PH4442 - Problem Sheet 4

(Answers should be returned on 28/02/2006)

1. (From the 2004 exams)

Consider the QED elastic scattering reaction $e^{-} \mu^{-} \rightarrow e^{-} \mu^{-}$. Neglecting masses, the cross section is given by

$$
\frac{d \sigma}{d(\cos \theta)}=\frac{\pi \alpha^{2}}{s} \frac{1+\cos ^{4}(\theta / 2)}{\sin ^{4}(\theta / 2)}
$$

where α is the fine structure constant, s is the square of the centre-of-mass energy and θ is the angle of the scattered electron in the $e \mu$ centre-of-mass frame.
(a) Neglecting all masses in the above reaction, show that the change of the electron four-momentum, q^{μ}, satisfies

$$
q^{2}=q_{\mu} q^{\mu}=-\frac{1}{2} s(1-\cos \theta) .
$$

Hence show that the cross section as a function of q^{2} is

$$
\frac{d \sigma}{d\left(q^{2}\right)}=\frac{2 \pi \alpha^{2}}{q^{4}}\left[\frac{q^{4}}{s^{2}}+2\left(1+\frac{q^{2}}{s}\right)\right] .
$$

(b) Deep inelastic scattering of electrons from protons can be described by the reaction $e^{-} p \rightarrow e^{-} X$, where X is a hadronic system with $m_{X} \gg m_{p}$. Within the quark model, this can be considered to arise from elastic electron-quark scattering. If the scattered quark initially had a fraction x of the proton momentum then, neglecting masses and transverse momentum components, show that the centre-of-mass energy of the electron-quark system, \hat{s}, is related to that of the electron-proton system, s, by

$$
\hat{s}=x s
$$

