Future Colliders

Stewart T. Boogert John Adams Institute at Royal Holloway Office : Wilson Building (RHUL) W251 Email : <u>sboogert@pp.rhul.ac.uk</u> Telephone : 01784 414062

Lectures aims

- High energy physics
 - Particle physics reasons for perusing higher energies
 - Relationship between hadron and lepton colliders
- High energy acceleration
 - Luminosity
 - Limits on energy, luminosity, particle production
 - How these limits relate to existing and proposed colliding facilities

Physics of colliders

- Particle accelerators immensely powerful tools for understanding the standard model
- Long history of colliding beam experiments
- Review history and future possibilities are examined in this lecture
- Quick review of the particle physics (there is no point building a future facility if there is no physics)
- Technical challenges, limitations
- More sociological and financial challenges

Why accelerators?

- Prepare collisions using accelerator system
- Definite knowledge of particle species, energy and luminosity
- Other considerations
 - Polarisation
 - Lifetime
 - Radiation

Accelerator development

- Long history of high energy acceleration
 - Proton-(anti-)Proton
 - Electron-Positron
 - Electron-hadron
- Exponential increase in beam energy (Moore's law)

Hadron vs. Lepton colliders

- High energy acceleration has given some of the most powerful insights into constituents of matter and their interactions
 - Strong nuclear force
 - Discovery of gluons at PETRA
 - Electroweak vector bosons
 - Discovery at UAI/2
 - Precision measurement at LEP
 - Top quark and Higgs?

Z⁰ discovery and measurement

 $p\bar{p} \to Z^0 + X$

 $e^+e^- \to Z^*/\gamma \to \mu^+\mu^-$

W discovery and measurement

 $e^+e^- \to W^+W^- \to q_1q_2 + q_3q_4$ $p\bar{p} \to W^{\pm} + X$

Recent history

- Pre-LEP
 - Hardronic R-ratio
 - Gluonic jets
- LEP I
 - Z-line shape
- KEP II
 - W threshold

Electro-weak observables

- Higgs not yet observed
 - Precision measurements of the electroweak physics contains a great deal of information
 - Loop corrections to observables
 - Precision electronpositron collisions

Energy frontier

- Why push to higher and higher energies?
 - Standard model is incomplete even with the discovery of Higgs
- Supersymmetry?
- More exotic models
 - Large extra dimensions
 - etc etc...

Synchrotrons

- Work horse of modern particle physics
 - Efficient
 - Multiple interaction points
 - Accelerating systems used of each revolution of the accelerator
 - Requires magnetic bending

Limits on synchrotrons

- Why not just build a bigger LEP?
 - Power loss due to synchrotron radiation
 - Energy must be replaced by accelerator
- Higher energies also require higher luminosities

 $\label{eq:W} \begin{array}{ll} \mbox{Electron machine} \\ W = 8.85 \times 10^{-5} E^4 / \rho \\ \mbox{MeV/turn} & \mbox{GeV} & \mbox{km} \end{array}$

Cross sections (I)

- Standard model course
 - Define the initial state and calculate matrix element then cross section
- More problematic for hadron colliders where the colliding beams are composite objects
 - Parton density functions

Initial state Species, energy, helicity

Cross sections (I)

- Standard model course
 - Define the initial state and calculate matrix element then cross section
- More problematic for hadron colliders where the colliding beams are composite objects
 - Parton density functions

Initial state Species, energy, helicity

Cross sections (II)

- Consider SM course cross sections
 - In order to probe scales where we need higher energies

Cross section

$$\sigma\sim\lambda^2$$

Wavelength $E \sim \frac{h}{\lambda}$

 Higher energies require correspondingly higher luminosity

Point-like cross section must scale as $\sigma \sim \frac{1}{E^2}$

Planed facilities

• Linear Collider

• Very Large Hadron Collider (VLHC)

Designing a machine

- Particle species
 - Electrons/positrons
 - Protons/anti-protons
 - Muons/anti-muons
- Beam energy
- Luminosity

- How does one produce anti-particles?
- Once produced how do you keep them?
- Once you have collided what do you do with the spent beams (ILC), Dumps
- Accelerator and detector protection (LHC)

 What luminosity is required for measurement?

Assuming head on collisions and equal beam sizes

 Require some knowledge of the cross section

$$\mathcal{L} = f \frac{N_1 N_2}{4\pi \sigma_x \sigma_y}$$

- Integrated luminosity depends on many factors
 - Beam lifetimes

Rewriting in terms of emittance and beta functions

$$\mathcal{L} = f \frac{N_1 N_2}{4\sqrt{\epsilon_x \beta_x^* \epsilon_y \beta_y^*}}$$

Accelerator aside : Emittance

- Accelerator physics in three slides!
- Emittance is a measure of the spatial properties of a particle beam
 - Essentially the product of the spatial width with the angular width
 - Normalised emittance invariant

Acceleration

- Accelerating cavities are used to increase the energy of the beam
- The transverse momentum of the particles is not changed but it is increased in the direction of motion
- x' is reduced

Focusing

- Quadrupole magnets act as lenses
 - Focusing in one axis and defocusing in the other

International linear collider ILC

- ILC designed to be a high luminosity e⁺e⁻ collider initially up to 500 GeV then upgradable to I TeV
 - Major systems all driven by the requirement for luminosity

International Linear Collider

- LEP final energy ~200 GeV
- Note the vertical beam size required
- Not continuous bunches but bunch trains of 2820 bunches at 5 Hz
 - Low emittance beams required

Value
250 to 500 GeV
2×10 ¹⁰ e⁻
2820
300 ns
5 Hz
3.5 (554) nm
2.82 10 ³⁸ m ⁻² s ⁻¹

• High beam powers

Positron production

from

- Positron production at the ILC will use the high energy electron beam
 - Pass electron beam through undulator
 - 30 MeV photons
 - Thin target generate electron position pairs

Damping of the electron beam

$$\mathcal{L} = f \frac{N_1 N_2}{4\sqrt{\epsilon_x}\beta_x^* \epsilon_y \beta_y^*}$$

- Ring in which beam is stored for 20 to 200 ms
- To reduce the beam emittance
- Radiation energy loss
 - Longitudinal momentum replaced by accelerator

Damping of the electron beam

$$\mathcal{L} = f \frac{N_1 N_2}{4\sqrt{\epsilon_x \beta_x^* \epsilon_y \beta_y^*}}$$

- Ring in which beam is stored for 20 to 200 ms
- To reduce the beam emittance
- Radiation energy loss
 - Longitudinal momentum replaced by accelerator

ILC acceleration

- Pure Niobium cavities
 - I.2 GHz radio frequency
 - Super conducting at LHe temperatures
 - Require ~35 MeV/m accelerating gradient

Final focus system

- Use telescope to demagnify beam by factor ~300
 - $M = f_1/f_2 = f_1/L^*$
- Set $L^*=2$ m then $f_1=600$ m
- Require large magnetic field for final magnet
- Small L^{*}, magnets inside detector

f₁

final

doublet

 $-f_2 \rightarrow f_2 \rightarrow$

Beam delivery system

- Beam diagnostics
 - Emittance (transverse and longitudinal)
 - Energy
- Collimation
 - Final focus
- Corrections
 - Chromatic/geometric

$$\mathcal{L} = f \frac{N_1 N_2}{4\sqrt{\epsilon_x \beta_x^* \epsilon_y \beta_y^*}}$$

Beam-beam interaction

- 5 nm beam size causes some serious problems
 - Strong mutual bunch focusing
 - Radiation from strong opposing bunch fields (beamstrahlung)
 - Pair production, interaction of the radiation with field (pairs)

- Can rewrite luminosity equation in many different ways
 - Consider the total beam power
- What is the total beam power given ILC parameters?

Recall equation for luminosity

$$\mathcal{L} = N_b f \frac{N_1 N_2}{4\pi \sigma_x \sigma_y} H_D$$

- Can rewrite luminosity equation in many different ways
 - Consider the total beam power
- What is the total beam power given ILC parameters?

Recall equation for luminosity

$$\mathcal{L} = N_b f \frac{N_1 N_2}{4\pi \sigma_x \sigma_y} H_D$$

 $P_{beam} = fEN_bN_1$ $= \eta P_{grid}$

- Can rewrite luminosity equation in many different ways
 - Consider the total beam power
- What is the total beam power given ILC parameters?

Recall equation for luminosity $\mathcal{L} = N_b f \frac{N_1 N_2}{4\pi \sigma_x \sigma_y} H_D$ $P_{beam} = f E N_b N_1$ $= \eta P_{grid}$ $\mathcal{L} = \frac{N}{4\pi\sigma_x\sigma_y} H_D \frac{\eta P_{grid}}{E_{CM}}$

Compact Linear Collider (CLIC)

- Further into the future and higher energies 2-5 TeV
- Power conversion efficiency
 - Use high current low energy beam (drive beam) to generate RF power for probe beam

Linear collider

- Linear collider is a challenging machine
 - Large momentum developed internationally to see the machine built
 - Cost is a important issue \$\$\$
 - Damping rings, accelerator and beam delivery system all push current technologies to the limits
 - 20 km of superconductor fed with high power radiofrequency power, with MW of beam power traveling down the middle.
 - Precision Higgs and top physics.
- Low mass supersymmetry

Muon storage and acceleration

 Muon significantly more massive that electron

- Production and capture difficult
- Cooling (lowering emittance)
- Quick acceleration before decay

$$m_{\mu} \approx 207 m_e$$

$$P = \frac{1}{4\pi\epsilon_0} \frac{e^2 v^4}{c^3 \rho^2} \gamma^4$$

Muon collider

- Muon collider is highly challenging
 - Possible to achieve required luminosity
 - First stage is neutrino factory technology
 - Main accelerator is not so challenging

Plan of a 3 TeV COM muon collider shown on the Fermi National Laboratory site as an example.

Muon production

- Muons created from pion decay
 - Pions from protonsolid target collisions
- Problems are numerous
 - Heat dissipation
 - Radiation damage
 - Thermal stress, shock and fatigue

One target idea rotating metal ring

Muon production

- Generate charged pions from proton interaction with target
- Allow pions to decay into muons
- Angular and momentum distribution of pions and decay products

Ionization cooling

- Reduction of emittance
- Radiation cooling impossible
 - Reduce momentum of muons, accelerate in one direction
 - Energy loss in material
 - Low mass target -Liquid hyrdrogen

Muon acceleration

- Muon lifetime
 - Proper lifetime 2.2 micro-seconds
 - Time dilation to stop decay in laboratory frame

 $t = \gamma \tau$

Quickly accelerate to prevent decay, 10s of turns in each accelerator

Muon collider

- A muon collider is a very challenging accelerator to design and build
- Neutrino factory might be a more realistic, whilst doing effective R&D towards a collider
- As with the ILC low emittance and beta functions are required to obtain the luminosity
- Problems are mainly at the front end, high power proton driver, proton target, capture of muons, cooling and acceleration
- Still a long way off decades
 - Neutrino factory might be sooner ~decade

Large hadron collider

- LHC is the premier facility for the next decade
 - Proton-proton synchrotron
 - 14 TeV COM collison energy
 - 27 km tunnel
- Luminosity upgrade potential?

Large hadron collider

- LHC is the premier facility for the next decade
 - Proton-proton synchrotron
 - 14 TeV COM collison energy
 - 27 km tunnel
- Luminosity upgrade potential?

Large hadron collider

		Injection	Collision	
Beam Data				
Proton energy	[GeV]	450	7000	
Relativistic gamma		479.6	7461	
Number of particles per bunch		1.15×10^{11}		
Number of bunches		2	808	
Longitudinal emittance (4σ)	[eVs]	1.0	2.5 ^a	
Transverse normalized emittance	[µm rad]	3.5 ^b	3.75	
Circulating beam current	[A]	0	.582	
Stored energy per beam	[MJ]	23.3	362	
Peak Luminosity Related Data				
RMS bunch length ^c	cm	11.24	7.55	
RMS beam size at the IP1 and IP5 ^d	μm	375.2	16.7	
RMS beam size at the IP2 and IP8 ^e	μm	279.6	70.9	
Geometric luminosity reduction factor F ^f		-	0.836	
Peak luminosity in IP1 and IP5	$[\mathrm{cm}^{-2}\mathrm{sec}^{-1}]$	-	1.0×10^{34}	
Peak luminosity per bunch crossing in IP1 and IP5	$[\mathrm{cm}^{-2}\mathrm{sec}^{-1}]$	-	3.56×10^{30}	

- LHC is the premier facility for the next decade
 - Proton-proton synchrotron
 - I4 TeV COM collison energy
 - 27 km tunnel
- Luminosity upgrade potential?

LHC Upgrade

$$L = \frac{N_b^2 n_b f_{rev} \gamma_r}{4\pi\epsilon_n \beta^*} F$$

$$F = 1/\sqrt{1 + \left(\frac{\theta_c \sigma_z}{2\sigma^*}\right)^2}$$

- Reduce beta functions at the IP
- Emittance?
- There is a crossing angle
 - Reduces total luminosity
 - Crab beam crossing

LHC Upgrade

$$L = \frac{N_b^2 n_b f_{rev} \gamma_r}{4\pi\epsilon_n \beta^*} F$$

$$F = 1/\sqrt{1 + \left(\frac{\theta_c \sigma_z}{2\sigma^*}\right)^2}$$

- Reduce beta functions at the IP
- Emittance?
- There is a crossing angle
 - Reduces total luminosity
 - Crab beam crossing

Very Large Hadron Colliders

- Larger radius LHC
 - Significant SR from proton beam
 - Civil engineering
 - Cheaper tunneling required
 - Heating (quenching) of dipole magnets

Very Large Hadron Colliders

Table 1.1. The high-level parameters of both stages of the VLHC.

	Stage 1	Stage 2
Total Circumference (km)	233	233
Center-of-Mass Energy (TeV)	40	175
Number of interaction regions	2	2
Peak luminosity (cm ⁻² s ⁻¹)	1×10^{34}	2.0×10^{34}
Luminosity lifetime (hrs)	24	8
Injection energy (TeV)	0.9	10.0
Dipole field at collision energy (T)	2	9.8
Average arc bend radius (km)	35.0	35.0
Initial number of protons per bunch	2.6×10^{10}	7.5×10^{9}
Bunch spacing (ns)	18.8	18.8
β^* at collision (m)	0.3	0.71
Free space in the interaction region (m)	± 20	± 30
Inelastic cross section (mb)	100	130
Interactions per bunch crossing at L _{peak}	21	54
Synchrotron radiation power per meter (W/m/beam)	0.03	4.7
Average power use (MW) for collider ring	25	100
Total installed power (MW) for collider ring	35	250

US-VLHC study group

- First phase start at 15 to 40 TeV
 - Injection from Tevatron at 900 GeV
- Second phase 85 TeV injection from phase I
 - Up to 200 TeV machine
 - Proton SR damping
- Can the world afford

Summary

- Discussed new facilities
 - Linear collider (CLIC)
 - Muon factories and colliders
 - Large hadron collider and possible upgrades
 - Very large hadron collider
- Increasing difficult to build these facilities
 - Cost
 - Technical challenges
 - Time scales decades (fortunately you are young)

Resources for further study

- <u>http://www.linearcollider.org/cms/</u>
- <u>http://clic-study.web.cern.ch/clic%2Dstudy/</u>
- <u>http://www.cap.bnl.gov/mumu/</u>
- <u>http://lhc.web.cern.ch/lhc/</u>
- <u>http://vlhc.org</u>/
- http://pdg.lbl.gov/