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Quantum Mechanics

Outline :

» Review of Previous Lecture.

» Single Particle Wavefunctions.

» Time-Independent Schrodinger equation.
» Particle in a Box.

« Quantum Superposition

» The Hydrogen Atom.

Review of Previous Lecture

@ Wave-particle duality : all objects display both wave and particle properties
@ The De Broglie equation relates wave and particle properties :

_ P = momentum
p=hik A = wavelength

@ The Uncertainty Principle places fundamental limits on our measurements :

AxApxzE AEAtzE
2 2

@ Quantum mechanical waves are "probability waves" :

Probability o« fyy|’

A Y is generally complex.

@ We want to look at the equations governing these quantum mechanical
probability waves.




Single Particle Wavefunctions

@ In 1-dimension :

Y(x)

@ Probability for the particle to be found in the small interval Ax is :

()| x Ax

@ Given that the probability to find the particle anywhere must be exactly 1, we
have the condition :

Wavefunction

f h]}(x)‘zdx =1 normalisation

Schrodinger Equation (in 6 easy steps)

1) Consider the _ v
following simple W(x) = Acos(kr) R /\ /\ IA
wavefunction for [ k=2m/ }L] P x

a particle :

2) Since (x) extends across all space (x), it provides Wavelength A = 2m/A

no information about the position of the particle.

3) Therefore, by the uncertainty principle, it described
a particle of precisely known momentum.

De Broglie: p=h/A=hk

4) For particles of known momentum :

pz T B2k2
E =KE+PE = —+V = +V
2m 2m
2 2
6) Multiply by coskx and derivatives : Ecoskx = —h d COikx +Vcoskx
2m  dx

_ h2 dz X Time-independent
— # + Vy(x) = EY(x) Schrodinger equation.
2m  dx




Schrodinger Equation

@ A lot of quantum mechanics consists in simply solving this equation for different
potentials V :

Potential : Physical significance :
1 Kx? Simple harmonic oscillator
2
a4
— Coulomb potential : atoms
4me,r
Complicated crystal lattice Solid state physics

Particle in a Box

@ We're going to start with something much simpler - a particle in a one
dimensional box. The box is represented by an infinite potential well.

V=0 V (potential energy) V= o

Wavefunction must be O in these regions,
otherwise there would be a finite probability
to find the particle with infinite energy.




Particle in a Box

@ Fortheregion 0 = x < L :

-* d*y(x)
2m  dx®

—Epy ()
— Y(x)=Acoskx + Bsinkx
o Since P(0) = Y(L) = O this leaves :
P(x) = Nsin(%) n=123,..

Normalisation factor

@ Substituting in @ gives :

#2720 '
E = T n A discrete set of allowed energy
- 2m L2 levels : quantisation of energy.

Particle in a Box

Yix) S

x/L

}’L]}(}C)‘z N Y Y R, m—




Particle in a Box

0 0.2 0.4 06 0.8 1
x/L

@ As n increases, the probability distribution approaches the classical expectation :

uniformly distributed across the width of the box = correspondence principle.

Particle in a Box

E = Energy Level Diagrams :

A 2mL2 @Represent allowed energy levels ("energy
eigenvalues").

@ Labelled by quantum numbers (in this case

4 n=4 just n).

@ Interactions can be represented as
transitions between energy states.

@ Similar diagrams for other observables, for

-t n=3 example angular momentum.
1T n=2 Lowest energy state (ground state) is
=1 / not zero. This is a common feature of

|
|
S

quantum mechanical systems that is
not generally the case classically.
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Time Dependence

Particleinabox: | n=1

t=0.000000

Animation

x/L

complex phase = ( Et/ h)

VP “rotates” with time

P(x,1) = ﬁsin(%)e-wwh
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Time Dependence

Particleinabox: | n=2

t = 0.000000

Animation

|psi|““2
real

P(x,t) = '\/ESin(sz)e_iEzf/h
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Quantum Superposition

@ If 1, and 1), are both solutions to the Schrodinger equation, then so is :

Y < Ay, + By,

@ The wavefunction must still be correctly normalised to give unit probability :

1
o« —— (A \+ B )
Ve T g B

o Y and V2 are solutions corresponding to energies E, and E, . What energy
does a particle described by 1) have ?

=+ [t does not have a well defined energy.

= An energy measurement could yield E, with probability o A? or energy E,
with probability o« B?.

Note : to show that this is the correct way to normalise the combined wavefunction, you will need to know
that when both wavefunctions are real :
f Y, xyP,dx =0 13

This is fairly easy to show for the wavefunctions describing a particle in a box that we have already seen.

Quantum Superposition

@ The average energy obtained in an energy measurement is still well defined :

1 2 2
<E>=(A2+B2)(A E +B°E))

@ One could also define the spread or standard deviation of a series of energy
measurements on the same state 1 .

= This is how one formally derives the quantum mechanical uncertainty relations.
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Quantum Superposition

Particle in a box :

W= +1)) Wa'n®

=m=1 = TN E =

h=m=L=1 ﬁ Sl
A

B

L t=0.000000 n=3—

a

3

2

1 n=2——

[ Eemmscssnssssccsscnn conn ca Tl EETEEE T wags] = 0 L l....... <E>

-1 n=1 ——

-2 0 -

Animation

Quantum Superposition

Particle in a box :

2
o Y=o 0.8y, +0.2) g n
h=m=1L-=1 1/ Pl

t =0.000000 | n=3

M L2 4 dn o

Animation




Quantum Superposition

Particle in a box : 1 02 0.89.) #2202
_ _ _ Y =—=(0. lpl +U. WZ FE = —n
h=m=L=1 1/0.68 2ml>
A
|psi|**2
t = 0.000000 n=3 -1

[T 7 TR S & I+

Animation 17

Quantum Superposition

Particle in a box :

1
hem=1L =1 w=%(w4o+w41+w42+w4t3+w44'”/’45)

t=0.000000 =—— = Motion begins to look
classical.

= Time averaged
probability is uniform in
x, as would be expected
for a classical particle
rattling around in a box.

a 0.2 0.4 06 0.8 1

Animation x/L
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Schrodinger’s Cat

® We know that quantum superpositions exist on microscopic scales since we observe
the resulting interference effects.

@ Devise a scheme to transfer this microscopic superposition into a macroscopic one :

\ & Observer

)
Scanned at the American
Institute of Physics

Acknowledgement : Ard Louis 19

Schrodinger’s Cat

Before Opening the Box
!W’hole>|Alive> -+ lDecayed> |Dead>

After Opening the Box

| W’hole) Aiiv&> Buy Kty > +!Dec&ym>|De&d> >

.'\D
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The Hydrogen Atom

@ Classical electromagnetism does not predict a stable atom :

= Electron suffers centripetal acceleration and
radiates energy in the form of electromagnetic
waves.

= Eventually the electron would spiral into the
nucleus.

@ In general, quantum mechanical systems do not have a ground state
corresponding to the classical energy minimum (e.g. particle in a box).

@ In the case of the hydrogen atom, the quantum mechanical ground state
corresponds to an electron at a radius of :

a, =0.529 x 10m  (Bohr radius)

@ Since there are no lower energy states to occupy, the electron cannot lose more

energy through radiation = the hydrogen atom is stable !
21

The Hydrogen Atom

@ The quantum mechanical prescription for understanding the hydrogen atom is
simple. We just find the solutions to the Schrédinger equation with the relevant
potential :

—h d2w+d21p+d21p e
2m\dx*> dy’ d7’) 4me,r

Y =Ey
Coulomb potential / \

re ey Y =9(x,y,2)

@ The approach is exactly the same as for a simple 1-dimensional problem such as a
particle in a box, but the algebra is a bit more complicated.

@ Energy of electron defined by principal quantum number n =1, 2, 3, ... (fora
free atom in the absence of external magnetic fields etc.)
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The Hydrogen Atom

=] —

I R—

Probability

1§ m-o

as m-e
23
The Hydrogen Atom
Free electron ' 0
has zero energy —085F n=4 3 N shell
~151 - n=3 Y M shell
Paschen series
infrared
340 - n=2 vy  (Gnfrared) L shell
Balmer series
(visible)
Transitions result in a
E (eV) photon emitted with
energy corresponding
to the gap.
Lyman series
(ultraviolet)
—13.60 = n=1-—Y¥ K shell
Ground State v

24




Hydrogen Atom Wavefunctions

equal superposition of equal superposition of
14,3,3> and 14,1,0> states : 13,2,2> and 13,1,-1> states:

pure 16,4,1> state :

Acknowledgement : Dauger Research
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Summary

@ We have looked at some of the laws that dictate the behaviour of quantum
mechanical "probability waves".

@ Most non-relativistic quantum mechanical systems can be understood just by
solving the Schrodinger equation for the relevant potential.

@ It always emerges that bound states (e.g. a particle in a box or an electron in an
atom) have a discrete energy spectrum — energy is quantised. Loosely speaking,
this is because we have to fit a certain number of De Broglie wavelengths into the
space available (like standing waves on a violin string).

@ Different quantum states can be superposed on top of one another. In that case the
energy of the system might not even be well defined. Superposition :

o exists for macroscopic systems ? (Schrodinger’s Cat)

o is what enables us to exploit quantum mechanics : quantum computing,
quantum teleportation, etc.
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Exercises

1 The figure below shows the wavefunction for a particle in a finite potential well, with
energy between V, and V, :

i. Why is it acceptable for the wavefunction to be negative in certain regions ?
ii. Can the particle escape from the potential well classically ?

iii. Can the particle escape from the potential well quantum mechanically ?

iv. What physical situations might such a potential represent ?

y  potential

VZ
v, >
g
0
(a)
u wavefunction
x\ \1\\
=D =0 a b X
®) 27

Schrodinger Equation (more advanced derivation)

@ A suitable representation of a travelling wave is :
Displacement

D(x,t) = Acos(kx — wt) /\ /\ T Amplitude
\

k=2n/A w=2rnlt \/4_&/ \/ }%iiznce/

Wavelength A or Period ©

@ The quantum mechanical equivalent of the plane wave is simply :
Y(x,t) = Ae™ ™ = A[cos(kx — wt) + isin(kx — wt)]
@ This has the property that :
ol =4
@ This is completely independent of x

= This wavefunction contains no information about the location of the particle.

@ But if Ax is infinite, then by the uncertainty relationship, the momentum is
known perfectly.

28




Schrodinger Equation (more advanced derivation)

@ So, the following wavefunction describes a particle of unique momentum :

P(x, 1) = Ae"™"

@ This means that I expect the following two relations to be relevant :

De Broglie : Kinetic energy :
2
p=rhk E=P_
2m

@ These are both satisfied if the above wavefunction is inserted into :

2 12
—h” dy(x) = Ey(x) (spatial part of the
2m  dx’ wavefunction only)

@ A slight generalisation takes into account the possibility that the particle has
energy by virtue of being in a potential V as well as kinetic energy :

_ h2 d2 X Time-independent
ayx) + Vy(x) = Ey(x) Schridinger equation.

Eg dx?
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Time Dependence

@ Going back to the wavefunction describing free particles of fixed momentum :
Plx,1) = At

@ We also expect particles described by this wavefunction to satisfy the second De
Broglie relation :
E=hw

@ This suggests the equation :

ih

dy(t
IZE ) = EY(f)  (temporal wavefunction only)

@ Solutions to this are simply :

w(t) — Ae—iEt/h

30




Time Dependence

@ Then the product wavefunction :
P(x,1) =P(x) xyP(2)

satisfies :

__hzdz_lf + VI/J = ihd_w Schrédinger equation.
2m dx dt

@ For the energy states we have been considering, the time-dependent factor
e "B/ does not change W;(x)r , S0 it was safe to treat them in a

time-independent way.
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The Hydrogen Atom (advanced)

Degeneracy :
@ Hidden in the energy level diagram for hydrogen is a high level of degeneracy :
different quantum states that happen to have the same energy.

@ For the hydrogen atom (in fact, for any quantum mechanical system with a
central potential), each energy level has a well defined angular momentum.

Quantum .. Total Angular z-component of
Numbers > { Principal Momentum Angular Momentum
[=0
n=2
[=1 » m=-10,+1
[=0
n=73 [=1 » m=-10,+1
[=2 » m=-2,-10,+1,+2

Angular Momentum = /l([+1) & -




Complex Atoms (advanced)

Two more key principles are needed to understand atoms containing >1 electron :

@ Pauli Exclusion Principle : no two fermions (e.g. electrons) can be in the same
State.

@ Electrons have half a unit of spin or intrinsic angular momentum :

. 1
2 2 272

2 different orientations :
HupH & Hdownﬂ

@ This means that 2 electrons can occupy states identified by unique combinations
of quantum numbers n, [ and m.

This material will be revisited in the lecture on the structure of matter
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Complex Atoms (advanced)

Energy-level diagram for a complex atom :

0

' & O0®

E (eV
- Degeneracy has been
I=1:m=-1,0, +1 broken (lifted).
=0
- ®
w
=0
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