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Review of Previous Lecture

Wave-particle duality : all objects display both wave and particle properties

The De Broglie equation relates wave and particle properties :

The Uncertainty Principle places fundamental limits on our measurements :

We want to look at the equations governing these quantum mechanical

probability waves.

Quantum mechanical waves are "probability waves" :
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Single Particle Wavefunctions

Probability for the particle to be found in the small interval !x is :

Given that the probability to find the particle anywhere must be exactly 1, we

have the condition :

Wavefunction

normalisation

In 1-dimension :
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Schrödinger Equation (in 6 easy steps)
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1) Consider the

following simple

wavefunction for

a particle :

2) Since  $(x)  extends across all space (x), it provides

no information about the position of the particle.

3) Therefore, by the uncertainty principle, it described

a particle of precisely known momentum.

4) For particles of known momentum :
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Time-independent

Schrödinger equation.
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6) Multiply by coskx and derivatives :
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De Broglie :  p = h /" = hk



Schrödinger Equation

A lot of quantum mechanics consists in simply solving this equation for different

potentials V :

Complicated crystal lattice

Simple harmonic oscillator

Coulomb potential : atoms

Solid state physics

Potential :                                   Physical significance :
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Particle in a Box

We're going to start with something much simpler  - a particle in a one

dimensional box. The box is represented by an infinite potential well.

0 L

x

V (potential energy)

V = 0

V = % V = %

Wavefunction must be 0 in these regions,

otherwise there would be a finite probability

to find the particle with infinite energy.
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Particle in a Box

For the region   0  &  x  &  L   :

'

Since                                         this leaves :

Normalisation factor

1

A discrete set of allowed energy

levels : quantisation of energy.

1Substituting in          gives :
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Particle in a Box
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Particle in a Box

x/L

As n increases, the probability distribution approaches the classical expectation :

uniformly distributed across the width of the box '  correspondence principle.
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Particle in a Box

Lowest energy state (ground state) is

not zero. This is a common feature of

quantum mechanical systems that is

not generally the case classically.

Energy Level Diagrams :

Represent allowed energy levels ("energy

eigenvalues").

Labelled by quantum numbers (in this case

just n).

Interactions can be represented as

transitions between energy states.

Similar diagrams for other observables, for

example angular momentum.
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Time Dependence

x/L

Particle in a box : n = 1

Animation 11
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Time Dependence

Particle in a box :

x/LAnimation

n = 2
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Quantum Superposition

The wavefunction must still be correctly normalised to give unit probability :

Note : to show that this is the correct way to normalise the combined wavefunction, you will need to know

that when both wavefunctions are real :

This is fairly easy to show for the wavefunctions describing a particle in a box that we have already seen.
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If          and          are both solutions to the Schrödinger equation, then so is :
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does a particle described by        have ?

It does not have a well defined energy.

An energy measurement could yield  E
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Quantum Superposition

The average energy obtained in an energy measurement is still well defined :
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One could also define the spread or standard deviation of a series of energy

measurements on the same state       .

This is how one formally derives the quantum mechanical uncertainty relations.
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Quantum Superposition

Particle in a box :

Animation
x/L

15

  

! 

h =  m =  L =  1

! 

" =
1

2
("

1
+"

2
)

n = 1

n = 2

n = 3

0

E

  

! 

E =
h
2
"
2
n
2

2mL
2

Quantum Superposition

Particle in a box :

Animation
x/L
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Quantum Superposition

Particle in a box :

Animation
x/L
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Quantum Superposition

Particle in a box :

Animation x/L

Motion begins to look

classical.

Time averaged

probability is uniform in

x, as would be expected

for a classical particle

rattling around in a box.
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Schrödinger’s Cat
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We know that quantum superpositions exist on microscopic scales since we observe

the resulting interference effects.

Devise a scheme to transfer this microscopic superposition into a macroscopic one :

Acknowledgement : Ard Louis

Schrödinger’s Cat
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The Hydrogen Atom

Classical electromagnetism does not predict a stable atom :

Electron suffers centripetal acceleration and

radiates energy in the form of electromagnetic

waves.

Eventually the electron would spiral into the

nucleus.

In general, quantum mechanical systems do not have a ground state

corresponding to the classical energy minimum (e.g. particle in a box).

In the case of the hydrogen atom, the quantum mechanical ground state

corresponds to an electron at a radius of  :

Since there are no lower energy states to occupy, the electron cannot lose more

energy through radiation  '  the hydrogen atom is stable !
21! 
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m     (Bohr radius)

The Hydrogen Atom

The quantum mechanical prescription for understanding the hydrogen atom is

simple. We just find the solutions to the Schrödinger equation with the relevant

potential :

Coulomb potential

The approach is exactly the same as for a simple 1-dimensional problem such as a

particle in a box, but the algebra is a bit more complicated.

Energy of electron defined by principal quantum number n = 1, 2, 3, ...  (for a

free atom in the absence of external magnetic fields etc.)
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The Hydrogen Atom
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The Hydrogen Atom

Transitions result in a

photon emitted with

energy corresponding

to the gap.
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Free electron

has zero energy

Ground State



Hydrogen Atom Wavefunctions
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Acknowledgement : Dauger Research

pure |6,4,1> state :
equal superposition of

|3,2,2> and |3,1,-1> states:

equal superposition of 

|4,3,3> and |4,1,0> states :

Summary

We have looked at some of the laws that dictate the behaviour of quantum

mechanical "probability waves".

Most non-relativistic quantum mechanical systems can be understood just by

solving the Schrödinger equation for the relevant potential.

It always emerges that bound states (e.g. a particle in a box or an electron in an

atom) have a discrete energy spectrum ) energy is quantised. Loosely speaking,

this is because we have to fit a certain number of De Broglie wavelengths into the

space available (like standing waves on a violin string).

Different quantum states can be superposed on top of one another. In that case the

energy of the system might not even be well defined. Superposition :

o exists for macroscopic systems ? (Schrödinger’s Cat)

o is what enables us to exploit quantum mechanics : quantum computing,

quantum teleportation, etc.
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Exercises

1 The figure below shows the wavefunction for a particle in a finite potential well, with

energy between V
1
 and V

2  
:

i. Why is it acceptable for the wavefunction to be negative in certain regions ?

ii. Can the particle escape from the potential well classically ?

iii. Can the particle escape from the potential well quantum mechanically ?

iv. What physical situations might such a potential represent ?
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potential

wavefunction

Schrödinger Equation (more advanced derivation)

A suitable representation of a travelling wave is :

The quantum mechanical equivalent of the plane wave is simply :

This has the property that :

This is completely independent of x

This wavefunction contains no information about the location of the particle.

But if !x is infinite, then by the uncertainty relationship, the momentum is

known perfectly.

Distance/

Time

Amplitude

Wavelength " or Period *

Displacement
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Schrödinger Equation (more advanced derivation)

So, the following wavefunction describes a particle of unique momentum :

This means that I expect the following two relations to be relevant :

De Broglie : Kinetic energy :

These are both satisfied if the above wavefunction is inserted into :

A slight generalisation takes into account the possibility that the particle has

energy by virtue of being in a potential V as well as kinetic energy :

Time-independent

Schrödinger equation.

(spatial part of the

wavefunction only)
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Time Dependence

Going back to the wavefunction describing free particles of fixed momentum :

We also expect particles described by this wavefunction to satisfy the second De

Broglie relation :

This suggests the equation :

Solutions to this are simply :

(temporal wavefunction only)
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Time Dependence

Then the product wavefunction :

Schrödinger equation.

For the energy states we have been considering, the time-dependent factor

satisfies :

time-independent way.
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The Hydrogen Atom (advanced)

Degeneracy :

Hidden in the energy level diagram for hydrogen is a high level of degeneracy :

different quantum states that happen to have the same energy.

For the hydrogen atom (in fact, for any quantum mechanical system with a

central potential), each energy level has a well defined angular momentum.

n = 1

n = 2

n = 3

l = 0

l = 0

l = 0

l = 1

l = 1

l = 2

Principal
Total Angular

Momentum

z-component of

Angular Momentum
Quantum

Numbers
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Complex Atoms (advanced)

Pauli Exclusion Principle : no two fermions (e.g. electrons) can be in the same

state.

Electrons have half a unit of spin or intrinsic angular momentum :

2 different orientations :

"up" & "down"

Two more key principles are needed to understand atoms containing >1 electron :

This means that 2 electrons can occupy states identified by unique combinations

of quantum numbers n, l and m.

This material will be revisited in the lecture on the structure of matter
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Complex Atoms (advanced)

Energy-level diagram for a complex atom :

Degeneracy has been

broken (lifted).
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