Thorium The Alternative Nuclear Fuel?

Bob Cywinski School of Applied Sciences

Global Energy Requirements

In 2000, world population = $6x10^9$

Total energy consumption/year per capita consumption electricity per capita $= 10 \times 10^{9}$ toe

- = 1.6 toe/year
- = 0.5 toe/year

In 2050, world population expected to reach 9x10⁹

Population growth = 165000 per day

Assuming current electricity usage per capita the additional requirement is equivalent to:

a 1GW power station per day !

A new one of these every day!

...and the associated carbon emission

Energy source	Grammes of carbon per KWh of electricity		
luclear	4		
Vind	8		
lydro electric power	8		
Energy crops	17		
Geothermal	79		
Solar	133		
Gas	430		
Diesel	772		
Dil	828		
Coal	955		

source: Government Energy Support Unit (confirmed by OECD)

Global Nuclear Capacity

Country	No. Reactors	10 ⁹ kWh	% Total	
United States France Japan	103 59 53	754 395 305	20 78 34	
United Kingdom	35	78	22	
Germany	19	160	31	
Russia	29	120	15	
So. Korea	16	103	41	
Canada	14	69	12	
India	14	14	3	
Sweden	11	55	39	
21 Others				
Totals:	437	2,447	16	

Global uranium requirements

Scenario 1

No new nuclear build

Scenario 2

Maintain current nuclear capability (implies major increase in plant construction)

Scenario 3

Nuclear renaissance: increase in nuclear power generation to 1500 GW capacity by 2050

Available resources

Total U resources recoverable at <US\$80/kg = 6Mt

Resources recoverable at <US\$130/kg may amount to ~4Mt

For scenario 3 these resources will be depleted within 70 years*

Hence the need to breed fuel

*assuming 170kgU/GWe

IAEA, status report May 2005

ΙΑΕΑ

....in recent times, the need for proliferation-resistance, longer fuel cycles, higher burn up, improved waste form characteristics, reduction of plutonium inventories and in situ use of bred-in fissile material has led to renewed interest in thorium-based fuels and fuel cycles in several developed countries.....

Annual energy consumption

Thorium equivalent

~5x10⁹ tonnes of coal

27x10⁹ barrels of oil

2.5x10¹² m³ of natural gas

65x10³ tonnes of uranium

Thorium:

University of HUDDERSFIELD

Abundance:

Estimated global Th resources

for all other countries are from: OECD, 2006: Red Book Retrospective. A review of Uranium Resources, Production and Demand from 1965 to 2003.

University of HUDDERSEIFID January, 2008

Name and Country	Туре	Power	Fuel	Operation Period
AVR, Germany	HTGR Experimental (Pebble Bed Reactor)	15 MWe	Th & U-235 Driver Fuel, Coated fuel particles, Oxide & dicarbides	1967 - 1988
THTR, Germany	HTGR Power (Pebble Type)	300 MW _e	Th & U-235 Driver Fuel, Coated fuel particles, Oxide & dicarbides	1985 - 1989
Lingen, Germany	BWR Irradiation-testing	60 MWe	(Th, Pu)O ₂ Test Fuel , Pellets	Terminated in 1973
Dragon, UK OECD-Euratom also Sweden, Norway & Switzerland	HTGR Experimental (Pin-in-Block Design)	20 MWth	Th & U-235 Driver Fuel, Coated fuel particles, Dicarbides	1966 -1973
Peach Bottom, USA	HTGR Experimental (Prismatic Block)	40 MWe	Th & U-235 Driver Fuel, Coated fuel particles, Oxide & dicarbides	1966 – 1972
Fort St Vrain, USA	HTGR Power (Prismatic Block)	330 MW _e	Th & U-235 Driver Fuel, Coated fuel particles, Dicarbides	1976 – 1989
MSRE ORNL, USA	MSBR	7.5 MWt	U-233 Molten Fluorides	1964 – 1969
Borax IV & Elk River Reactors, USA	BWRs (Pin Assemblies)	2.4 MWe 24 MWe	Th & U-235 Driver Fuel, Oxide Pellets	1963 – 1968
Shippingport & Indian Point, USA	LWBR PWR (Pin Assemblies)	100 MWe 285 MWe	Th & U-233 Driver Fuel, Oxide Pellets	1977 – 1982 1962 – 1980
SUSPOP/KSTR KEMA, Netherlands	Aqueous Homogenous Suspension (Pin Assemblies)	1 MWth	Th & HEU Oxide Pellets	1974 - 1977
NRU & NRX, Canada	MTR (Pin Assemblies)		Th & U-235 Test Fuel	Irradiation- testing of few fuel elements
KAMINI, CIRUS & DHRUVA, India	MTR Thermal	30 kW _{th} 40 MW _{th} 100 MW _{th}	Al & U-233 Drive Fuel, 'J' rod of Th & ThO ₂ 'J' rod of ThO ₂	All three research reactors in operation
KAPS 1 & 2, KGS 1 & 2, RAPS 2, 3 & 4, India	PHWR (Pin Assemblies)	220 MW _e	ThO ₂ Pellets For neutron flux flattening of initial core after start-up	Continuing in all new PHWRs
FBTR, India	LMFBR (Pin Assemblies)	$40~{\rm MW}_{\rm th}$	ThO ₂ blanket	In operation

Thorium in power reactors

Shippingport LWBR

- Fuelled with U-233 and Th-232
- Produced 1.4% more fuel than it burned

IAEA-TECDOC 1450

Current activity

The planned AHWR (India) is a vertical pressure tube type, boiling light water cooled and heavy water moderated reactor using ²³³U-Th MOX (Mixed Oxide) and Pu-Th MOX fuel.

Thorium as fuel

Advantages

- Thorium supplies plentiful
- Robust fuel and waste form
- Generates no Pu and fewer higher actinides
- ²³³U has superior fissile properties to ²³⁵U and ²³⁹Pu
- Proliferation resistant

Disadvantages

No fission until ²³³U is produced

²³³U is weapon grade unless denatured

Parasitic ²³²U production results in high gamma activity

Thorex processing of waste needs substantial development

It is generally considered that the neutrons necessary to produce ²³³U from ²³²Th must be introduced by:seeding the Th fuel with ²³⁵U or Pu for a conventional reactor, or

Butcan we dispense with U and Pu altogether?

Spallation

.....for example by utilising spallation, rather than fission, neutrons...

.....and we know a lot about spallation (ISIS, PSI, SNS, J-PARC, ESS

Target size

Proton energy

Neutron energies

The energy spectrum of the spallation neutrons at different incident proton energies.

The target is a lead cylinder of diameter 20 cm

At 1 Gev, approximately 24 neutrons per proton are produced

The Energy Amplifier/ADSR Concept

The Energy Amplifier/ADSR energy balance

Proton beam requirements for EA/ADSR

The (thermal) power output of an ADSR is given by

$$\mathsf{P}_{\mathsf{th}} = \frac{\mathsf{N} \times \mathsf{E}_{\mathsf{f}}}{\mathsf{v}} \cdot \frac{\mathsf{k}_{\mathsf{eff}}}{\mathsf{1} - \mathsf{k}_{\mathsf{eff}}}$$

with

- N = number of spallation neutrons/sec
 - E_{f} = energy released/fission (~200MeV)
 - v = mean number of neutrons released per fission (~2)
 - k_{eff}= criticality factor (<1 for ADSR)

So, for a thermal power of 1550MW we require

N = 9.6 × 10¹⁹ ×
$$\frac{1 - k_{eff}}{k_{eff}}$$
 neutrons.s⁻¹

Given that a 1 Gev proton produces 24 neutrons (in lead) this corresponds to a proton current of

i =
$$\frac{9.6 \times 10^{19}}{24} \times 1.6 \times 10^{-19} \times \frac{1 - k_{eff}}{k_{eff}}$$
 amps = $640 \times \frac{1 - k_{eff}}{k_{eff}}$ mA

Proton beam requirements

k_{eff}=0.95, i=33.7mA k_{eff}=0.98, i=13.1mA k_{eff}=0.99, i=6.5mA

constraint of a 10MW proton accelerator we *need* k_{eff} = 0.985

University of HUDDERSFIELD

Safety margins

Allowed Operational Safety Margin

Time evolution of k_{eff} for a Th-fuelled ADSR

H.M. Broeders, I. Broeders : Nuclear Engineering and Design 202 (2000) 209–218 Evolution of the criticality value, k_{eff} , over 6 years for lead-cooled Th/U²³³ ADSRs

1. Initial loss due to build-up of absorbing Pa²³³ and decrease of U²³³ enrichment by neutron absorption and fission

2. Increase due to increasing U^{233} enrichment from subsequent β -decay of Pa^{233}

3. Long term decrease due to build up of neutron absorbing fission products

MYRRHA: an ADSR transmutation proposal

The MYRRHA design proposes a windowless Pb-Bi target:

The target surface results from the vertical co-axial confluent Pb-Bi liquid metal flow

The beam impacts the target vertically from above

MYRRHA is being designed to transmute Pu waste

But no ADSR prototype has ever been builtwhy not?

... because existing accelerators are not stable

FFAGS: <u>Fixed</u> <u>Field</u> <u>A</u>lternating <u>G</u>radient accelerators

varying magnetic field

isochronous orbit

varying closed orbit fixed magnetic field

- Synchrotron-like proton energies with cyclotron –like currents
- Significantly more compact and therefore cheaper to construct
- Simpler (fixed fields) and hence more reliable?

Innovative non-scaling FFAGs are currently being developed as part of the BASROC CONFORM **RCUK Technology programme**

ADSR geometry -single spallation target

Flux distribution in ADSR core

H.M. Broeders, I. Broeders : Nuclear Engineering and Design 202 (2000) 209–218 Power density distribution improves with k_{eff} but remains non-optimal

Solution is generally to increase fissile enrichment in several core zones (eg see step at zone boundary on left)

A better solution might be to use several proton beams and spallation targets

Multiple beams/targets should also alleviate accelerator stability problems

Triple target ADSR

Power density distribution (W:cm³) in a lead-cooled ADSR with Th:U²³³ fuel.

The three beams with buffer zones are described by seven lead-filled fuel element positions.

The over-all power distribution is satisfactory.

Triple target FFAG-driven ADSR

Power density distribution (W:cm³) in a lead-cooled ADSR with Th:U²³³ fuel.

The three beams with buffer zones are described by seven lead-filled fuel element positions.

The over-all power distribution is satisfactory.

Three ns-FFAG drivers should be no more expensive than a singe conventional driver....

....and will provide the required reliability margin

Can thorium fuel be used in conventional reactors?

Miniature spallation target in central bore of fuel element assembly

High power (MW) proton beam

Spallation charging of Th fuel rods

- ²³²Th to ²³³U conversion can be better optimised, with mitigation against detrimental neutron absorption by ²³³Th and ²³³Pa
- Modifications to existing reactors are not necessary
- Wider global exploitation of nuclear technology is possible
- Fuel preparation and burn cycles are decoupled

University of HUDDERSFIELD

Fuel types

Thorium Metal

Ductile, can be shaped. High conductivity Problem with diffusion of Fe and Ni at T> 500°C forming brittle phases. Th diffuses into Zr at about 800°C.

Thoria -ThO₂

High melting point, most stable oxide known. Powder can be prepared by sol-gel methods then pelletised.

MOX fuels are made by combining ThO_2 with UO_2 or PuO_2

Thorium Nitrides and Carbides

Carbides $((ThU)C_2)$ have already been successfully used. The use of nitrides is also possible

Cermet

Fine oxide partilcles embedded in a metallic host.

Materials Physics

LWR fuel rod element

- Crack formation
- Substantial grain growth in centre (ie in hotter region)
- Small gap at pellet-cladding interface

Effects of irradiation and thermal cycling on thorium fuel assemblies **must** be studied and characterised thorium fuel rods may be deployed for several years

Summary

- Thorium is an underexploited fuel resource that could meet all our power generation requirements for many centuries
- Thorium fuel is proliferation resistant and produces relatively low level radiotoxic waste
- Although thorium is fertile, not fissile, it may be possible to construct safe and reliable EA/ADSR power systems, using spallation neutrons to drive the transmutation/fission process
- Similar processes could provide thorium fuel elements for conventional power reactors
- The key to both technologies is the development of compact, cheap and reliable accelerators: We believe ns-FFAGs may fit the bill
- Significant materials research on thorium and thorium compounds is still required

Thorium might just save the planet!!

Acknowledgements

Professor Roger Barlow (Manchester)

Dr Cristian Bungau (Manchester/Cockcroft)

Dr Bill Nuttall and Dr Geoff Parks (Cambridge)

RCUK/EPSRC (£7.5M) EPSRC(£150K) STFC (£500K)?

ThorEA Workshop, University of Huddersfield, 17 April 2009

