SCT and Pixel TTC

Introduction

Partitions

TTC Interface Module (TIM)

Requirements

In conclusion

Introduction

- ATLAS TTC system is used only to the ROD crate level:

 RODs make a change of protocol for the Front-End
- 4 TTC partitions in SCT:
 0 Left and Right Barrel
 0 Left and Right End-Cap
- 3 TTC partitions in Pixel:
 o See Kevin's slide
- Up to 16 RODs can be connected to a TTC destination:
 - Each ROD crate has a TTC Interface Module (TIM)

Pixel ROD Configuration

Module mapping already defined (for full 3-hit system):

- •B-layer has half-stave per ROD, for a total of 44 RODs
- •Layer 1 has one stave per ROD, for a total of 38 RODs
- •Layer 2 has two staves per ROD, for a total of 26 RODs
- Disks have four sectors per ROD, for a total of 12 RODs

Rod Rack layout (4 racks allocated in USA15):

- •Assume only two ROD crates per rack because of complex service issues involved in bringing large numbers of opto-links in and out of BOC.
- •Assume there is an additional 6U VME crate placed in the middle of the rack. This would contain the TTC electronics and any additional test/diagnostic electronics.

TTC Partition proposal:

- Propose that B-layer is one partition of 3 ROD crates.
- Propose disks are a second partition of 1 ROD crate.
- Propose that Layer 1 and 2 are third partition of 4 ROD crates.
- •Separating Layer 1 and Layer 2 into different TTC partitions would require two extra ROD crates, because there are only 16 slots per crate available for RODs.

Partitions

- 4 (3) partitions for SCT (Pixel):

 Sources are in a 6U VME crate in the ROD racks
- 2 to 5 destinations per partition:
 0 2 (1, 3, 4) ROD crates
 0 Level-2 Trigger or TDAQ?
 0 no destinations on detector
- In the ROD racks of SCT (Pixel):
 - o 1 (1) Busy module
 - o 1 (1) cable set from the CTP
 - o 4 (3) Detector CTP Interface
 - o 4 (3) TTCvi
 - o 4 (3) TTCvx or 2 TTCex
 - o 8 (8) short fibres
 - 08 (8) TTCrx mezzanines
 - o no optical splitters

John Lane

TTC Interface Module

TIM overview:

- Operates in TTC or stand-alone mode
- Receives clock and signals from TTC
- Transmits clock and signals to RODs
- Receives busy signals from RODs
- Transmits masked busy signal to Busy module

SCT TIM Context and Essential Model

Timing Interface Module (TIM)

Requirements

- Standard TTC system
- No special calibration requirements
- Latency: The sum of the 3 worst-case lengths o CTP rack to TTC rack o TTC rack to ROD rack o ROD rack to detector should not exceed 140 metres in total

Survey of SCT latency budget

The overall latency is the time from the interaction until the L1Accept trigger signal is received by the front-end pipeline. The table is a summary of the latency in **B**unch Crossings and nanoseconds, including which group has the final say in some sense on the latency value.

BC	ns	Latency Item	Latency Responsibility
77.9	1947	Central Trigger Processor output	ATLAS Level-1 Trigger
0.4	10	Fanout module	ATLAS Timing, Trigger & Control
1.6	40	8m cable CTP -> TTCvi	ATLAS Technical Coordination
0.1	3	TTC vme interface module	ATLAS Timing, Trigger & Control
0.1	3	0.6m cable TTCvi -> TTCvx	ATLAS Timing, Trigger & Control
0.9	22	TTC vme transmitter module	ATLAS Timing, Trigger & Control
6.4	160	32m fibre TTCvx -> TTCrx	ATLAS Technical Coordination
3.0	75	TTC receiver chip	ATLAS Timing, Trigger & Control
2.0	50	Timing Interface Module	SCT Off-Detector Electronics
0.2	5	Backplane of ROD crate	SCT Off-Detector Electronics
3.0	75	Read-Out Driver module	SCT Off-Detector Electronics
0.5	13	Back Of Crate card	SCT Off-Detector Electronics
2.0	50	Bi-Phase Mark chip	SCT Links
19.4	485	97m fibre ROD -> Detector	ATLAS Technical Coordination
1.0	25	DORIC decoder chip	SCT Links
7.0	175	ABC(D) readout chip	SCT Front-End Electronics
6.5	162	SCT Contingency	SCT Electronics Coordinator
132.0	3300	Total (= Pipeline Length)	

- SCT L1 Trigger Latency Budget Specification (pdf or ps)
- Alex Grillo's overview of SCT L1 Trigger latency and comparison with TRT (pdf or ps)
- The 97m fibre length and routing is under review: Jan Troska's SCT fibre routing document (superseded drawings: pdf or ps or old)
- The biggest uncertainty is the position of the ROD <u>racks in USA15</u>
- The 40m (=8+32) is the worst case cable/fibre length from CTP fanout to ROD crate.
- The TTCvi and TTCvx may be nearer to the ROD crates than in the table.
- More details (SCT_latency.txt); also email archive and latency talk
- L1 Trigger latency (<u>pdf</u> or <u>ps</u>); <u>TTC latency</u>
- <u>SCT Link fibre installation (old draft)</u>

Last update: 28 October 1999 (last budget change: 6 June 1999)

John Lane (UCL) email: jbl@hep.ucl.ac.uk (*Please let me know if anything should be changed*)

http://www.hep.ucl.ac.uk/~jbl/SCT/SCT_latency.html

In conclusion

- No special requirements
- Small number of modules and fibres:
 - o Delivery schedule is negotiable
 - Detector assembly does not use TTC
- Topics for discussion:

 TTC input to Level-2 Trigger for stand-alone partitions?
 Spares?