Project Specification

Project Name: ZEUS MVD HELIX Driver Demonstrator

Version: 1.1

Approval:

	name	signature	date
Project Manager	R. Halsall	XXXXXXXXX	12 June 98

Distribution for all updates:

Project Manager: R. Halsall Customer: Jon Butterworth, Val Noyes Group Leader responsible for Project: Rob Halsall Project Managers of related projects:

Additional distribution at PDR and FDR: John Lane

System Design Group Leader: R. Halsall Micro Electronics Design Group Leader: M. French Design Support Group Leader: S.P.H. Quinton Management Support Services Group Leader: Chris Lowe Electrical Systems Design Group Leader: J.F. Connolly

1.0 Scope

ZEUS Microvertex Detector (ZEUS MVD) upgrade, specifically the clock & control. Helix Interface consists of HELIX fanout module & HELIX Driver module. UCL are responsible for the Clock & Control System & the design of the Masterbox.

This is an R&D Project to build a Helix Driver Demonstrator for the August Beam Test in DESY. The main aim is to investigate key features of the Helix Driver namely;

Running CMOS and LVDS Drivers on shifted power supplies (-2V) Micro Cable & 'SCSI' connectors Signal Integrity

2.0 Related projects and documents

ZEUS MVD, ZEUS MVD Masterbox, HELIX Front End, ADC & ZEUS Slow Control DAQ.

Electronics & DAQ Page http://www-zeus.desy.de/~zeusmvd/MVDeldag.html

DAQ Document

http://www-zeus.desy.de/~polini/ZEUS_ONLY/mvddaq/mvddaq.html http://wwwasic.ihep.uni-heidelberg.de/~feuersta/projects/Helix/helix/helix.html

Helix documentation

http://wwwasic.ihep.uni-heidelberg.de/~feuersta/projects/Helix/helix.ps

Masterbox documentation

http://www.hep.ucl.ac.uk/zeus/mvd/candc.html

ADC documentation

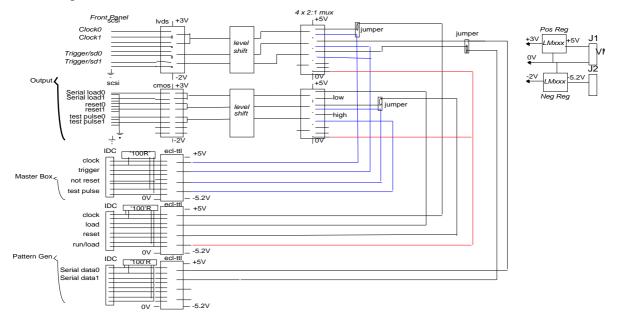
http://www-zeus.desy.de/~carlin/microvertex/adcm/sld001.html http://www-zeus.desy.de/~carlin/microvertex/adc2/index.htm

3.0 Technical Aspects

3.1 Requirements

Receive Clock & Control signals from Masterbox and fanout to 2 chains of HELIX ASICs in the MVD Front End. Additionally receive & fanout Serial download data for HELIX from an external Pattern Generator. Switch in Pattern Generator signals under control of a Pattern Generator run/load' signal

Drive shifted (-2V) CMOS & LVDS signals to the HELIX ASICs at the Front End.


3.2 Specification of deliverables

The module will be a 6U VME Module, Wire Wrap construction, VME provides power only, additional -5.2V supply required on J2.

Inputs from Masterbox;

Signal		frequency	mode	level	pins	conne	ctor
clock not reset trigger	input input input	10M Hz 10M Hz 10M Hz	clock synch synch	Diff EC Diff EC Diff EC	ĽL	2 2 2	IDC IDC IDC
test pulse	input	10MHz	vari delay	Diff EC	ĽL	2	IDC
Inputs from Pattern Generator;							
Signal		frequency	mode	level	pins	conne	ctor
clock not reset load Serial Data0 Serial Data1 run/load	input input input input input input	10M Hz 10M Hz 10M Hz 10M Hz 10M Hz	clock synch synch synch synch asynch	Diff EC Diff EC Diff EC Diff EC Diff EC	に に に に	2 2 2 2 2 2 2 2	IDC IDC IDC IDC IDC IDC
Outputs to Helix Front End, fanout x2;							
Signal		frequency	mode	level pi	ns	conne	ctor
Clock Not Reset Trig/Serial D Serial Load Test Pulse	output output output output output	10M Hz 10M Hz 10M Hz 10M Hz 10MHz	clock synch synch synch vari delay	LVDS CMOS LVDS CMOS CMOS		2 1 2 1 1	SCSI SCSI SCSI SCSI SCSI

Block Diagram;

3.3 Manufacturing

Wire Wrap construction, constructed in house, through hole - off the shelf components.

3.4 Testing and product control

Construct, Test and develop on the bench. Tests will be carried out as the module is constructed.

Test at RAL standalone UCL with Masterbox DESY complete chain

3.5 Shipping and Installation

Ship demonstrator to UCL or DESY as required by customer.

3.6 Maintenance and further orders

TBD

4.0 Project Management

ZEUS MVD, Electronics, Roberto Carlin ZEUS MVD UK, Val Noyes ZEUS MVD Clock & Control, Jon Butterworth, John Lane, Martin Postranecky ZEUS MVD HELIX Driver, RAL Project Manager, RAL Engineer

4.1 Personnel

Project Manager/Engineer	R. Halsall
Project Engineer	S. Galagedera
Technician Engineer	J. Baker

4 of 6 6/12/98

4.2 Deliverables

RAL;

HELIX Driver Demonstrator, 1 Off

Customer Supplied;

VME Crate VME SBC MVME2600 /Lynx-OS Software ECL Pattern Generator Masterbox

4.3 Project plan

HELIX Driver Demonstrator

Project Spec Preliminary Design Review/Sign off	June 12 June 12
Construct & Develop	June-July
Ready	3 August

4.4 Design Reviews

Customer will be invited to attend Intermediate & Final Design Reviews

4.5 Training

NA

4.6 CAE and test equipment

NA

4.7 Costs and finance

Estimated Effort (Staff Months);

Project Manager/Engineer	1
Project Engineer	1
Technician Engineer	1
Total Effort	3

Estimated Component Costs;

£1K

Cost Centres;

Effort	QF00510	maps onto FC76000
Travel	FC77400 TDD	•
Components	FC76400 TDD	

4.8 IPR and confidentiality

Not confidential, CCLRC owns IPR

4.9 Safety

HELIX Input Protection power supply fail safe - DESY will build in fail-safe series resistors to prevent over current through protection diodes to protect inputs from power supply failure while Helix Driver is driving the HELIX inputs.

4.10 Environmental impact

Standard electronic module.