PH4442 - Problem Sheet 2

(answers should be returned on 31/01/2006)

1. Particle A decays at rest to particles B and C ($A \rightarrow B + C$). Show that the energy of, say, B is given by

$$E_B = \frac{m_A^2 + m_B^2 - m_C^2}{2m_A}$$

2. How does the u_1 free Dirac spinor change under the Parity transformation, \hat{P} ? Show that this can be written as

$$\hat{P}u_1 = \gamma^0 u_1 \,.$$

(This is a general result, independent of the representation for the Dirac spinors and the γ matrices.) Show that the quantity $\bar{u} \circ \mu \partial u$, where $\bar{u} = u^{\dagger} \circ^{0}$ is invariant under the Parity transformation, whi

Show that the quantity $\bar{u}_1 \gamma^{\mu} \partial_{\mu} u_1$, where $\bar{u}_1 = u_1^{\dagger} \gamma^0$, is invariant under the Parity transformation, while replacing γ^{μ} with $\gamma^{\mu}(1-\gamma^5)$ breaks the \hat{P} invariance. (When we discuss Lagragians, we will see that this is the key difference between QED and the weak interactions.)

3. The charge conjugation operator (C) takes a Dirac spinor ψ into its charge-conjugate ψ_C , given by

$$\psi_C = i\gamma^2 \psi^*$$

Find the charge-conjugates of u_1 and u_2 and compare them with v_1 and v_2 .

4. Using only the properties of the Pauli matrices (i.e. WITHOUT picking a specific representation), show that for any two vectors \vec{a} and \vec{b}

$$(\vec{\sigma} \cdot \vec{a})(\vec{\sigma} \cdot \vec{b}) = \vec{a} \cdot \vec{b} + \imath \vec{\sigma} \cdot \vec{a} \times \vec{b}$$

and hence that $(\vec{\sigma} \cdot \vec{a})^2 = |\vec{a}|^2$.

(You can find all the main properties of the Pauli matrices in problems 4.19 and 4.20 of Griffiths.)

5. Derive the completeness relation

$$\sum_{s=1,2} u^{(s)}(p)\bar{u}^{(s)}(p) = p + m$$

where $p = p_{\mu} \gamma^{\mu}$.

(Hint: DO NOT expand in 4 dimensions. 2×2 for the γ matrices and 2×1 for the *u*'s is sufficient. You will also need to use the result from problem 3 above.)