KE opportunity: Compact radiation source based on a laser-plasma wakefield accelerator

Dino Jaroszynski
University of Strathclyde

dino@phys.strath.ac.uk
Outline of talk

• Large and small accelerators + high power lasers
• Laser driven wakes
• Ultra-short bunch electron production using wakefield accelerators
• The Advanced Laser Plasma High-energy Accelerators towards X-rays (Alpha-X) project
• Synchrotron, free-electron laser and betatron sources
• Conclusion
Synchrotrons and light sources: tools for scientists and industrialists

Synchrotron – size and cost determined by accelerator technology

Diamond

DESY undulator

undulator synchrotron

TOPS ALPHA-X
Wakefield accelerator

UCLA: Tajima + Dawson 1979

Wake behind optical pulse travels and laser group velocity

$$v_g = c \sqrt{1 - \frac{\omega_p^2}{\omega_0^2}}$$

The ponderomotive force is given by the gradient of the light pressure

$$F_{pond} = -\frac{e^2}{4m\omega^2} \frac{dE^2}{dz} = -mc^2 \frac{d}{dz} (|a|^2)$$

The electrons are pushed out of high intensity regions by the ponderomotive force

Phase velocity gives

$$\gamma_\phi = \frac{\omega_0}{\omega_p}$$

3-D plasma wave

Critical density for 800 nm: $1.75 \times 10^{21} \text{ cm}^{-3}$
Particles accelerated by electrostatic fields of plasma waves

Accelerators:

Surf a 10’s cm long microwave – conventional technology

Surf a 10’s μm long plasma wave – laser-plasma technology

\[
\gamma = 2\gamma^2 \frac{\delta n_p}{n_p} = 2 \left(\frac{\omega_0}{\omega_p} \right)^2 \frac{\delta n_p}{n_p} = 2 \frac{n_c}{n_p} \frac{\delta n_p}{n_p}
\]
Wakefield acceleration

Dephasing length: \[L_d = \frac{2\lambda_p \gamma^2}{\pi} \] where the phase velocity gives \[\gamma = \frac{\omega_0}{\omega_p} \]
UK consortium:

- Injectors (conventional and all-optical)
- Laser-plasma wake-field acceleration
- Plasma capillaries

FEL or synchrotron source

- Free-electron laser (FEL)
- Beam transport systems
- Diagnostics

\[\lambda = \frac{\lambda_i}{2\gamma^2} \left(1 + a_u^2\right) \]

\[2\gamma^2 = 10 \rightarrow 10^7 \]

\[\lambda = 100 \, \mu m - 2 \, nm \]
ALPHA-X project

Strathclyde:
Riju Issac, Gregory Vieux, Enrico Brunetti, Bernhard Ersfeld,
Albert Reitsma, Ranaul Islam, David Clark, Tom McCanny,
Seth Brussaard, Jinhai Sun, Jordan Gallacher, Richard Shanks,
Maria Pia Anania, Sijia Chen, Silvia Cipiccia, John Farmer, Xue Yang

Lancaster U., Cockcroft Institute / STFC - ASTeC, STFC - RAL CLF,
U. St. Andrews, U. Dundee, U. Abertay-Dundee, Imperial College
IST Lisbon, U. Paris-Sud - LPGP, Pulsar Physics, UTA, CAS, LBNL
FSU Jena, U. Stellenbosch, U. Oxford, LAL, U. Twente, TUE, ...

Supported by University of Strathclyde, RCUK, EPSRC,
E.U. Laserlab and EuroLEAP
TOPS laser:
1.2 J @ 10 Hz
$\lambda = 800$ nm
30 fs

ALPHA-X beam line at Strathclyde

TOPS laser:
- 1.2 J @ 10 Hz
- $\lambda = 800$ nm
- 30 fs
Modelling of Laser Wakefield Acceleration

laser pulse envelope dynamics: ponderomotive wakefield excitation, electron bunch acceleration, phase slippage, beam loading

z-v gt (units of λp)

Laser pulse envelope: electrostatic wakefield, bunch density, energy density of wakefield

Strathclyde
ALPHA-X all-optical injection experiments on ASTRA

10^{18} \text{Wcm}^{-2} \text{ in 25 mm spot}

a_0 \sim 0.7 - 1

800 nm

350 - 540 mJ

40 fs

F/16 mirror

n_e \sim 2 \times 10^{19} \text{cm}^{-3}

\gamma = 2 n_c \frac{\delta n_p}{n_p n_p} = 175

\delta \gamma \approx 3\%

\tau \sim 5 - 10 \text{ fs}

I \sim 5 \text{ kA}

Few fs duration electron bunch

Imperial/RAL/Strathclyde

S. Mangles et al.

Nature 2004
LBNL - Oxford campaign (ALPHA-X) team: GeV beams from capillary

Pre-formed plasma channels – Spence & Hooker (PRE 2001)
Acceleration to 1 GeV in 33 mm long pre-formed plasma channels

5% shot-to-shot fluctuations in mean energy

\[E = 0.48 \text{ GeV} \pm 6\% \]

and an r.m.s. spread <5%.

12TW (73fs) - 18TW (40fs)

\[E = (0.50 \pm/-0.02) \text{ GeV} \]
\[\Delta E = 5.6\% \text{ r.m.s.} \]
\[\Delta \theta = 2.0 \text{ mrad r.m.s.} \]
\[Q = 50 \text{ pC} \]
\[\text{Laser } \sim 1 \text{ J} \]

\[
\gamma_{\text{max}} = 2 \frac{n_c}{n_p} \frac{\delta n_p}{n_p} = 1750
\]

Wakefield - undulator experiment
Electron and optical spectra

Strathclyde, Jena & Stellenbosch

Jena: JETI laser

TOPS ALPHA-X

ALPHA-X: Measured electron and radiation spectra

- Jena: JETI laser
 - $N_{\text{ph}} \approx 300,000$ photons
 - $Q = 28 \text{ pC} @ 65 \text{ MeV}$
 - $\varphi = 2 \text{ mrad}$
 - $\delta \lambda / \lambda = 55 \text{ nm (FWHM)}$
 - Visible: $B = 6.5 \times 10^{16}$ ph/sec/mrad²/mm²/0.1%BW

$$\frac{\delta \gamma}{\gamma} < 0.5 \left[\left(\frac{\delta \lambda}{\lambda} \right)_{\text{measured}}^2 - \left(\frac{\varphi \gamma}{\varphi} \right)^2 - 1 / N_u^2 \right]^{1/2}$$

Sets an upper limit to total energy spread ($\approx 1\%$) and emittance ($1 \pi \text{ mm mrad}$)

TOPS ALPHA-X
Predicted Synchrotron radiation and SASE FEL for Strathclyde undulator

matched beam
SASE FEL

SASE FEL

matched beam
SASE FEL

Photon Flux [Photons/0.1% BW]

Photon energy [eV]

3x10^{12}
2x10^{12}
1x10^{12}
0
350
400
450

synchrotron radiation

Peak Brilliance: \(2.97 \times 10^{25}\) photons/sec/mrad²/mm²/0.1% b.w.

Photon Flux [Photons/0.1% BW]

Photon energy [eV]

1.5x10^5
1.0x10^5
5.0x10^4
0.0
350
400
450

Photon flux into 200 µrad

Synchrotron:

\(\sigma/\gamma = 0.1\%\)

\(I_{pk} = 12\) kA

\(\varepsilon_n = 1\) \(\pi\)mm mrad

\(N_u = 200\)

\(\tau_e < 10\) fs

Peak Brilliancy \(B = 3 \times 10^{25}\) ph./sec/mrad²/mm²/0.1% b.w. for 10 Hz

Average brilliance \(B = 2.5 \times 10^{11}\)

With laser improvements: 1 kHz: rep rate:

average brilliance \(B > 10^{13}\)

FEL: \(B > 10^6\) times higher

TOPS
ALPHA-X

IOP London 2009
Predicted SASE FEL Power growth

\[E = 1 \text{ GeV} \]
\[Q = 100 \text{ pC} \]
\[I_{pk} = 30 \text{ kA} \]
\[\varepsilon_n = 1 \pi \text{ mm mrad} \]
\[\delta\gamma/\gamma = 0.1\% \]
\[\beta = 0.5 \text{ m} \]
\[\rho = 0.0065 \]
\[E_{ph} = 422 \text{ eV} \]
\[B_{pk} = 6 \times 10^{31} \text{ phot/sec/mm}^2/\text{mrad}^2/0.1\% \text{ BW} \]

6.3 x 10^{12} coherent photons per pulse
Synchrotron radiation from an ion channel wiggler: betatron radiation

- Wiggler motion – electron deflection angle $a \sim (p_x/p_z)$ is much larger than the angular spread of the radiation $\vartheta = (1/\gamma)$

$$\gamma >> a_u >> 1$$

- Only when k & p point in the same direction do we get a radiation contribution.
- Spectrum rich in harmonics – peaking at $h_{crit} \approx \frac{3a_u^3}{8}$
- Radiation rate $W \propto \gamma^2$ therefore only emission at dephasing length L_d
X-ray generation in a plasma wake

Strong radial forces cause synchrotron or betatron oscillations of electron beam

Restoring force given by Gauss law: \[F = -\frac{1}{2} m \omega_p^2 r_\perp \]

Oscillation at the betatron frequency: \[\omega_b = \frac{\omega_p}{\sqrt{2} \gamma_e} \]

Emitted synchrotron radiation viewed in the lab frame

\[\lambda_h = \frac{h \lambda_\beta}{2 \gamma_e^2} \left(1 + \frac{a_u^2}{2} + (\gamma_e \phi)^2 \right) = \frac{h \pi c}{\omega_p \gamma_e^{3/2}} \left(1 + \frac{a_u^2}{2} + (\gamma_e \phi)^2 \right) \]

\(h \) – harmonic number
\(h_{\text{crit}} \) - maximum intensity at harmonic \[h_{\text{crit}} \approx \frac{3a_u^3}{8} \]

Undulator/wiggler deflection parameter \[a_u = \gamma_e k_\beta r_e = \frac{\sqrt{2} \gamma_e \pi r_e}{\lambda_p} \]
Betatron radiation: simulations for capillary

\[a_u = \gamma k r_e = \sqrt{2\gamma_e \pi r_e} \frac{\sqrt{2}}{\lambda_p} \]

\[n_{\text{crit}} \approx \frac{3a_u^3}{8} \]

\[\Omega \approx \text{few mrad and } 10^9 \text{ x-ray photons} \]
Where do we stand with plasma-wakefield accelerator based sources

★ brilliance of a wakefield based incoherent radiation source

figure from http://www.xfel.eu
Synchrotron, betatron and FEL radiation peak brilliance

\[I(k) \sim I_0(k)(N+N(N-1)f(k)) \]

- \(\lambda_u = 1.5 \text{ cm} \)
- \(\varepsilon_n = 1 \pi \text{ mm mrad} \)
- \(\tau_e = 10 \text{ fs} \)
- \(Q = 100 - 200 \text{ pC} \)
- \(I = 25 \text{ kA} \)
- \(\delta \gamma / \gamma < 1\% \)

FEL: Brilliance 5 – 7 orders of magnitude larger
The **Scottish Centre for the Application of Plasma based Accelerators: SCAPA**

A SUPA initiative to develop and apply ultra-compact accelerators and radiation sources
Conclusions

• Laser driven plasma waves are a useful way of accelerating charged particles and producing a compact radiation source: 100 – 1000 times smaller than conventional sources
• Some very good properties: sub 10 fs electron bunches potentially shorter (< 1 fs?) and high peak current (up to 35 kA?), \(\varepsilon_n < 1 \pi \text{ mm mrad}, \delta_{\gamma/\gamma} < 1\%? \).
• Slice values important for FEL - potentially 10 times better. Wide energy range, wide wavelength range: THz – x-ray
• Good candidate for FEL – coherence & tuneability
• Betatron radiation – towards fs duration gamma rays
• Still in R&D stage – need a few years to show potential
• Challenges: rep rate, stability, energy spread and emittance, higher charge and shorter bunch length, beam transport
• Synchronised with laser – can combine radiation, particles (electrons, protons, ions), intrinsic synchronisation
• Compact light source for every university or 5\(^{th}\) Generation light source?
Thank you