of the incident light and # is a constant for a given material.

E
max 

is independent of the intensity of the incident light. Increasing the intensity

only liberates more electrons but with the same energies.

These observations are impossible to account for in the classical theory of the

interaction between radiation and matter.

E
max

#

 f
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The Photoelectric Effect (II)

These facts are easily accounted for if we imagine the energy carried by the incident

electromagnetic radiation arriving in "clumps" $ "quanta" :

E
n
er

g
y

Free electrons

Electrons bound in metal 

Incident energy
Free electron has K.E. 

h = Planck's constant = 6.5 %10-34  Js

Schematically :

or (since              for objects travelling at the speed of light)
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The Double Slit Experiment (I)

Coherent light source

(for example, provided

by a laser). Plane wave

diffracts at narrow slits.

Screen

Interference fringes show

that light is behaving as a

wave through the apparatus.

Richard Feynman : "...We choose to examine a phenomenon which is impossible to

explain, absolutely impossible, to explain in any classical way, and which has in it the heart

of quantum mechanics. In reality, it contains the only mystery."

Feynman Lectures, Vol 3.

The photo-electric effect

shows that light arrives as a

particle.

"  Paradox ?
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The Double Slit Experiment (II)

Eliminating              from         and       :

If                then the path difference  p  is given by :

A bright fringe corresponds to the path difference being equal to an integer number of

wavelengths, in order to give rise to constructive interference :

1

2

1 2

x

intensity

(for small &)

12

! 

d sin" = n#            (n = 0,±1,±2,...)

! 

x = Lsin"

! 

sin"

! 

x
BRIGHT

=
Ln"

d

! 

L"

d

! 

L >> d

! 

p = d sin"



The Double Slit Experiment (III)

As far as we know quantum mechanics is truly random. The probabilities are not just a

statement of our ignorance about the true inner workings of quantum mechanical systems.

The interference pattern emerges even if the average number of light quanta in the apparatus

at any given time is  < 1.

Photons arrive at random.

The probability is proportional

to the intensity :

Classical Quantum

Intensity Probability

'

'

intensity

x (in units of               )
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The Double Slit Experiment (IV)

Try the experiment with something more "particle-like" : electrons.

An interference pattern also emerges with both slits open.

If detectors are installed to try and figure out which slit each electron passes through, the

interference pattern disappears !
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Wave Particle Duality (I)

We have arrived at a picture in which light and even electrons appears to travel as

waves, yet arrive as a particles.

De Broglie made the amazing suggestion that all objects display both particle

and wave-like properties, as characterised by the following equations :

where  !  and  f  are the De Broglie wavelength and frequency.

De Broglie equations (*)

For example, take an electron with an energy of 1 eV :
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Wave Particle Duality (II)

Light : conventional optics & X-ray diffraction

Electrons : electron diffraction from crystals & nuclei

Neutrons : neutron diffraction (atomic structure)

Atoms : atom interferometry

Simple Molecules

Complex Molecules

DNA

Virus

Single Cell

...

in
creasin

g
 m

ass

Limit of current

experiments

De Broglie's hypothesis has been widely confirmed by experiments at many

different wavelength scales.
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Example : C
60 

Molecules

1 nm

Arndt et al., Nature 401, 1999

Laser scans across the

interference pattern,

ionising the C
60

 molecules

which are then detected

downstream.

Source of C
60

 molecules at

a temperature of between

900 and 1,000 K.

1.25 m 17

Diffraction Grating

The principle is very similar to the double slit experiment. Multiple slits provide

much brighter fringes, since the amplitudes from  N  slits multiply the intensity

from a single slit :

Transmission grating.

Reflection gratings are

also possible.

I
max

= N
2
I
0

where          is the maximum intensity from a single slit.I
0

A bright fringe is formed when this

wavefront is comprised of rays that are

exactly in phase :

where

"First order"

maximum

"Second order"

maximum
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First order maxima clearly visible

Width of the beam without diffraction.

Example : C
60 

Molecules

Estimating the wavelength from the data :

Position of first order peak ( 25 µm.
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100 nm slit spacing 
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     sin" #
25 $10

%6

1.25
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     & = d sin"     (n =1)

' & =100 $10%9 $ 2 $10%5 = 2 pm

Example : C
60 

Molecules

Estimating the De Broglie wavelength :

"

Agreement with the data shows that the C
60

molecules

are behaving quantum mechanically as single bodies.
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Application : X-ray Diffraction
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X-ray wavelengths (0.1 - 1.0 nm) are

appropriate for the investigation of

molecular structures.

e.g. DNA :

Application : Neutron Diffraction

De Broglie wavelength comparable to typical inter-atomic distances.

Neutrons have little electromagnetic interaction with materials.

Each nucleus can be thought of as a scattering centre (similar to each slit in a

transmission grating).

e.g. determination of crystal structures :

Bright fringe when

incident and outgoing

angles satisfy :

e.g. crystal lattice
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Measurement Limits : Example I

Goal : try to measure the position and momentum of photons of light .

One way to measure the location  of a photon is to require that it pass through a single slit :

Uncertainty in x-location of photon :

But we know that as a is decreased, diffraction

effects will increase :

&

intensity

From the position of the first minimum :

"

De Broglie : "
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Measurement Limits : Example I
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Well defined position.

Poorly defined momentum.

Well defined momentum.

Poorly defined position.

Measure the position of a particle using a single photon of light.

Bigger lens means smaller resolution (optics) "

Photon enters lens at unknown angle about the

microscope axis. Imparts recoil momentum on particle "

All other experiments yield the same bound.

Cannot measure both position and momentum

simultaneously to arbitrary precision.

Measurement Limits : Example II

light scatters off particle

2626
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Uncertainty Principle (I)

It turns out that we can never do better than dictated by the uncertainty principle :
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Uncertainty Principle (II)

Formally, the theory of quantum mechanics predicts many uncertainty relations between

different pairs of observables.

Another common uncertainty relation is between measurements of energy and time :

28

The uncertainty relations are rigorous results in quantum theory if )a and )b are defined

as the root-mean-square deviations of the observables a and b.
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Summary (I)

All objects display both wave and particle properties

Principle of complementarity.

The De Broglie equation gives the relationship between momentum and

wavelength :

Diffraction effects are most noticeable when the De Broglie wavelength is similar

to the size of the gap or obstacle $  probing the structure of matter.

Quantum mechanics is intrinsically probabilistic. Classical waves are replaced by

"probability waves", usually denoted by * . Classical intensities, obtained by

squaring the amplitudes, become quantum mechanical probabilities :

* is generally complex
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Summary (II)

Probability waves add like classical waves :

Bright fringes due to constructive interference correspond to path differences for

coherent sources equal to a whole number of wavelengths. This is the basis for

most of our experiments and calculations.

Quantum mechanical description of interference patterns : bright fringes

correspond to regions of high probability for the arrival of quanta (e.g. photons).

Dark fringes correspond to regions of low probability. With very large numbers

of quanta, the classical interference pattern is built up ("correspondence

principle").

Simultaneous quantum mechanical measurements are limited in their precision by

the uncertainty principle :
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Next Lecture

Examine some of the properties of quantum mechanical probability waves.

Look at the Schrödinger equation, governing the behaviour of these probability

waves :

Particle in a box.

Quantisation of energy.

More complicated example : the hydrogen atom.

Quantum mechanical view of fields and forces and interactions between

elementary particles :

Range of forces.

Feynman diagrams.
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Exercises

1) The size of the atomic nucleus is of order 10-14 m. High energy electrons used to

probe the size and shape of atomic nuclei need to have a De Broglie wavelength

of similar size.

i. Use the formula                   to estimate the momentum of the electrons.

ii. How does the kinetic energy of the electrons compare to their rest energy ?

[you might need to wait until after the relativity lecture to answer this]

2) What advantages might neutrons have over other particles as probes of the

structure of matter ? What disadvantages might they have ?

3) The size of the hydrogen atom is approximately  0.53 % 10-10 m. You can use

this as an estimate of the uncertainty on the position of the electron orbiting the

nucleus. Then use the uncertainty relation in the form                            to

calculate the typical linear momentum of the electron in the hydrogen atom.

[ You will find it easier to read the appendix on units and then use

                              . You should first calculate the quantity

which you will need in the next part of the question. ]
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Exercises

4) Classically, the energy of the electron in the hydrogen atom would be given by

the combination of kinetic energy and potential energy :

    Use the momentum calculated in (3), together with the given size of the

hydrogen atom, to estimate the ionisation energy of hydrogen. How accurate is

this estimate ?

[ You will find it easier to re-write the first term above as                       and also use

the following :

]
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Energy : eV

Electron Volt = energy acquired by an electron as it falls through a potential

difference of 1 Volt = 1.6 % 10-19 Joules.

1 keV = 1000 eV = 103  eV.

1 MeV = 1000 keV = 106  eV.

1 GeV = 1000 MeV = 109 eV.

Velocity : c

c = speed of light = 3 % 108 m/s

Momentum : eV/c

1 eV/c =  5.3 % 10-28 kg m/s.

Mass : eV/c2

1 eV/c2 = 1.8 % 10-36 kg.
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Appendix : Units

Why are these useful ?

Mass of the proton = 938 MeV/c2 ( 1 GeV/c2

E = mc2 : if the mass of the proton is

1 GeV/c2, it takes an energy of 1 GeV to

create a proton.

E = pc  (for photons and highly relativistic

particles) : if a particle is moving close to the

speed of light, its momentum in units of

(GeV/c) is numerically similar to its energy in

units of (GeV/c2)



An extremely useful combination of constants is :

1 fm = 10-15  m

We've already seen Planck's constant :

Occasionally equations will appear that do not seem to be dimensionally

consistent. They can always be made consistent by inserting combinations

of       and  c.
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Appendix : Units
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Appendix : Complex Numbers

Imaginary number :

Complex number :

Real and Imaginary parts :

Some properties :

             if and only if

             if and only if

 addition and subtraction :

magnitude of a complex number :

means etc.

" similar to Cartesian vector
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Appendix : Complex Numbers

"

This provides a simple pictorial

representation of certain

complex number operations :

"

A very useful complex number

is :

  Both real and imaginary parts

describe SHM with angular

frequency +. Waves.

Proof :

Real axis

Imaginary axis

Argand diagram

0
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