Intercollegiate post-graduate course in High Energy Physics

Paper 1: The Standard Model

Monday, 28 January 2008

Time allowed for Examination: 3 hours

Answer ALL questions

Books and notes may be consulted
The Standard Model

Question 1 (4 marks)

At a collider, two high energy particles, A and B with energies \(E_A\) and \(E_B\), which are much greater than their rest masses, collide head on. Derive the expression for the centre-of-mass energy.

Using this expression, what would be the centre-of-mass energy of a proposed future facility (“LHeC”) which will collide 7 TeV protons with 70 GeV electrons?

Now consider particle B (the proton) to be at rest. Derive the formula for the centre-of-mass energy of such a fixed-target experiment.

What electron beam energy would be required in the fixed-target experiment in order to achieve the same centre-of-mass energy as in the proposed LHeC facility?

Question 2 (12 marks)

Consider the Compton scattering of a photon, \(k = (\omega, \vec{k})\), off a stationary electron, \(p = (m, \vec{0})\). The photon is scattered through an angle \(\theta\) and the four momenta of the final state particles are \(k' = (\omega', \vec{k'})\) and \(p' = (E', \vec{p'})\) for the photon and electron respectively. Derive the Compton shift relation

\[
\lambda' - \lambda = 2\lambda_c \sin^2(\theta/2)
\]

where \(\lambda = 2\pi/\omega\), \(\lambda' = 2\pi/\omega'\) and \(\lambda_c = 2\pi/m\).

Draw the leading order Feynman diagrams for Compton scattering and state whether they are s, t or u channel.

Part of the trace calculation for evaluating the cross section involves

\[
A = \frac{1}{4} Tr \left[\epsilon' \epsilon \left(p + m \right) \gamma^\mu \gamma^\nu \left(p' + m \right) \right],
\]

where \(\epsilon\) and \(\epsilon'\) are the photon’s initial and final polarization four vectors. In a gauge for which \(p \cdot \epsilon = p \cdot \epsilon' = 0\), show that

\[
A = 2\epsilon^2 k \cdot p \left[2 (\epsilon' \cdot k)^2 - \epsilon'^2 (k' \cdot p) \right].
\]

Trace theorems for \(\gamma\) matrices need not be derived, but should be quoted. Note that \(\phi \phi^\dagger = 2a \cdot b - a^2 b\).
Question 3 (10 marks)

Draw the leading order Feynman diagram for electron-muon scattering, $e^-(k) + \mu^-(p) \to e^-(k') + \mu^-(p')$, where the four momenta are indicated in the reaction. [1]

Simplify the expression for the transition amplitude:

$$|T_{fi}|^2 = \frac{e^4}{4q^4} \text{Tr} \left[(\not{k}' + m)(\not{k} + m)\gamma_\mu \right] \cdot \text{Tr} \left[(\not{p}' + M)(\not{p} + M)\gamma^\nu \right]$$

such that the Traces are removed, assuming the high-s limit of zero masses. Trace theorems for γ matrices need not be derived, but should be quoted. [4]

Use the cross-section definition (in the centre-of-mass system):

$$\frac{d\sigma}{d\Omega} = \frac{1}{64\pi^2} \frac{p_f}{p_i} |T_{fi}|^2,$$

where p_f and p_i are the final and initial three-momenta, to derive the cross section.

$$\frac{d\sigma}{d\Omega} = \frac{\alpha^2}{4s} \left(1 + \cos^2 \theta \right),$$

where α is the fine structure constant and θ is the angle between the e^- and μ^-. [5]

Question 4 (4 marks)

The branching ratios for $D^+ \to K^0\pi^+$ and $D^+ \to K^+\pi^0$ are very different, viz. 1.47% and 2.37E-4. Assuming the simple spectator model, draw diagrams for the two decays. [2]

Give a reasoning for some of the difference in rate. [2]

Question 5 (6 marks)

State what is meant by local and global gauge transformations. [2]

From the Lagrangian

$$\frac{1}{8} \left[g_W(v+h)^2(W^1_{\mu} - iW^2_{\mu})(W^1_{\mu} + iW^2_{\mu}) - (v+h)^2(g'B_{\mu} - gwW^3_{\mu})(g'B^\mu - gwW^3_{\mu}) \right]$$

derive the ZZH and ZZHH couplings. (Simplify your answer to remove any dependency on v.) [4]
Question 6 (6 marks)

For $\sqrt{s} = 35$ GeV, what would you expect the value of

$$R = \frac{\sigma(e^+e^- \rightarrow \text{hadrons})}{\sigma(e^+e^- \rightarrow \mu^+\mu^-)}$$

to be when considering only the EM coupling? At what higher energy would you expect the value to change? \[3\]

Draw a higher-order diagram (i.e. consideration of the strong force) which would affect this value. \[1\]

Briefly describe how such higher-order diagrams led to the discovery of the gluon. \[2\]

Question 7 (7 marks)

The amplitude for the decay $\pi^-(q) \rightarrow \mu^-(p) + \bar{\nu}_\mu(k)$ is given by:

$$|T_{fi}|^2 = \frac{G_F^2}{2} f_{\pi}^2 \cos^2 \theta_c m_\mu^2 \text{Tr} \left[(\not{p} + m_\mu)(1 - \gamma^5)\not{k}(1 + \gamma^5) \right]$$

Use Trace theorems to show this simplifies to

$$|T_{fi}|^2 = 4G_F^2 f_{\pi}^2 \cos^2 \theta_c m_\mu^2 (p \cdot k)$$ \[4\]

The ratio of decay rates:

$$R = \frac{\Gamma(K^- \rightarrow e^- + \bar{\nu}_e)}{\Gamma(K^- \rightarrow \mu^- + \bar{\nu}_\mu)}$$

can be written in terms of the particle masses. Use this relation to give the value to 2 decimal places showing that the rate is close to that measured from experiment, $\sim 2.44 \times 10^{-5}$. \(m_e = 0.511 \text{ MeV}, m_\mu = 105.7 \text{ MeV}, m_K = 493.7 \text{ MeV}\) \[3\]
Question 8 (12 marks)

Draw the Feynman diagrams of the two leading order (in α_s) processes in deep inelastic ep scattering. [2]

The photon emitted from the electron can also be sometimes considered to have a structure, by fluctuating into a pair of quarks. Draw an example Feynman diagram of these so-called “resolved” photon processes. [2]

In this way, an ep collider can also be thought of as a hadron collider. Draw all Feynman representations, including the initial hadrons and their products, for the hard scatters, \(qq' \to qq' \) and \(qq \to qq \). [4]

Write down the forms of the (partonic) cross sections for \(qq' \to qq' \) and \(qq \to qq \) in terms of the Mandelstam variables, \(s \), \(t \) and \(u \), associating each term with the relevant Feynman diagram. [4]

Question 9 (5 marks)

Contrast the advantages and disadvantages of e^+e^- and pp colliders. Use two headline measurements or major discoveries to justify your answer. [5]

Question 10 (6 marks)

What property of the EM interaction means that photons do not self-couple? [1]

Draw a Feynman diagram of a process at the LHC in which three gluons couple at one vertex. [2]

Explain briefly why the QCD coupling, α_s, has a different behaviour with the scale, Q^2, compared to that of the QED coupling, α. [3]

Question 11 (6 marks)

Draw a Feynman diagrams for each of neutral current and charge current deep inelastic scattering at HERA. [2]

Draw a sketch of how their cross sections vary with Q^2 and explain the features. [2]

The neutral current cross section is sensitive to all quarks in the proton. Which quarks are the charge current cross section for (a) e^+p and (b) e^-p sensitive to? [2]