PH4442 - Problem Sheet 2

(answers should be returned on 31/01/2006)

1. Particle A decays at rest to particles B and $C(A \rightarrow B+C)$. Show that the energy of, say, B is given by

$$
E_{B}=\frac{m_{A}^{2}+m_{B}^{2}-m_{C}^{2}}{2 m_{A}} .
$$

2. How does the u_{1} free Dirac spinor change under the Parity transformation, \hat{P} ? Show that this can be written as

$$
\hat{P} u_{1}=\gamma^{0} u_{1} .
$$

(This is a general result, independent of the representation for the Dirac spinors and the γ matrices.)
Show that the quantity $\bar{u}_{1} \gamma^{\mu} \partial_{\mu} u_{1}$, where $\bar{u}_{1}=u_{1}^{\dagger} \gamma^{0}$, is invariant under the Parity transformation, while replacing γ^{μ} with $\gamma^{\mu}\left(1-\gamma^{5}\right)$ breaks the \hat{P} invariance. (When we discuss Lagragians, we will see that this is the key difference between QED and the weak interactions.)
3. The charge conjugation operator (C) takes a Dirac spinor ψ into its charge-conjugate ψ_{C}, given by

$$
\psi_{C}=\imath \gamma^{2} \psi^{*}
$$

Find the charge-conjugates of u_{1} and u_{2} and compare them with v_{1} and v_{2}.
4. Using only the properties of the Pauli matrices (i.e. WITHOUT picking a specific representation), show that for any two vectors \vec{a} and \vec{b}

$$
(\vec{\sigma} \cdot \overrightarrow{\mathrm{a}})(\vec{\sigma} \cdot \overrightarrow{\mathrm{b}})=\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{~b}}+\imath \vec{\sigma} \cdot \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}
$$

and hence that $(\vec{\sigma} \cdot \vec{a})^{2}=|\vec{a}|^{2}$.
(You can find all the main properties of the Pauli matrices in problems 4.19 and 4.20 of Griffiths.)
5. Derive the completeness relation

$$
\sum_{s=1,2} u^{(s)}(p) \bar{u}^{(s)}(p)=\not p+m
$$

where $\not p=p_{\mu} \gamma^{\mu}$.
(Hint: DO NOT expand in 4 dimensions. 2×2 for the γ matrices and 2×1 for the u 's is sufficient. You will also need to use the result from problem 3 above.)

