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1. INTRODUCTION 

What are wakefields and wake potentials, and why are these concepts useful 
in the physics of linear accelerators and storage rings? We approach this question 
by first reviewing the basic physical concepts which underlie the mathematical 
formalism. We then present a summary of the various techniques that have been 
developed to make detailed calculations of wake potentials. Finally, we give some 
applications to current problems of interest in accelerator physics. No attempt at 
completeness can be made in an introductory article of modest length. Rather, we 
try to give a broad overview and to list key references for more detailed study. It 
will also be apparent that the last chapter on this subject, with all the loose end 
neatly tied up, has yet to be written. There are subtle points, there are contro- 
versial questions, and active calculations to resolve these questions are continuing 
at the time of this writing. 

In listing references, no attempt has been made to be exhaustive or to present 
a complete guide to the historical development of each of the topics covered. 
However, several general references can be recommended to the beginning student 
of the subject. A. Chao’ gives an elegant introduction to the basic physics of wake 
potentials in cylindrically symmetric systems. A general introduction to wake 
potentials and impedance concepts is given in Ref. 2, Sec. 9. K. Bane et a1.3 give 
the most detailed and complete presentation of the calculation of wake potentials 
in closed cavities. Finally, K. Bane and M. Sands4 review wakefield effects in the 
diffraction limit for short bunches passing through a cavity with beam tubes, and 
develop a number of useful analytic expressions for this case. 

2. BASIC CONCEPTS 

Consider a point charge moving in free space at a velocity close to the veloc- 
ity of light, c. We know that, viewed in the laboratory frame, the electric and 
magnetic fields of such a relativistic particle lie nearly in a plane passing through 
the charge and perpendicular to its path. Thus a second charge moving behind 
the first charge on the same or on a parallel path, and at the same velocity v E c> 
will not be subjected to any forces from the fields produced by the leading charge. 
The situation is different if the two charges are moving in the vicinity of metal- 
lic objects or other boundary discontinuities. The trailing charge still will not 
experience the direct fields in the wavefront moving with the lead charge. This 
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wavefront can, however, scatter from the boundary discontinuities, and this scat- 
tered radiation will be able to reach the trailing charge and exert forces parallel 
and perpendicular to its direction of motion. These scattered waves are termed 
wakefields, and the integrated effects of these wakefields over a given path length 
of the trailing charge give rise to longitudinal and transverse wake potentials. 

If a point charge moves on the axis of a perfectly conducting round pipe at 
D M c, the fields in the pipe are identical to the free space fields and hence there 
are no wakefields. If the particle moves on a trajectory which is parallel to the 
axis but offset from it, or if the cross section of the pipe is not a circle, the fields 
in the interior of the pipe are perturbed from their free space values. Even in this 
case, however, no wakefields are left behind the moving charge. One way to see 
this is to note that the boundary conditions can still be satisfied without either 
E, or B, field components (we assume the pipe walls and the direction of the 
particle motion are both parallel to the z axis). The energy flow, in the direction 
I? x l?, is then also in the z direction at every point in the wavefront plane (the 
plane containing the charge and perpendicular to its path). Thus, there can be no 
field anywhere behind the wavefront plane. The situation is changed if the pipe is 
not perfectly conducting. A small E, field component, related to the dissipation 
in the pipe walls, is necessarily present on and behind the wavefront plane (see 
Sec. 3.2). 

2.1 The “Catch-Up” Problem 

Figure 1 illustrates the wakefields produced by scattering from a small metallic 
obstacle by the (nearly) plane wavefront of a charge q traveling at v x c. A test 
particle traveling a distance s behind the driving charge will not experience the 
scattered wakefields until it has reached a position zC, given by 

b2 -s2 
2, x 

2s’ (24 

This “catch-up” distance can be quite large for small s. Taking into account the 
fact that y (the usual relativistic factor) is in reality finite, the distance for the 
scattered radiation to catch up to the exciting charge itself is zC x yb. 

Figure 2 gives some examples of wakefields excited by a point charge moving 
past several cylindrically symmetric discontinuities. Figure 2(a) shows a point 
charge entering and leaving a pipe with thin walls. For v = c the field lines 
when the charge is in the pipe are the same as in free space, and there is no 
scattering at the entrance and exit of the pipe. For TJ < c there will be scattering. 
In Figs. 2(b)-2(e) th e as e curves are intended only to show the limits of the d h d 
wakefields, which are contained in a toroidal region with a minor radius which is 
expanding at velocity c. Exact analytic solutions for the electric and magnetic 
fields within the toroidal region for these cases have not been obtained for a point 
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Fig. 1. Figure showing the field of a relativistic charge 
moving along the z-axis, and the field scattered by a per- 
turbing metallic obstacle. 

driving bunch. However, for short bunches computer simulations indicate that the 
scattered radiation field will be present not only on the expanding wavefront shown 
by the dashed curves, but will also tend to fill in the entire toroidal volume behind 
the wavefront. An analytic solution does exist for the case shown in Fig. 2(f), a 
point charge passing between two parallel conducting planes without beam holes. 
In -this case, discussed in more detail in Sec. 3.4, the fields are confined to the 

. wavefronts shown. 

2.2 Wake Potentials and the Loss Factor 

The integrated effect of the wakefields of a driving charge on a trailing test 
particle as both particles pass through a structure, for example the parallel plates 
of Fig. 2(f), is usually of greater interest than are the details of the wakefields 
themselves. The integrated fields seen by a test particle traveling on the same 
or on a parallel path at a constant distance s behind a point charge q are the 
longitudinal and transverse wake potentials, given by 

(2.2a) 

(2.2b) 

Here, i is a unit vector in the direction of motion of both the driving and test 
charges, which are taken to be parallel to the z axis. The transverse offsets of the 
driving and test charges from the z axis are r” and ?, respectively. In general, the 
wake potentials are functions of both r’ and r”. The driving charge is assumed to 
enter the cavity structure at z, t = 0 and to exit at z = L. The test particle enters 
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Fig. 2. Wakefields excited by a point charge moving past 
several cylindrically symmetric discontinuities. 

and leaves the cavity at z1 and 22. The longitudinal momentum kick experienced 
by a test particle of charge e is AP, = -(eq/c)W,(s). Note the convention that 
a positive longitudinal wake is retarding if e and q have the same sign. The 

transverse momentum kick experienced by the test particle is pi = (eq/c)$l(s). 
Note that we assume both driving and test particles are traveling at o = c. For 
v, = vq < c, the wake potentials will in general be functions of the particle velocity, 
and the wake potential concept is then much less useful. Also, if the definition in 
Eqs. (2.2) are to be useful, the driving and trailing charges must be sufficiently 
relativistic so that their paths through a cavity or structure are not significantly 
changed from what they would have been in the absence of the induced wakefields. 
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Once the response -to a point driving charge has been calculated, the wake 
potentials above can be used as Green’s functions to compute the potentials in 
and behind an arbitrary charge distribution. If the line density of the charge 
distribution is X(s) per unit length, the longitudinal and transverse potentials are 

00 9 
v,(s) = J ds’ X(s - s’) Wz(s’) = J 

ds’ X(s’) Wz(s - s’) , (2.3~) 
0 -03 
00 5 

71(s) = J ds’ X(s - s’) iiqs’) = J ds’ X(s’) i&(s -s’) . (2.3b) 
0 --oc, 

The potentials in Eqs. (2.3), sometimes called bunch potentials, can be normalized 
to a charge distribution with unit total charge. These normalized potentials are 
sometimes also called wake potentials. This can be a source of confusion, but 
it is usually clear from the context whether we are referring to the impulse (or 
delta function) wake potential due to a point driving charge, or to the net wake 
potential within and behind a charge distribution. 

_ Once the longitudinal bunch potential is known, the total energy loss to the 
wakefields is given by 

ccl 00 

AU = 
J 

ds X(s) Vz(s) = 
J 

d7 J(T) JUT> , (2.4~) 
-CO -CO 

where T = s/c = t - z/c and I(T) = cX( s is the current flow in the charge ) 
distribution. Equations (2.3) can of course also be written in terms of J(r) in 
place of X(s). A useful quantity, the loss factor, is now defined as 

An analogous transverse quantity, the transverse impulse factor, is defined by 

iI& E l 7 J ds X(s) Tl(s) . 
-CO 

(2.5) 

The total momentum kick experienced by the charge distribution is then $1 = 
q2&/c. 

By substituting Eq. (2.3a) in Eqs. (2.4a), we can prove a useful theorem 
concerning the longitudinal wakefield for a point charge or for a very short charge 
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distribution. Assume the bunch or distribution X(s) is so short that the delta 
function wake potential can be treated as a constant on the scale of the bunch 
length, W*(s) = W,(O+), h w ere O+ is a small positive distance. An integration 
by parts then gives 

AU = ; q2 wz(o+) . (2.6a) 

-By definition the energy loss for a point bunch is related to the effective wake 
potential acting on the bunch by 

AU = qV(0) = q2Wz(0) = q2ks , (2.6b) 

where k6 is the loss factor for a point bunch. Thus we can say that the wake 
potential immediately behind a point charge is twice the effective wake “seen” by 
the charge itself: 

wz(o+) = 2&(O) . (2.6~) 

This has been called the fundamental theorem of beam loading.2 By causality 
Wa(O-) is, of course, zero. 

2.3 Wake Potentials and the Loss Factor for a Normal Mode 

If we consider a point charge interacting in a cavity with a single mode having 
resonant frequency w,, then it is reasonable to expect that along a path behind a 
driving point charge the induced potential will have the form 

vzn(s) = -k cos y . (2.7a) 

In other words, the wake is maximum retarding just behind the driving charge, and 
it rings at the mode frequency wn. A more precise justification for this expression 
will be given in Sec. (3.4). From Eqs. (2.6), the peak value of the induced potential 
must then be 

vn = q l&(0+) = 2qk6, , (2.7b) 

and the longitudinal wake potential is 

i&(s) = -- = 2ks, cos (““) , s > 0. 
Q C 

Combining Eq. (2.7b) with kbn E Un/q2, where Un = (Au),, 

(2.7~) 

Note that ecn can be interpreted as the peak energy gain from the field induced 
in the nth mode for a relativistic particle which crosses the cavity after the driving 

7 



--- 

charge has exited, leaving behind energy U,. This energy could as well have been 
produced by any source, for example an external rf generator. Thus, kbn as defined 
above is a property of the charge-free cavity geometry, and as such can be calcu- 
lated using computer programs which solve the homogeneous Maxwell’s equations. 
However, we will find later that the wake potential described by Eq. (2.7~) is valid 
even if the driving and test charges are both in the cavity at the same time, as 
long as the two particles follow the same path through the cavity. 

If the cavity or structure is excited by a gaussian bunch with rms length 0, 
the induced potential can be obtained by substituting Eq. (2.7~) into Eq. (2.3a) 
to give 

-2qhn 
KnCs) = eu 1 ds’ cos [,n(‘c ““I exp (-$) . (2.10a) 

-03 

If position s is at least several bunch lengths behind the center of the bunch, the 
upper limit in the above integration can be taken as infinity to give 

Kn(s) = -2qkgn cos (y) exp(-3) , 

s&33a. 
(2.10b) 

Substituting Eq. (2.10a) in Eqs. (2.4) and integrating by parts, we obtain the total 
loss factor for a gaussian bunch interacting with the nth normal mode, 

ken(a) = kbn exp (2.1Oc) 

In analogy to Eq. (2.7c), under certain restricted conditions the longitudinal 
dependence of the deflection wake can also be factored out (see Sec. 3.4) to give 

GIR(s) = 2kl, f(r’,?“) sin y 
( > , (2.11) 

where kin is again a parameter for the nth mode which depends only on the 
geometry of the charge-free cavity or structure. In particular, Eq. (2.11) holds for 
the important case of the deflection wake in the beam tube region of an infinite 
periodic structure. Thus, for this case the transverse wake is a sum of sine-like 
modes which vanish at the position of the driving charge, i.e., a point charge 
cannot deflect itself. This is in contrast to the cosine-like longitudinal modes, 
which must always produce a retarding potential at the driving charge itself. 
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2.4 Relations-Between Wake Potentials and Impedance . 
In Sec. 3 we will find that the boundary value problem for the charge-driven 

fields-in a structure is sometimes easier to solve in the frequency domain rather 
than directly in the time domain. Time and frequency domain quantities are then 
related by the Fourier transform. For example, the impedance in the frequency 
domain is obtained from the time domain wake potential by 

co 

Z(w) = 
J 

Wz(~) exp{-iwT} dr zz E*(T) , (2.12cL) 

0 

00 

Z(k) = J W*(s) exp{-ills} ds 3 Gz(s) = ~[.Z(w)]~=k~ . (2.1%) 

0 

where k = w/c, s = CT = ct - z, and the lower limit of integration is zero since 
W*(s) G  0 for s < 0. Similarly, 

I(w) = f(T) ; w = %4 = K4lw=kc 
V(w) = V(T) ; V(k) = v(s) = c [V(W)],,~~ . 

In these transforms the lower limit of integration must of course be --co. 

From Eq. (2.3a) we know that V( 7 is the convolution of the delta-function ) 
wake, Wz(~), and the current distribution, I(7). The convolution theorem5 of 
Fourier transform theory tells us that the transform of the convolution of two 
functions is the product of their individual transforms. Thus, 

w-4 = GJ) Z(w) ) (2.13~2) 

V(k) = X(k) Z(k) . (2.13b) 

These results can also be easily proven directly, for example by substituting 
Eq. (2.3a) in the definition of the transform and reversing the order of integration 
to obtain Eq. (2.13a). If the impedance is known, for example from a frequency 
domain calculation, then the delta function wake potential is calculated from the 
inverse transform as 

00 
Z(w) exp(iws/c)dw = i 7 

--03 0 

To obtain this result, we depend on the fact that the wake potential is both real 
and causal, that is W*(s) = 0 for s < 0. If W*(s) is to be real, then Z,(w) and 
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21(w) must be even and odd functions of frequency respectively, and the lower 
limit of integration can be changed from --oo to 0. If W=(s) is to be causal, 
then ZR(P) and 21(w) are related by the Hilbert transform, and this introduces 
a second factor of two (see Ref. 2, Sec. 9.3, for a more detailed development). 

From the power theorem of Fourier transform theory5 (the asterisk indicating 
complex conjugate), 

03 

AU = 
J 

V(t) I(t) dt 
--oo 

1 O3 
=iG J 

V(w)l*(w) dw . 
-CO 

Using Eq. (2.13a) and the symmetry properties of the impedance function, 

kc = “,; 
1 O” -=- 

v2 J 
Z&w) 12(w) dw I 

0 

For a gaussian bunch, I(w) = q exp( -u2g2/2c2) and 

00 

ke = 1 
?i- J 

0 

For a high Q resonant mode, 

20 

zR(w) = 1 + [2Q(w - wo)/wo]2 ’ 

The integration in Eq. (2.15b) then gives, together with Eq. (2.1Oc), 

Wn kbn = - 
2 

(2.15~) 

(2.15b) 

(2.16) 

Note that 20 = R/2, where R is the usual accelerator definition of the shunt 
impedance. 

2.5 Systems with Cylindrical Symmetry 

Most accelerating structures for linacs and storage rings are cylindrically sym- 
metric. The longitudinal and transverse wake potentials can in this case be 
expanded in terms of multipoles having an azimuthal variation proportional to 
cos me, where m = 0 gives the azimuthally symmetric (monopole) potential, 
m = 1 the dipole potential, etc. We make the assumptions that the driving 
charge is moving parallel to the axis of symmetry of the structure, that all quan- 
tities depend on z and t only as functions of s = ct - z, and that all forces are 
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averaged over one period in the case of an infinite periodic structure. Then it can 
be shown617 that 

- - 
WJm) = 7-r rm F’(s) cosm0 , (2.17~) 

-AmI 
WI = rnrr r m-1 F(s) [F cosm0 - 4 sin me] . (2.17b) 

Here, & is the transverse offset of the driving charge from the structure axis. It is 
assumed to be at 19 = 0. The field point (location of the test charge) is at radius 

7, and F’(s) = U/d s f or m # 0. For m = 0, $1 G 0 and F’(s) = Fs(s). Both 
wake potentials vanish, of course, for s < 0. The important thing to note is that 
the dependence on longitudinal and radial variables is seperable for both of the 
wake potentials. The simple scaling with radius allows the wake potentials to be 
calculated at the radius of the beam hole, thus avoiding the catch-up problem 
inherent in an integration along or near the axis. This will be discussed more 
fully in Sec. 3.1. Note that for m = 0 the longitudinal wake is independent of 
radial position in the beam hole region. For the dipole mode the transverse kick 
is uniform over the beam hole region and is in the direction of offset of the driving 
charge.. This is seen more clearly by rewriting Eq. (2.17b) as 

---k(l) 
w-L = Fo F(s) . (2.18) 

In the derivation of Eqs. (2.17), t i was assumed that the wake potentials are aver- 
aged over one period in the case of an infinite periodic structure, or are calculated 
for a single cavity with input and output beam tubes of equal radius. If there is 
metal between the beam and the axis of symmetry, as for example in a coaxial 
cavity, there are additional terms6 in the wake potentials. In the case of the lon- 
gitudinal wake, for example, there is a term proportional to .h (r) for m = 0, and 
to rvm for m > 0. 

2.6 Panofsky-Wenzel Theorem 

Panofsky and Wenzel’ proved a theorem concerning the net transverse kick 
experienced by test charge crossing a closed cavity of arbitrary shape containing 
electromagnetic fields derived from a vector potential A’ only (no free charges): 

L L 

pi = e 
I 

71 E,(z,t) . (2.19) 

0 lx/c 1 0 t=z/c 

In deriving these expressions it is assumed that A; vanishes at z = 0 = L, i.e., 
either the path of the test change begins and ends in a field free region (as in beam 
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tubes), or the cavity end walls are normal to the path. Even if this is not the case, 
the small additional boundary term can usually be neglected. The second expres- 
sion in Eq. (2.19) assumes a single mode ringing as erwo’. These expressions hold 
whatever the source of the cavity fields, which could be an external rf generator 
or a driving charge which has passed through the cavity earlier. If we assume that 
such a driving charge has already left the cavity and look at distance s = ct - z 
behind the charge, then for s > L Eq. (2.19) gives 

ai?, 
L 

c Wl 1 -= -- = -- 
dS eq ds Q J [ 

dz VI E,(z,t) 1 = $1 Iv* . (2.20) 
0 

t=(s+z)/c 

In the literature on wake potentials, it is this relation between the longitudinal 
derivative of the transverse wake potential and the transverse gradient of the lon- 
gitudinal potential that is referred to as the Panofsky-Wenzel theorem. Note that 
in the previous section, the wake potentials given in Eqs. (2.17) for cylindrically 
symmetric structures obey this theorem for any value of s. However, from the 
derivation of the theorem it also hold for a closed cavity of arbitrary shape for 
s 5 L. It will be shown in Sec. 3.4 that the theorem also holds for 0 < s < L in 
a structure of arbitrary cross section with translational symmetry and with end 
planes normal to the path of the particles, and also for a closed cavity of arbitrary 
shape if the driving and test particles follow the same path. 

3. METHODS FOR CALCULATING WAKEFIELDS 
AND WAKE POTENTIALS 

3.1. Direct Solution in the Time Domain 

The most straightforward way to compute wakefields is to solve Maxwell’s 
equations directly in the time domain. For all but the simplest boundary condi- 
tions, however, this must be done numerically. By discretizing Maxwell’s equations 
on a mesh, T. Weilandgylo has developed a useful code, TBCI, for calculating the 

- fields induced by a bunch interacting with any cylindrically symmetric structure. 
As an example of a TBCI output, Fig. 3 shows the wakefields induced by a gaus- 
sian bunch passing through a typical cavity for a storage ring rf system. The wake 
potential could in principle be calculated by integrating the wakefield along the 
path of the test particle (for example along the axis) using Eqs. (2.2). However, 
the catch-up problem discussed in Sec. 2.1 poses a difficulty. If, for example, we 
want to know the wake potential 1 mm behind the leading edge of a bunch travel- 
ing through a structure with a 5 cm radius beam aperture, (typical for a storage 
ring cavity), then Eq. (2.1) ’ pl im ies that the integration must be carried forward 
along the axis in the downstream beam tube for at least 125 cm beyond the end 
of the structure. This can lead to an unacceptable increase in the computation 
time. However, as discussed in Sec. 2.5, in the case of a cylindrically symmetric 
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structure with input and output beam tubes of equal radius, the wake potentials 
scale with radius in a simple way. This allows the integration for the longitudinal 
wake of a ca.vity to be carried out at the beam tube radius, where E, vanishes 
except across the cavity gap itself. The longitudinal wake potential can then be 
scaled to any radius using Eq. (2.17a). The situation is similar for the transverse 
wake, but less obvious. From Eq. (2.17b) the dipole wake is in the 6 direction at 
19 = 90”. A transverse kick in the 6 direction must come from the Ee or B, field 
component, both of which vanish at the metal walls at radius r = a in the beam 
tube region. The transverse wake can therefore be obtained by integrating the 
azimuthal component over the cavity gap at T = a and 8 = 90”. 

~------ ----- -- --- ‘U ---I 
72-84 4!J!l”Al 

Fig. 3. Electric wakefield produced by a gaussian bunch 
traversing a PETRA cavity.l’ 

Weiland’s code TBCI, which solves Maxwell’s equations on a rectangular 
mesh, has been singled out for special mention here since it is widely available and 
in current use at most accelerator laboratories. Similar codes have, however, been 
written by others. T. Shintakel’ solves the inhomogeneous wave equation for the 
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vector potential on a rectangular mesh, and A. Novokhatskyr2 solves for fields 
- on a mesh of irregular quadrilaterals. More recently, a fully three dimensional 

version of TBCI, the MAFIA code T3, has been developed by Weiland and his 
coworkers.r3 

3.2 Cylindrical Tube with Weakly Perturbed Walls 

As mentioned previously, a charge traveling parallel to the axis of a perfectly 
conducting cylindrical tube generates no wakefields. However, even a small per- 

. turbation in the boundary condition at the wall changes this picture. Perhaps the 
simplest perturbation is to allow the wall to become slightly resistive. The problem 
of the longitudinal and transverse wakefields in a slightly resistive pipe of circular 
cross section has been investigated in a classic paper by Morton, Neil and Sessler.14 
An elegant tutorial exposition of this problem is given by Chao.r5 The delta- 
function wake potentials per unit length for this case are 

m =o : Wz(s) = -& AL 
( > 

112 
s-3l2 3 =gc 

_. I/2 
m=l: g*cs, = 2 3L 

( > 
s-w 7 

TO’, 

(3.lu) 

(3.lb) 

where b is the pipe radius, r’o the offset of the unit driving charge from the axis, 
20 the impedance of free space and cc the conductivity. Recall that a negative 
longitudinal wake is, by the definition in Eq. (1.2a), accelerating. Thus, the wake 
appears to be accelerating for all values of s. However, in deriving the above 
expressions, it was assumed that s is greater than a critical distance so given by 

(3.2) 

It can be shownr5 that at s x so the sign of the longitudinal wake changes from 
- accelerating to retarding. At the position of the driving charge itself, the retarding 

field is just that required to give an energy loss which exactly balances the heat 
generated in the wall. The longitudinal field immediately behind a driving point 
charge in the limit s < SO is shownr5 to be just twice the retarding field experi- 
enced by the charge itself, in agreement with the so-called fundamental theorem 
of beam loading mentioned in Sec. 2.2. It is worth noting that this theorem can 
also be proved for normal modes in a cavity or structure using conservation of 
energy.16 

The impulse wakes in Eqs. (3.1) can be now be used to find the potentials 
in a gaussian bunch. Some useful results are given in Ref. 3, Sec. 3.2. In Ref. 3, 
Sec. 3.1, the longitudinal wake potential for a line charge traveling parallel to the 
surface of a resistive slab is also derived. 
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The longitudinal and transverse wake potentials for a cylindrically symmetric 
structure with a radius a(z) = ai[l + ES(Z)], w ere s(z) is a periodic function of z h 
and ; is a perturbation parameter, have been considered by several authors. This 
boundary value problem is more readily attacked by working with the Fourier 
transforms of the field components (we should note that this was also the case 
in calculating the fields for a point charge moving in a pipe with resistive walls). 
Using this technique for a cylindrical pipe with a weakly perturbed wall geometry, 
Chatard-Moulin and Papiernik 17)18 have calculated the longitudinal wakefield and 
the loss factor Ice for a gaussian bunch as a function of y and cr2 for the case 
s(z) = cos8(7rz/p). It is interesting to note that for large y the loss factor diverges 
approximately as a; ’ for small bunch lengths. Cooper, Krinsky and Mortonrg 
compute the transverse wake potential in and behind a gaussian bunch using a 
similar perturbation method. 

A bellows is also an example of a cylindrical pipe with a weakly corrugated 
wall. The longitudinal and transverse wake potentials for a bellows are important 
for beam stability calculations in circular machines. One problem with the per- 
turbation approach used in Refs. 17-19 is that it breaks down if the slope of the 
wall with respect to the axis is vertical at any point, which is often the case in 
a practical bellows. Calculations by Kheifets and Zotter,20 and by Krinsky and 
Gluckstern,21 get around this difficulty. However, in these calculations the longi- 
tudinal and transverse impedances are obtained only in the low frequency range. 
Thus the method is not well suited to obtaining the short-range wake potentials. 

3.3 Field Matching 

The simple cylindrically symmetric structure shown in Fig. 4(a), in which all 
surfaces are parallel or perpendicular to the axis, can serve as a rough model for 
many accelerating structures and rf cavities. The four parameters a, b, g and p 
specify the disk hole radius, the cavity radius, the cavity length and the periodic 
length, respectively. If p is long compared to g, the model approaches a chain of 
isolated pillbox cavities with beam tubes, as shown in Fig. (4b). 

A field matching technique can be applied to the structure of Fig. (4a) to solve 
for the traveling wave field components which are synchronous with a relativistic 
charge moving in the beam tube region r < a. In this region traveling wave 
fields which are functions of kz - wt are assumed, while standing wave fields are 
assumed in the cavity region, b > T > a. The tangential field components are 
matched across the boundary shown by the dashed line at radius r = a shown 
in Fig. (4a). A match is possible only at certain specific values of frequency, 
the eigenfrequencies of the problem. The field components can be either the 
time domain fields or their Fourier transforms. Using a matching of the time 
domain field components, E. Keil 22 developed the code KN’IC, which calculates 
the frequencies for the source-free monopole (m = 0) modes which have phase 
velocities equal to c. The loss parameter per unit length, k, = EZn/4u, where 
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Fig. 4. Examples of cylindrically symmetric structures 
with jumps in cross section. 

E,, is the axial sychronous field component and un is the stored energy per unit 
length for the nth mode, can also be obtained from information in the output 
of the program. From Eq. (2.7~) the longitudinal wake potential for the first N 
modes is 

W*(s) = e 2k, cos (y) . 
n=l 

(34 

It is worthwhile to emphasize again that the kn’s in the expression have been cal- 
culated by solving the source-free Maxwell’s equations, but that Eq. (3.3) is valid 

- for the charge-driven modes since the structure is both periodic and cylindrically 
symmetric (see Sec. 2.5). 

Because of limitations set by computer time and numerical accuracy, the num- 
ber of modes that can reasonably be calculated is typically on the order of a few 
hundred. This corresponds to an upper mode frequency of about thirty times the 
fundamental (lowest frequency) mode. The wake potential is therefore known to 
a distance given approximately by c/w = Xo/607r, where X0 is the fundamental 
mode wavelength. This is about 0.5 mm for the SLAC wavelength of 105 mm. The 
short range longitudinal wake for 450 modes for the SLAC disk loaded structure is 
shown by the dashed line in Fig. 5. This wake is inadequate to serve as a Green’s 
function for calculating the bunch potential for bunch lengths less than one mil- 
limeter or so. (At SLAC, b unch lengths of interest fall in the range 0.25 to 1.5 
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mm.) The situation is resolved by adding a so called “analytic extension” to the 
wake potential obtained by summing modes. The functional form of the analytic 
extension will depend on the model chosen for the impedance in the high frequency 
limit: The proper model to be used for a gaussian bunch in a periodic structure 
depends on the number of cells and on the bunch length. This question will be 
discussed in more detail in Sec. (3.5). A model which describes the impedance 
for many practical structures of interest is the so-called optical resonator model. 
The history and details of this model are given in Ref. 23. The correction to the 
longitudinal wake potential can be written, in analogy with Eq. (3.3), 

AWz(s) = 2 
O” dk(w) 

J 
dw cos (w+) dw . 

By comparison with Eq. (2.14), we have 

dk 
7r- = ZR(w) = Aw- 312 

dw 
. 

(3.4a) 

We have assumed the validity of the optical resonator model, which predicts 
zR(‘=> -L' -3/2 for WN is sufficiently high. Equation (3.4) can now be integrated 
to give 

AWz(s) = -$ {cosX-~[1-2s(&9]} , (3.5) 
X=WNS/C 

where S is the Fresnel integral and A = ZR(WN) wz2. Although the constant 
A is specified analytically by the optical resonator modal, it is often treated in 
practice as an adjustable constant, obtained by fitting the binned values of Ak 
from the modal sum plotted on a log-log scale versus increments Aw in frequency 

- (see Ref. 24). Th e amount of the added wake is then found to be just that needed 
to compensate for the ringing in the modal sum wake, caused by truncating the 
sum at WN. The result is a smooth short-range total wake, as shown by the 
solid curve in Fig. 5. The dot-dash curve shows the wake for the fundamental 
(accelerating) mode. This wake is important in beam loading calculations. 

A time domain field matching code (TRANSVRS) for the m > 0 modes 
has been developed by Bane and Zotter 25 for the four parameter structure of 
Fig. 4(a). Again, the program solves for the frequencies wn (ml of the traveling wave 
modes with symmetry cos me which have a space harmonic component which is 
synchronous with a velocity of light particle. For each synchronous mode, the 
program solves for the field components and stored energy per unit length. In the 
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Fig. 5. Short range longitudinal (m = 0) wake for the 
SLAC structure (a = 1.165 cm, b = 4.13 cm, d = 3.50 
cm, g = 2.92 cm). Dashed curve shows the sum of 450 
modes, dot-dash curve the fundamental accelerating mode 
only. 

following section we show that the dipole wake for a unit driving charge which is 
offset by distance rg from the axis can be written in the form 

,(l) 
WI (s) = fj! c 2k1n WlnS 

n (ulna/c) sin C . 
(3.6~) 

The lCrn’s are again defined in terms of the charge-free synchronous mode proper- 
ties by 

(3.66) 

Here Ezn(r = a) is th e s nc y h ronous longitudinal electric field component evaluated 
at the disk hole radius. The dashed curve in Fig. 6(a) shows how 495 of these sine- 
like dipole modes add to produce the dipole wake for the SLAC structure. Again, 
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an analytic extension* must be added to produce a useful short-range wake.24 
The solid curve in Fig. 6(a) shows the total wake which results again assuming an 
analytic extension based on ZR(~) N w -3/2 The dot-dash curves show the wake . 
for the lowest dipole mode, which is important in beam break-up calculations. 

(bl - 

'0 20 40 60 80 100 

3-88 s (mm) 5965~6 

Fig. 6. Short range diopole wake for the SLAC struc- 
ture. Dashed curve shows the sum of495 modes, dot-dash 
curve the lowest frequency dipole mode. 

Field matching across a boundary parallel to the cavity axis at the radius of 
the beam tube, as shown in Fig. 4(b), h as also been used to obtain the field driven 
by a point charge passing through a single pillbox resonator with beam tubes.26 In 
this calculation the Fourier transformed field components are used, and therefore 
the impedance (in this case the longitudinal impedance), rather than the wake 
potential, is the more direct result of the calculation. As opposed to the case for 
KN7C and TRANSVERS where the charge-driven wake is obtained by summing 
solutions to the source-free Maxwell’s equations, the boundary problem here is 
solved directly for the source-driven fields. More recently Henke27 has extended 

* It should be noted that, for both the monopole and dipole cases, the optical resonator 
model predicts a more complicated form for ZR(W) unless WN is on the order of 2scd/a* 
or larger, where d is the periodic length and a is the beam hole radius. 
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this work to case of a finite chain of identical pillbox cells. He shows how the 
impedance of a single cell is gradually perturbed, as the number of cells increases, 
until it approaches a synchronous ‘delta-function resonance for an infinite periodic 
structure. He also finds, for a single pillbox resonator with a large outer radius, 
that Z,(w) falls off at high frequencies as um1i2, in agreement with the result of 
the diffraction model to be discussed in Sec. (3.5). 

Finally, under the heading of field matching techniques, we should mention 
‘several papers in which the longitudinal and transverse impedances are calcu- 
lated for simple cylindrically symmetric structures with right angle jumps in cross 
section.28j2g These structures represent either pillbox cavities of arbitrary diame- 
ter in which the incoming and outgoing beam tubes can be different in radius, or 
collimators between equal or unequal beam tubes. Thus the field matching must 
be carried out at discontinuity planes normal to the axis, as shown in Figs. 4(c) 
and (d). As in the previous calculation, the field expansions are carried out using 
Fourier-transformed field components. This again gives an impedance rather tha.n 
a wake potential as the direct result of the calculation. According to the theorem 
of conservation of difficulty, it requires more expansion coefficients to calculate the 
impedance at high frequencies, while more mesh points are required to compute 
the time domain wake potential at short distances. Thus, the two are equally dif- 
ficult to obtain. However, in the case of a collimator between equal beam tubes, 
it can be shown28 that the longitudinal impedance approaches a constant. This 
leads to an analytic expression for the loss parameter for a short Gaussian bunch, 

where a is the radius of the beam pipe and b is the radius of the hole in the 
collimator. 

3.4 Wake Potentials for Closed Cavities: The Condon Method 

In 1941 E. U. Condon3’ introduced a technique for calculating the fields pro- 
duced by currents and charges passing through a closed cavity. In the so-called 
Condon method, the vector and scalar potentials for the charge-driven fields are 
expanded in terms of the potentials for the normal modes of the charge-free cavity 
using the Coulomb gauge. Relatively simple expressions for the time-dependent 
expansion coefficients can be written in terms of the time-varying charge and 
current distributions which describe a point charge passing across the cavity. 

Using the Condon method, Chao and Morton31 calculated the fields produced 
by a point charge moving at v = c through the simplest possible cavity: two 
parallel conducting planes a distance g apart, with the charge moving on a path 
normal to the planes. They showed that the fields sketched in Fig. 2(f), which 
seem intuitively reasonable, are in fact rigorously correct. Assuming a test charge 
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following at distance s- behind a unit driving charge, K. Bane32 integrated the 
longitudinal electric field in Ref. 31 to obtain the longitudinal wake potential: 

I~e,*lV~(s) = 26(s) In [i] - 2 5 6(2ng - s) In [(s + g;;i _ s) 
n=l 

1 1 1 

-- - 9 { [ gj 1 Jp+g [$&+ij+1 1 . 
(3.84 

Here IP denotes the integer part. Equation (3.8a) is plotted in Fig. 7. This wake 
is important because it is one of the few cases, if not the only case, for which 
an exact analytic expression has been obtained for the time domain wake for a 
physical structure of interest. 

II 26(s) Pn (g/s) 

26(2g-s) Pn(4/3) 
1~85 4998A16 

Fig. 7. Longitudinal wake potential for a point charge 
moving perpendicular to two parallel metallic planes. 

Note that, although the geometry of the structure generating the wake is 
extremely simple, the wake potential function is rather complex and is replete with 
delta functions. The wake potential is everywhere accelerating except at s = 0. 
The driving charge itself experiences an infinite retarding potential at the moment 
it exits through the second plane. Spherical wavefronts, which expand with the 
velocity of light, are generated when the charge enters through the first plane and 
again when it leaves through the second plane. On the axis two of these wavefronts 
join in the double cusp geometry shown at position X in Fig. 4(f). When a trailing 
particle meets and passes through this singularity or a later reflection of it, it will 
experience a finite accelerating potential given by the third term on the right 
hand side of Eq. (3.8a). F or small s this accelerating potential diverges as l/s. If 
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s happens to be a- multiple of 2g, the test particle will travel with the singularity 
across the cavity and will experience an infinite accelerating potential. 

Using causality, the wake potential for two parallel plates should be the same 
as the wake potential for a closed pillbox cavity if s < so G (4b2 +g2)ri2 -9, where 
b is the radius of the pillbox and g its length. That is, no signal can propagate 
from the point where the driving charge enters the cavity, be reflected from the 
outer wall, and return to the path followed by the driving charge within a distance 
& behind it. The wake potential can be written in terms of the normal modes of 

. the cavity following the form of Eq. (3.3), 

1 - (-1)” cos U+ 
( > WnpS 

.iZ J12(.in> 
cos - . 

( > 
(3.Sb) 

C n=l p=o 

Here, cp = l/2 for p = 0, cp = 1 for p + 0 and j, is the nth root of Jo. In Ref. 2, 
Sec. 3.3, the preceding two expressions for the longitudinal wake potential, which 
should agree for s < so, are compared. It is found that the sum in Eq. (3.Sb) 
does not produce a smooth function, but a function which instead oscillates rapidly 
about an average value given by Eq. (3.8a). Th e p eriod of the oscillation decreases 
as the number of terms in the sum in Eq. (3.8b) is increased. By extrapolation, the 
function will oscillate infinitely fast as the number of terms in the sum becomes 
infinite. Thus, both the value and the slope of the resulting function are undefined 
at every point. However, a convolution of this ill-behaved Green’s function with 
a smooth bunch distribution will produce a well-behaved bunch potential. 

In Ref. 3 the Condon method is applied to derive the wake potential for a 
closed cavity of arbitrary shape. Assume a driving charge and a test charge which 
both move at velocity v = c on paths parallel to the z axis in a cavity with highly 
conducting walls. Let the driving and test charges be at transverse distances ?a 
and F, respectively from the z axis. The driving charge crosses the cavity from 
z = 0 to z = L, while the test charge passes along a path from z = zr, to 
z = z2. For certain special cavity geometries it can now be shown3l33 that the 
wake potentials per unit length in Eqs. (2.2) can be written in the form 

j.j~,(i’~, r’,s) = 2H(s) c knz(r’o, 3 ~0s y 7 
n 

&(Fo, +) = OH C I&TO, r3 sin y y 
n 

(3.9a) 

where 
0 s<o 

H(s) = l/2 s=o 

1 s>o 
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and 

(3.10a) 

(3.10b) 

Here, Vn(rT is the voltage that would be gained by a nonperturbing test particle 
crossing the cavity in which u, is the stored energy in the nth mode. Assuming 
fields varying as exp (iwt), then 
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Vn(r’) = 
J 

E,, (f’, z) exp 

with a similar expression for Vn(Fii). Table I gives a summary of the cavity ge- 
ometries in which the wake potentials are given by Eqs. (3.9). Note that the 
longitudinal and transverse wake potential are related by the Panofsky-Wenzel 
theorem, Eq. (2.20): 

Although the preceding relations, Eqs. (3.9), are strictly valid only for particles 
with u = c, the wake potential concept is useful for high energy particles with 
ZJ = c. It can be shown33 that the correction terms to the wake potentials are 
then proportional to ye2. 

The wake potentials for a cylindrically symmetric periodic structure are of 
particular importance. Equations (2.17) g’ ive the radial dependence of the wake 
potential for this case, and the function F(s) is fixed by Eqs. (3.9). The multipole 
wake potentials can now be written 

wZ(m) = 2 (z)m (~)mcosnA’~k~m~(a)cos~ , 
n 

(3.12~) 

%yl=2m(:)m (f)“-’ [icosm6-8sinmB] c tF;z:sinq3J2b) 
n 

The driving charge is assumed to be at 8 = 0, a is the radius of the beam aperture 
region and 

k;m’(a) = [ Eir’(r = a) 2 1 
4uLrn) ’ 

(3.13) 

where z&ml is the stored energy per unit length in the nth mode with azimuthal 
symmetry eime. 
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Table I 
Cases for which Eqs. (3.9a) and (3.9b) give the wake potentials in the limit v E c. 

- - Case Eq. (3.9a) Valid Eq. (3.9b) Valid 
for W, for WI 

(a) Test charge and driving charge 
follow different paths in a closed 
cavity of arbitrary shape. 

No No 

(b) Test charge and driving charge 
follow the same path in cavity of 
arbitrary shape. 

Yes No 

(c) Velocity v’ is in the direction 
of symmetry of a right cylinder 
of arbitrary cross section. 

Yes Yes 

(d) Both driving charge and test 
charge move in the beam tube _. 
region of an infinite repeating 
structure of arbitrary cross section. 

Yes Yes 

(e) Both particles move near the 
axis of any cylindrically 
symmetric cavity. 

Yes Yes 

The most important longitudinal wake potential is that for the azimuthally 
symmetric m = 0 modes. If all the dimensions of a structure or cavity are changed 
by a scale factor 5, the frequencies of the 7zth mode will vary as w, - cm2 and 
the U,‘S for a given E,, will vary as c2. From Eq. (3.13) the loss parameters 
will therefore vary as k, - ce2 - w;. Thus, for m = 0 the longitudinal wake 
potential per unit length at a distance s - [ N w;’ behind the driving charge 

(0) will also vary as W, N C-2 - wi. This is true both for the wake potentials for 
each mode and for the total wake. The scaling as a function of beam aperture, 
if the other structure dimensions and the distance s are kept fixed, is less clean. 
A simple model in which the energy in the electric field is stored mainly in the 
beam hole region suggests that the k,‘s should vary as am2. Since the wn’s are 
only weakly dependent on the beam aperture, the short range longitudinal wake 
should also vary as a -‘. However, the diffraction model (next section) predicts 
that Wj”) - a- ‘. Computer calculations for the SLAC structure, using an analytic 

(0) extension based on the optical resonator model, give W, N a-1.68. 
The most important transverse wake potential is the dipole wake, given by 

Eq. (3.6a). For a structure with all dimensions scaled by a factor 5, the wake 
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potential per unit length for a fixed driving charge offset will vary as Wy’(sC) - 

!r3 - wi. If the aperture a is varied while s and the periodic length are kept fixed, 
thenEq ‘(3 6a) predicts W!)(s) - a- . . 4 for small s, again assuming the kn’s vary as 

am2. The diffraction model (Sec. 3.5), however, predicts WY’ N um3. Numerical 
calculations on the SLAC structure tend to agree with the a-’ dependence for 
s << a. The longitudinal wake associated with the dipole mode is 

(3.14) 

This wake scales as Wj”(sC) N wt for fixed driving charge and field point offsets. 

3.5 The Diffraction Model 

As discussed previously, the wake potential at very short distances behind a 
driving point charge cannot be obtained from a sum of modes for a closed cavity 
or infinite periodic structure because of the unacceptable computation time. In a 
time domain program such as TBCI, a small Gaussian bunch with gz - c/4 must 
be used to obtain a short-range wake which is accurate at distance s NN e. Even 
using a “moving window,“34 which discards the long-range wake as the calculation 
proceeds, requires a computation time which varies as cm2. Some problems, such 
as an obstacle (e.g., single iris) in a waveguide, must be approached from the 
beginning as a scattering problem using a continuous spectrum of traveling waves 
rather than discrete modes. To calculate the impedance at higher frequencies 
(and hence the wake potential at shorter distances), the number of coefficients in 
the field matching expressions must be increased and again the computation time 
will increase as least as fast as cm2. 

For the case of a wake potential obtained from a sum of modes, an analytic 
extension, Eq. (3.5), was used to approximate the wake from the uncalculated 
modes. This expression is based on the so-called optical resonator mode23 in which 
the diffraction loss from the electromagnetic fields in an optical resonator formed 
by two circular disks is compared, using Babinet’s principle, to the diffraction loss 
for the plane-wave-like field of a point charge moving on the axis of an infinite 
array of thin conducting sheets with circular holes. This give an impedance which 
falls off at high frequency as ZR(W) = Awm3i2 and a short-range wake which 
approaches a constant as s -+ 0. Using Eq. (2.15a) and treating the bunch current 
distribution as constant up to frequency c/o, the loss factor becomes for cr --f 0 

Icp z ke( modes) + (3.15a) 

where WN is the highest frequency in the model sum. The constant A in this 
expressing and in Eq. (3.5) can be expressed in terms of the structure parameters 
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using the optical resonator model. Per unit length of structure, it can be writtenZ3 

(3.15b) 

where d is the period length, g is the cell gap length, Csv = 650 ohms is the 
“Sessler-Vainshtein” constant, and wsv is the Sessler-Vainshtein frequency 

cm 
wsv f 4a2 . 

The constant B is a slowly varying “fudge factor” which approaches unity for 

(WNlWSV) + co* For 450 modes in the SLAC structure, WN/WSV % 30 and 
B M 0.6. If the ratio WN/WsV is significantly less than thirty or so, the we3j2 
impedance variation is no longer valid and a more complicated impedance function 
calculated from the optical resonator model must be used.23 

.As mentioned previously, the applicability of the optical resonator model to 
the. calculation of the loss in a periodic structure of finite length is questionable. 
For example, Balakin and Novokhatsky35 find a loss parameter for a periodic 
structure a few cell’s in length which varies as a -‘j2 for short bunches, implying a 
high frequency impedance which varies as w -li2. On the other hand, R. Palmer36 
argues for a loss parameter per unit length for such a structure which approaches 
a constant, implying ZR(U) N w-” where Q is greater than one. 

Before resolving these apparent inconsistencies in the next section, we consider 
the wake potentials and loss parameter for a short bunch passing through a single 
cavity. Application of a diffraction model to a single pillbox cavity with beam 
tubes was originally suggested by Lawson,37 and has recently been investigated 
in detail by Bane and Sands. 4 They find that the real part of the high frequency 
impedance is 

&(w) = -& Aw-l12 , (3.16~) 

where a is the pipe radius and g the axial length of the cavity. An analytic 
extension to the longitudinal wake potential can be obtained for this case, using 
Eq. (2.14), 

._ AW,(s) = (3.16b) 

where C is the Fresnel cosine integral and WN is again the upper frequency limit 
of the sum over modes. This function, of course, diverges as s approaches zero. 
The total loss factor can be divide into that part due to the trapped modes in the 
cavity, w, 5 w, where w, = 2.4c/a is the cutoff frequency for the beam tube, and 
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a part due to diffraction, w > w,. For very short bunches, the diffraction loss per 
cell can be obtained by substituting Eq. (3.16b) in Eq. (2.15a) and assuming the 
bunch spectrum is flat to frequency w = c/u and zero beyond. The result is 

[kf(a>lDiff = -&/gl- (y,“‘] . (3.17) 

An exact calculation4 using a gaussian spectral distribution e -w2u2/c2 instead of 
the simple rectangular distribution gives the same result except that the constant 
1 inside the bracket is replaced I’(1/4)/4 = 0.908. 

The dipole wake potential in the diffraction limit is also of interest. Bane and 
Sands4 obtain this as 

!W~(S)lDiff = 
23ml-Jc 

7r2a3 &c- (3.18) 

The transverse impulse factor, Eq. (2.5), becomes4 for a gaussian bunch, 

[kL(a)]DiE = (4.36.*)$$&F * (3.19) 

3.6 Transition Between a Single Cavity and a Periodic Structure 

In a series of recent papers and reports, the longstanding controversy over 
the high frequency behavior of the impedance for a periodic structure has been 
resolved. A definitive calculation by Heifets and Kheifets38 shows that Z(w) N 
W -112 if 

cMd 
w >> - 

I22 ’ 
(3.20~) 

where M is the number of cells in the structure (assumed to be large), d is the 
period and a is the iris radius. Thus the wake potential and loss factor follow 
Eqs. (3.16) and (3.17) if 

a2 UM c”;i?;i. 
W 

(3.20b) 

On the other hand, the high frequency impedance will vary as Z(w) - wm312 if38 

cM2i3d 
w < 

CL2 ’ 
(3.21a) 

and we are in the diffraction regime, w > cd/u2. We assume also that the disks 
in the periodic structure are relatively thin so that d x g. In terms of the bunch 
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length, Eq. (3.2la) implies 

(3.21b) 

For the SLAC structure parameters (M = 85,a = 1.165 cm, d = 3.5 cm), 
Eqs. (3.20b) and (3.21b) g ive the regime where neither scaling is valid: 

0.05 mm < u < 0.2 mm . (3.22) 

Thus for 0 2 0.05 mm, the impedance and loss parameters follow Eqs. (3.16a) and 
(3.17). For 0 2 0.2 mm, the standard expressions based on the optical resonator 
model should be valid. 

The relation 
cMd 

Wt x - 
a2 ’ 

for, the transition between the Z(w) N we1i2 and Z(w) N wW3i2 impedance regimes 
has also been obtained by Gluckstern3’ and by Palmer.40 The note by Palmer gives 
a clear picture in simple physical terms of diffraction in a multi-cavity structure 
and the physical basis for the transition between the two regimes. 

4. SOME APPLICATIONS OF WAKE POTENTIALS 

4.1 Single Bunch Beam Loading and Energy Spread 

A single bunch passing through a cavity will lose energy to all modes with 
a longitudinal electric field up to a frequency w N l/a. The interaction of a 
bunch with an externally driven accelerating mode must be treated by superposi- 
tion. The energy loss to higher modes will be predominately to the cylindrically 
symmetric m = 0 modes for particles near the structure axis. To show this, we 
first make the reasonable guess that the loss parameters per mode for the dipole 
and monopole modes are on the average roughly equal at comparable frequencies. 
There are, however, twice as many dipole modes per unit frequency interval as 
monopole modes.24 Since E, N r for the dipole mode, the ratio of the loss to 
dipole modes compared to monopole modes will be 

6U(m = 1) x 2 
6U(m =0) x 2 ii 0 )> ’ (4.1) 

For example, for an orbit with an rms excursion of 1 mm in the SLAC structure 

(a x 1 cm), the above ratio is 2%. Thus losses to dipole and higher multipole 
mode can in general be neglected. 

28 



For a single gaussian bunch, the loss to each mode is weighted by the gaussian 
- form factor in Eq. (2.10~). Th e ratio of loss to all modes compared to the loss to 

the fundamental mode (n = 0) only is then 

B(a) = & 2 k, e-WEu21C2 . 
n=O 

(4.2) 

Here B is called the beam loading enhancement factor, and we have assumed 
WOO/C << 1 for the fundamental accelerating mode. A plot of B for the SLAC 
structure is shown in Fig. 8. The solid curve shows B(a) using the standard 
analytic extension assuming ZR(W) N w -3/2 The dashed curve gives an estimate . 
in which ke is taken to be one-half that given by Eq. (3.17) for cr + 0, in agreement 
with recent TBCI simulations by K. Bane. 41 However, according to Eq. (3.23) the 
transition to the o-1/2 variation in Ice should not take place until very short bunch 
lengths, less than 0.05 mm, have been reached. It is not yet understood why time 
domain mesh calculations seem to show a transition to a u- ‘I2 behavior at longer 
bunch lengths than might be expected (see also Ref. 35). 

I I I I 
0 I 2 

4237A43 BUNCH LENGTH az (mm) 4~88 

Fig. 8. Beam loading enhancement factor as a junction 
of bunch length for the SLAC structure. Dashed curve 
shows the asymptotic behavior of the enhancement factor 
given by recent TBCI calculations.41 
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The energy spread within a single bunch is of great interest for linear colliders 
and for linacs for FEL’s. In general, the energy variation within the bunch will 
be the superposition of the sinusoidal rf accelerating potential and the bunch 
potential given by Eq. (2.3a). A s is well known, this energy spread can be reduced 
by running the bunch off the crest of the accelerating wave, such that the slope 
of the accelerating wave tends to cancel the average slope of the beam induced 
potential. In Ref. 2., Sec. 12.3, the full energy spread (containing 90% of the 
total charge) is plotted as a function of bunch charge for several bunch lengths for 
the SLAC accelerating structure, at the off-crest phase angle which minimize this 
energy spread. The resulting minimum spread is clearly divided into two regimes. 
At low bunch charge, the spread is dominated by the curvature of the rf wave 
near the wave nest and is given by 

90% 
(4.3u) 

At large values of bunch charge, the energy spread is dominated by the bunch 
wake, and is given roughly by 

90% 
E 0.3 --&) . (4.3b) 

Here qb is the efficiency for the extraction of energy from the accelerating mode 
given by 

Gq cos 0 4koq cos 8 
?‘b = = 

G ’ (4.4) 
U 

where G is the peak accelerating gradient,, 0 is the off-crest phase angle and ko is 
the loss paramter for the accelerating mode per unit length. Equations (4.3) are 

_ quite crude, especially in the transition region where the two energy spreads are 
comparable. The minimum full-width spread in this region tends to be somewhat 
lower than either expression would indicate. 

Equations (4.3b) and (4.4) imply that the energy spread scales as 

AV N 
--m’ V (4.5) 

where N is the number of particles per bunch, for a given accelerating structure 
geometry. 

Based on the diffraction model in the short bunch regime, K. Bane41 has also 
calculated the rms energy spread remaining after the linear part of the wake has 
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been cancelled by the-slope of the rf wave. His result can be written 

- - UC = 0.214 q ktol , (4.6) 

where klol = Bko is the total loss parameter, given by Eq. (3.17) for very short 
bunches. Combining this expression with Eq. (4.4), 

UC fhb = 
G 

M .054 - 
cos2 8 ’ (4.7) 

where ?? = Gcos0 is the effective accelerating gradient. The required off-crest 
angle in the short bunch limit is, using the linear wake for a gaussian bunch 
obtained from Ref. 4, 

&‘b sin 19 cos8 x .014 - . 
G/X0 (4.S) 

To Eq. (4.7) must be added the energy spread due to the curvature of the rf wave, 

UC 2 
= 
G 

-2oF . 
( > (4.9) 

A somewhat different approach to the problem of estimating the single bunch 
energy spread for short bunches is given by R. Palmer,42 who uses a four-particle 
model to simulate the bunch. 

Sometimes the actual functional form for the single bunch energy spectrum 
m3y be required. If the total energy eV at time t is the superposition of the rf 
wave and the single bunch wake potential, then using I(t) = dN/dt the particle 
distribution as a function of energy eV is 

dN 4r1 WI 
dV= w-lw ’ (4.10) 

where V’(t) = dV/dt and t = f-l(V). A q uantitative comparison between the 
measured and calculated energy spectrum for a single bunch in the SLAC accel- 
erator is given in Ref. 43. 

4.2 Single Bunch Transverse Dynamics 

It is often useful to model the essentially continuous charge distribution in a 
real electron bunch by a limited number of macroparticles. A simple but very 
useful model is based on just t&o particles, a head and a tail particle located 
nominally at fa, with respect to the bunch center. In the absence of transverse 
wakefields, the two particles independently undergo transverse oscillations having 
betatron wavelengths determined by the strength of the focussing lattice and 
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the energy of the particle. Suppose now that the transverse wake potential is 
turned on, and that the two particles have exactly the same energy and betatron 
wavelengths. The lead particle &ill continue to undergo transverse oscillations 
as before, but the tail particle now behaves like a harmonic oscillator driven on 
resonance. If accelerating gradient is ignored, the amplitude of the transverse 
motion of the tail particle will increase linearly with distance z according to 

Ax eq W.&h) z -= 7 (4.11) 
x0 4Eo kp 

where x0 is the initial amplitude (assumed to be the same as the amplit’ude of 
the lead particle), Eo is the particle energy and kp = 27r/Xp - EO’. If the 
transverse delta-function dipole wake potential as shown in Fig. 6 is approximated 
by Wl(s) = Wis for small s, then 

Wl(2&) M aa,w; . (4.12) 

Per unit length of a SLAC-type structure (a/X = 0.11) operating at wavelength 
x, -’ 

w; = 
2.4 x 1Ol4 V 

[A( C - m3 * 
(4.13) 

This scales2y41 with beam aperture for a fixed operating wavelength in the regime 
where the optical resonator model is valid approximately as a-3.5. As discussed 
previously, Eq. (3.18) must be used for extremely short bunches such that the 
single-cell diffraction wake is dominant. In this case the wake has a s Ii2 depen- 
dence and therefore as s + 0 the slope becomes infinite. 

The linear growth with distance in the amplitude of the oscillation of the 
tail particle, as given by Eq. (4.11), can be suppressed by introducing an energy 
difference between the lead and the tail particles. The tail particle then acts like 
a harmonic oscillator driven off resonance. This suppression, called BNS damping 
(for Balakin, Novokhatsky and Smirnov, who first introduced the concept), is 
essentially complete if the energy difference, Ehead-&il, is chosen to be 

n&j = eq wd2ad 
41;; 7 (4.14) 

A review of the two-particle model, its extension to N particles, and the applica- 
tion of BNS damping to a continuous charge distribution in a realistic accelerator 
(the SLC at SLAC) is given by K. Bane.44 

Assuming that the transverse emittance growth due to linac wakefields has 
been suppressed by BNS damping, other transverse effects can then be trou- 
blesome. As an example, the transverse positions of the focussing quadrupoles 

32 



will jitter due to ground motion. This seismic noise, arising from both natural 
and manmade causes, gives small random transverse kicks to the bunch at each 
quadrupole. As a result, the transverse bunch displacement undergoes a random 
walk growth along the linac. If the final displacement of the bunch is comparable 
to the transverse bunch dimension, there will be a loss in luminosity in a linear 
collider. This and other transverse single bunch beam dynamics effects are treated 
by R. Ruth.45 

4.3 Multiple Bunch Wakefield Effects 

In a conventional pulsed accelerator, a beam pulse is accelerated which is typ- 
ically several structure filling times in length, and sometimes much more. The 
number of rf cycles in one filling time for a critically coupled standing wave struc- 
ture, or for a traveling wave structure with attenuation parameter T = 0.5, is 
nf = Qo/2~. For the SLAC structure this gives nf x 2 x 103, while for a typ- 
ical linear collider structure at higher frequency and lower 7, nf z 500. This is 
the time a cavity or structure can “remember” the longitudinal wakefields due to 
the passage of a single bunch. If bunches are located one rf wavelength apart, 
the fundamental mode wake potentials for nf bunches will add nearly linearly to 
produce the steady state beam loading voltage. The wakes for higher modes will 
be incoherent from bunch to bunch and will therefore be suppressed by a factor 
on the order of n;‘” with respect to the fundamental mode. Thus for steady state 
operation the energy spread produced by higher modes will be a few percent of 
the beam loading voltage. 

In a linear collider, however, it is contemplated that a relatively short train 
of Nb = 10 or 20 bunches, spaced apart by a few wavelengths at the fundamen- 
tal mode, will be employed. By injecting the bunch train into a traveling wave 
structure before the structure is completely filled with rf, it can be shown46 that 
the energy difference between bunches due to fundamental mode beam loading 
can be compensated to the order of 2 x 10m3, while still extracting about 1% per 
bunch of the energy in the fundamental mode, giving a total energy extraction 
efficiency of lo-20%. Without this compensation, the energy of the last bunch 
would be Nbr]b/:! M 5-10% lower than that of the first bunch. Higher order longi- 
tudinal modes, however, will also contribute to the bunch to bunch energy spread. 
This contribution can be estimated from the long range longitudinal wake poten- 
tial, given for the SLAC structure in Fig. 9. The dots shows bunch locations 
at integer multiples of the fundamental mode wavelength. It is seen that higher 
modes would contribute an rms energy spread which is about f 0.3 times that 
due to the fundamental mode wake. If these energy differences added randomly 
for 20 bunches, the relative energy error for the last bunch would be about 0.3 
fi Tb/2 = 0.7qb, or about 10s2 in a typical case. To reduce this spread, two 
things can be done. First, larger beam aperture, relative to the SLAC design, are 
being considered for linear colliders. This is found to suppress the contribution 
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from higher modes relative to the fundamental mode by a factor of two or so. 
Second, new accelerating structures are being developed47 with coupling slots for 
suppressing higher modes to give effective Q’s on the order of fifty or less. Thus, 
the higher mode wakes attenuate in a distance of two or three bunch spacing at 
the most. This further reduce the relative energy error by another factor bhree or 
so, giving a final relative energy spread on the order of & 0.1 ?lb. 

-2.5 

0 0.2 0.4 0.6 0.8 1.0 
_. 3.88 s (m) 5965A9 

Fig. 9. Long range longitudinal wake potential per cell 
for the SLAC structure. Dots are spaced one wavelength 
apart for the accelerating mode. 

Similar considerations apply to the long range transverse wake, shown in 
Fig. 10. Again, the long-range wake is dominated by the lowest frequency dipole 
mode. By perturbing the structure design, the frequency of this mode can be 
adjusted so that the bunch spacing is an integer multiple of its wavelength. The 
bunches then fall at the zero crossings of the wake for the dominant transverse 
mode, and the effect of this mode on the transverse displacement of subsequent 
bunches (cumulative beam breakup) is greatly reduced. Again, the dipole modes 

- can be damped by a structure design with appropriate coupling slots.47 It can 
be shown48 that these two measures are adequate to suppress multibunch beam 
breakup to an acceptable level for typical linear collider design parameters. 

4.4 Wakefields from Scrapers and Collimators 

The longitudinal loss parameter for a circular collimator was given by 
Eq.- (3.7). But what is perhaps more important, if a low emittance bunch passes 
close to the edge of a collimator or scraper, the resulting transverse wake poten- 
tial can cause a degredation in emittance. This problem has been invest-igated 
by Bane and Morton. 4g If the bunch length is comparable to or greater than the 
radius a of the collimator hole (or the half width of the aperture in a window 
scraper), then the transverse kick at position s in the bunch is, for each edge of 
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Fig. 10. Long range dipole wake potential per cell for the SLAC structure. 

the scraper, 
ZocX(s) Ax 

h(s) = 271. a * (4.16) 

Here, Ax is the transverse offset of the bunch from the centerline of the collimator 
+and X(s) is the linear charge density. Note that the kicks received at the input’ 
and output edges of the collimator are identical, and the total kick is therefore 
twice that given by Eq. (4.16). F or a gaussian bunch, the peak kick at the center 
of the bunch is4’ 

Zocq Ax 
“(‘) = (2+/Z ~z a ’ (4.17) 

The transverse kick can be reduced by tapering the edge of the scraper. A 15’ 
taper angle (with respect to the beam line) reduces the deflection angle, eVl/Eo, 
by a factor of two. 

The loss parameters for very short bunches passing by a variety of vacuum 
chamber discontinuities, such as cavities and steps, are reported by Bisognano, 
Heifets and Yunn.” As an example, we take the case of a circular pipe of radius b 
which steps abruptly to a smaller radius a (the impedance is negligibly small for 
a step to a larger radius). The impedance for the inward step is (see also Ref. 51), 

ZO(W) = : Cn i , 

and the loss parameter is 

kf = -L-. 
b 

aJir a 

(4.18a) 

(4.18b) 
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4.5 Applications to Storage Rings 

The longitudinal and transverse impedances of the vacuum chamber compo- 
nents in a storage ring are key ingredients in determining the threshold currents 
for a variety of possible instabilities. A review of basic analytic approaches to cal- 
culating these beam instabilities is given in Ref. 1. The analysis is usually carried 
out in the frequency domain, in terms of an impedance and a current distribu- 
tion. To obtain results analytically, however, it is often necessary to make severe 
approximations to the form of either the impedance function or the current dis- 
tribution. For more accurate quantitative results it is often desirable to turn to a 
time domain simulation using an ensemble of macroparticles to model the current 
distribution, and to then subject these particles to appropriate longitudinal and 
transverse kicks as determined by the time domain wake potentials. Such simu- 
lations have been particularly useful in investigating bunch lengthening effect in 
SPEAR 52 PETRA53 and LEP.54 A recent rep 7 ort by Nys ” describes cur rent work 
at CERN on longitudinal bunch simulations, together with a rather complete list 
of references to past work. Simulation of transverse single bunch stability have 
been developed by Siemann5’ Brandts7 and N~s.~~ 

An interesting application of the transverse wake potential to storage rings is 
related to the so-called fast head tail instability. This instability has been analyzed 
extensively in both the frequency and time domains. A time domain description 
using a two particle model for the bunch is, however, particularly simple.5g We 
assume that the head and tail particles interchange places every half cycle of 
synchrotron oscillation. During the first half cycle the betatron oscillations of the 
head particle produce wakefields which drive the transverse oscillations of the tail 
particle, while during the next half cycle the roles of the particles are reversed. 
It is easy to show that, below a threshold current per bunch, a stable solution is 
possible in which the oscillation amplitudes of the two particles remain constant, 
at a slightly reduced betatron frequency. Above the threshold current per bunch, 
Ib, the oscillation amplitudes begin to grow exponentially, where 

Ib x 
16 (E0 le>fs (4.19) 

Here, Wli is the transverse wake potential seen by the trailing particle for the 
ith-vacuum chamber component, averaged over one-half cycle of its synchrotron 
motion, pi is the beta function at the component, and fs is the synchrotron 
frequency. Looking at a typical short-range dipole wake as shown in Fig. 6, the 
average wake can be calculated if we assume that the origin is the location of the 
head particle and that the tail particle moves back a maximum distance s, = 20, 
following s = s, sin(w,t). If the wake potential is now weighted by the relative 
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time spent at each value of s, we have 

- - 
WI = 2 sm W*(s)ds 7r J o (SL - s2p2 . (4.20) 

Thus, for short bunches, assuming Wl(s) = Wis, then WI M (4/7r)WLa,. The 
average wake, WI, will be much less than the peak value of the wake, El, and 
the threshold current will be high. The threshold current will drop as the bunch 
length increases, reaching a minimum when 20, is about equal to the value of 
s = 2 at the peak of the wake potential (> NN a for a disk loaded structure), and 
TV 1 x 0.8@~. It will then slowly rise again for longer bunches. This behavior is 
also obtained in a frequency domain analysis 60, but the two bunch model using 
time domain wake potentials provides a simple picture of the underlying physics. 
An application of Eq. (4.19) to the PEP storage ring is given in Ref. 61. 
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