PH4442 - Problem Sheet 1

(Answers should be returned on 17/01/2006)

- 1. At the HERA collider of DESY, electrons of $E_e \approx 25 \,\text{GeV}$ collide head-on against protons of $E_p \approx 900 \,\text{GeV}$. What is the center-of-mass energy of the collisions? (The electron and proton masses are negligible at these energies.)
- 2. In the ABC theory, if

 $3m_B + 4m_C > m_A > 3m_B + 3m_C > m_B > 2m_C$

list all the possible decay modes of A, draw an example Feynman diagram for each of them and order them in decreasing partial width. Explain your answer briefly.

- 3. In Natural Units, what are the dimensions of:
 - cross section?
 - the amplitude \mathcal{M} in a two-body scattering process? (Hint: start from the previous answer)
 - the coupling constant g in the ABC theory? (Hint: start from the previous answer)
- 4. A pion traveling at speed β(≡ v/c) decays into a muon and a neutrino, π⁻ → μ⁻ + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ
 + ν

 μ